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ABSTRACT

Several important classes of liability are sensitive to the direction of future mortality trends, and this paper presents
some recent developments in fitting smooth models to historical mortality-experience data. We demonstrate the
impact these models have on mortality projections, and the resulting impact these projections have on financial
products. We base our work round the Lee-Carter family of models. We find that each model fit, while using the
same data and staying within the Lee-Carter family, can change the direction of the mortality projections. The main
focus of the paper is to demonstrate the impact of these projections on various financial calculations, and we provide
a number of ways of quantifying, both graphically and numerically, the model risk in such calculations. We conclude
that the impact of our modelling assumptions is financially material. In short, there is a need for awareness of model
risk when assessing longevity-related liabilities, especially for annuities and pensions.
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1. INTRODUCTION

“It’s tough to make predictions, especially about the future.”
Lawrence Peter ‘Yogi’ Berra, US baseball player and team manager

“I never think of the future. It comes soon enough.”
Albert Einstein, interviewed in 1930

1.1 Actuaries do not have the luxury of thinking like Albert Einstein, as almost every calculation
they make involves some sort of assumption about the future. A particularly topical assumption
is that of future mortality trends, usually labelled as ‘mortality improvements’ due to the clear
expected direction of change.

1.2 One of the most commonly used models for projecting future mortality is the Lee-Carter
model (Lee and Carter, 1992). Although originally created for forecasting life expectancy, it is also
used to forecast mortality rates at each age. This paper presents some recent developments in the
fitting of Lee-Carter models, specifically the idea of using smoothing methods to reduce the number
of effective parameters in the model. A useful by-product of this smoothing is a new approach to
projecting future mortality trends within the Lee-Carter framework. We illustrate the fitting of
these smoothed models, and also the financial impact of the projections produced by them. We find
that model risk is a particularly important source of uncertainty for actuaries pricing and reserving
for pensions and annuities, often as important as the uncertainty within the model itself.

2. DATA AND DATA PREPARATION

2.1 The data used in this paper are the number of deaths aged x last birthday during each
calendar year y, split by gender. Corresponding mid-year population estimates are also given.
The data therefore lend themselves to modelling the force of mortality, f,, 1,1, without further
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2 Assessing longevity risk and annuity pricing with the Lee-Carter model

adjustment. We use two such data sets, one provided by the Office of National Statistics (ONS)
and one by the CMI.

2.2 We use ONS data for England & Wales for the calendar years 1961-2006 inclusive. This
particular data set only has death counts and estimated exposures up to age 89, and we will work
here with the subset of ages 40-89 which is most relevant for insurance products sold around
retirement ages. ONS death data are provided by the date of registration, but between 1993 and
2005 they are also available by the date of occurrence. In this paper we have used the registration
data throughout for consistency. This is the same data set as used in Richards, Kirkby and Currie
(2006), but with a smaller age range and some extra years of data. More detailed discussion of this
data set, particularly regarding the estimated exposures, can be found in Richards (2008a).

2.3 The other data set we will use is the experience data for assured lives collected by the CMI
for calendar years 1947-2005 inclusive. For consistency with the ONS data set, we will use the same
age range 40-89. Note that the CMI data set is only useful for male lives, as the data are sparse
for females.

2.4 All the data here are therefore supplied aggregated, and we will model the mortality of
groups. This is in contrast to the models of individual mortality which are used for detailed life-
insurer data, as outlined in Richards (2008b). Note that both the models for groups in this paper
and the individual models of mortality in Richards (2008b) are all models for the force of mortality
(hazard function), rather than for the mortality rates often used by actuaries. Mortality rates (q.)
can of course be precisely calculated from knowledge of the force of mortality.

2.5 We also use three data sets for actual pensions in payment: two for annuity portfolios
and and one for a defined-benefit pensions scheme. Details on these portfolios are provided in
section 8. The portfolios are used to simulate the lifetime of the people behind the annuities or
pensions. Prior to carrying out the simulations we deduplicated the portfolios using the procedure
outlined in Richards (2008b), i.e. pensions or annuities paid to the same person were identified and
aggregated. Simulating without deduplication would be doubly misleading: first, it is common for
people to have more than one annuity, so the mortality experience for annuities is not independent;
second, wealthier people have a greater tendency to have multiple annuities, so a correct picture of
the financial volatility can only be obtained by adding up pension and annuity records for the same
person. Failure to deduplicate prior to simulation would give a falsely comforting picture of the
binomial risk, and it would likely also under-estimate the concentration risk due to large aggregated
pensions.

2.6 These statements require some justification. Figure 1 shows the average number of annuities
after deduplication for each life identified in a large life-office annuity portfolio. Deduplication
was done using the process outlined in Richards (2008b). Each of the twenty groups in Figure 1
represents the same proportion of the lives. On the left we have the 5% of lives with the smallest
total pension, where there are very few duplicates and an average of 1.03 policies per person. On the
right we have the 5% of lives with the largest total pension, where there are many duplicates and an
average of 1.84 policies per person. This correlation of number of policies with wealth demonstrates
the importance of deduplication when performing any statistical analysis.

2.7 There is a degree of self-fulfilling prophesy in Figure 1, however. By adding together pen-
sions across duplicates, of course larger incomes will appear to have a higher average number of
policies! We can, however, prove this another way by using geodemographic profiles according to
Richards (2008b). Table 1 shows the average total annuity and average number of policies for each
of eleven Mosaic Groups assigned by U.K. postcode. These postcode profiles are not defined in
relation to pension size, but there is a clear link between geodemographic group and average benefit
size. This suggests that geodemographic profiles are useful in clarifying policyholder status where
benefit levels are small- and medium-sized. As expected, there is also a strong correlation with the
average number of policies, thus proving that wealthier and higher-status individuals have a greater
tendency to have multiple policies.
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Figure 1. Average number of policies per person in each of equal-sized membership bands ordered
by total annual annuity income. Band 1 is the 5% of lives with smallest annual pensions, through
to band 20 which is the 5% of lives with the largest annual pensions. Data taken from the large
life-office annuity portfolio used in Richards (2008b).

Table 1. Summary statistics by Mosaic group for large annuity portfolio

Average Average
annuity  policies

Mosaic group (£ p.a.) per life
Symbols of Success 4,348 1.33
Rural Isolation 3,405 1.30
Grey Perspectives 2,708 1.29
Suburban Comfort 2,203 1.24
Urban Intelligence 2,489 1.22
Happy Families 1,856 1.19
Ties of Community 1,592 1.19
Twilight Subsistence 1,394 1.17
Blue Collar Enterprise 1,444 1.16
Welfare Borderline 1,281 1.14
Municipal Dependency 1,093 1.12
Unmatched or unrecognised postcodes 2,619 1.17
Commercial addresses 4,365 1.35
All lives 2,663 1.24

Postcode Mosaic groups from Experian Ltd applied to the large life-office annuity portfolio used in Richards (2008b).
Statistical models require the independence assumption to hold, i.e. data sets have to be deduplicated. This is all
the more critical when important subsets of policyholders have more duplicates than others, as clearly shown here.
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2.8 Another way of looking at the issue of duplicates is to examine the proportion of lives
and amounts by each number of policies per individual. This is done in Table 2, which shows
that a nearly a third of penions are in respect of individuals with multiple policies. This means
deduplication is essential in forming an accurate picture of liabilities for this annuity portfolio.

Table 2. Proportion of portfolio by number of policies held

Number of policies Proportion of total:
per individual (a) by lives (b) by amounts

1 83.3% 67.6%
2 12.6% 20.3%
3 2.6% 6.4%
4 0.8% 2.6%
5 0.3% 1.3%
6 0.2% 0.6%
7 0.1% 0.4%
8 0.1% 0.3%
9 0% 0.1%
10 0% 0.1%
11 0% 0.1%
12 0% 0.1%
Total 100% 99.9%

Data from large life-office annuity portfolio used in Richards (2008b). The column for amounts does not quite add
up to 100% because there are some individuals with even more than 12 policies (up to a maximum of 31 for this

portfolio).

3. MODELS AND NOTATION
3.1 All the models used in this paper are based on the Lee-Carter (1992) framework:

10g fiey = Qi + Buky (1)

where p, , denotes the force of mortality (hazard rate) at age x in year y, a,, is the effect of age z, &,
is the effect of calendar year y and [, is the age-specific response to the calendar-year effect. Since
we are dealing with two-dimensional data sets, it is convenient to rewrite equation (1) in matrix
form and we define: M = (p,,), the matrix of the forces of mortality indexed by age and time;
a' = (ay,...,q,,), the vector of age effects (n, is the number of ages and ’ denotes the transpose
of a vector (or matrix)); k' = (k1,...,K,,), the vector of calendar year effects (n, is the number of
years); and B = (B, ...,3.,), the vector of age-specific responses. With this notation we can now
rewrite equation (1) in matrix form as:

log M = al’ + K/ (2)

where 1 is a vector of 1’s and is of length n,.

3.2 The Lee-Carter model is designed with forecasting in mind since the year effect across ages
is reduced to the single time-indexed parameter, k. The Lee-Carter assumption certainly simplifies
the forecasting problem but it is as well to remember that it is not immune to the problems of any
forecasting method: (i) model risk, (ii) parameter uncertainty, (iii) parameter stability, and (iv)
stochastic variation. Model risk stems from the model assumption determining the forecast, but
what if the model is wrong? The main point of the present paper is to discuss the impact of model
assumptions on the pricing of financial products. Parameter uncertainty exists even if we have the
correct model, since parameter estimates are still subject to sampling variation. As for parameter
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stability, the Lee-Carter model makes the strong assumption that the estimated values of a and
B (estimated from past data) remain fixed at these values in the future. Kingdom (2008) suggests
that this assumption may not hold in practice. Finally, as for stochastic variation, only if points
(i), (ii) and (iii) are successfully negotiated will our confidence interval give a true reflection of the
likely future course of mortality.

3.3 We will use three models in this paper. First, the Lee-Carter model where we estimate the
parameters «,, (3, and k, by the method of maximum likelihood. The parameters in (1) are not
identifiable, since the following transformations yield the same fitted values of . , for any real value
of ¢

Ay — Q= Q= Cfs, Be — B3 = B, Ky = Ky = Ky + C. (3>

We therefore fix a convenient parameterisation by setting > x; = 0 and Y x7 = 1. This has the
attractive feature that a is a measure of average log mortality by age (see Figure 2). Under this
model, mortality projections for p, , are obtained by projecting a time series for x,. This model
will be denoted ‘original Lee-Carter’, or just ‘LC’, although the maximum-likelihood approach to
parameter estimation was developed by Brouhns, Denuit and Vermunt (2002). The model in Lee
and Carter (1992) was not originally fitted by maximum-likelihood estimation.

3.4 The second model is where smoothness is imposed on the (.. The thinking behind this
model is that with data sets with small numbers of deaths (such as insurance data) the estimates
of the 3, can be volatile, and this leads to inconsistent forecasts of future mortality; smoothing the
B, will fix this problem. This model was proposed by Delwarde, Denuit and Eilers (2007) and they
smoothed the (3, using penalized B-splines or P-splines (Eilers and Marx, 1996); this model will
be denoted ‘DDE’. As with the original Lee-Carter model, projections for p, , are still obtained by
projecting a time series for «,, although this can potentially differ due to the different structure for
the (..

3.5 The third model is where smoothness is imposed on both the 3, and the &, by means of
P-splines. The thinking behind this model is that in addition to the advantages of the DDE model
we also have an estimate of the underlying trend in the x,’s. This approach gives an alternative
method of forecasting the x,’s since the penalty function enables forecasting to take place. This
model will be denoted ‘CR’ in this paper. Projection with penalty functions is discussed in detail
in Richards, Kirkby and Currie (2006).

3.6 It is not the aim of this paper to provide an exhaustive comparison of all the mortality
models in existence, nor even of all the extensions to the Lee-Carter model. For example, Renshaw
and Haberman (2006) proposed an extension of the Lee-Carter model to include cohort effects, which
was also discussed in CMI (2007), while Kingdom (2008) raised questions about the assumption of
the stability over time of the Lee-Carter parameters. Other classes of models for projection include
penalised-spline models — Richards, Kirkby and Currie (2006) — and a wide family of models for
international data is assessed by Cairns et al (2007). Rather our aim is to show that even within
this small family of models the financial consequences of model choice can be quite substantial.

4. GRAPHICAL DESCRIPTION OF PENALISED SPLINES

4.1 We provide a short description of the Eilers and Marx (1996) method of P-splines. Figure 2
gives a plot of the log of the observed forces of mortality, denoted by o, for those aged 70 at age of
death taken from the CMI data set. There is some variation from year to year but an underlying
trend is evident, especially the very dramatic fall in log mortality that has occurred since around
1970. Familiar polynomial regression uses polynomials as the basis for regression but there is no
reason why other functions cannot be used. The lower panel shows a basis consisting of fifteen cubic
B-splines. Each B-spline consists of four cubic pieces bolted smoothly together at positions known
as knots to give the functions illustrated — see de Boor (2001) for more details.
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Figure 2. Log mortality for males aged 70 (CMI data) together with fitted regressions and associated
coefficients: B-spline basis in lower panel.

4.2 We suppose that the number of deaths d, in year y, has a Poisson distribution with mean
ey lty Where e, is the central exposure and f,, is the force of mortality. The classical Gompertz model
is a generalized linear model (GLM) with log 11, = a+by. In the same way, using the B-spline basis
in Figure 1 we have:

log iy = > B;(y)0; (4)
J
where B;(y) denotes the jth B-spline evaluated at year y; in vector /matrix notation we have:

logpu = BO (5)

where B = (B;(i)) is the regression matrix. The resulting fitted log mortality is shown by a dashed
line — — — in Figure 1. It seems we have over-fitted or undersmoothed the data, particularly in
the early years, since the dashed line oscillates rather a lot. We refer to regressing on a basis of
B-splines as B-spline regression.
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4.3 Each regression coefficient, 6;, can be associated with its corresponding basis function and
Figure 2 also shows each éj, the estimated value of 6;, plotted a at its corresponding B-spline,
Bj(z). The erratic nature of the fitted curve is a consequence of the erratic nature of the fitted
coefficients. Eilers and Marx (1996) placed a penalty on differences between nearby coefficients, as
in the second order penalty:

(01 =205+ 05)* + ...+ (0oey — 200, +0.)? (6)

where ¢ is the number of coefficients. We note that (6) is a measure of roughness since it increases as
the fitted function becomes less smooth. We incorporate this penalty function into the log-likelihood,
creating a penalised log-likelihood function. Fitting is now a balance between the goodness of fit
and the roughness of the fitted curve, i.e. a balance between maximizing the log-likelihood and
maximizing the smoothness. For more details see Richards, Kirkby and Currie (2006). Figure 2
shows the results of optimising the Bayesian Information Criterion, one method of choosing the
balance between fit and roughness. The coefficients, plotted B in Figure 2, have been ‘ironed out’,
and the resulting fitted curve has a pleasing smoothness to it. We refer to regressing on a basis of
B-splines with penalties as P-spline regression.
4.4 We can now summarize our three models for log M :

LC: al' + Br/ (6)
DDE:  al + B,bx’ (7)
CR: ol +B,bk'B, (8)

where B, and B, are regression matrices evaluated on B-spline basis for age and year respectively,
and 8 — B,b and k — Byk. In (7) there is a penalty on the coefficients b and in (8) there are
penalties on both b and k.

4.5 Figure 2 also illustrates how forecasting with P-splines is achieved. Linear forecasting of the
last two coefficients leaves the roughness measure unchanged and the forecast then follows from the
forecast coefficients. We note that, for the purposes of projection, the knot points for the penalised
splines for k; are set such that one sits on the final year of the data (2006 for the ONS population
data, 2005 for the CMI assured lives). In this paper we have used a five-year knot spacing in order
to simplify presentation, but other spacings are possible and yield similar fits.

5. GRAPHICAL COMPARISON OF THE MODEL FITS

5.1 Figure 3 shows parameter plots for «,, 3, and k, for the three models in the left-hand
column. The solid red dots show the unsmoothed values from the original Lee-Carter model. In
each case there is an obvious smooth pattern in the parameters, hence the extension of the DDE
and CR models to smooth 5, (DDE and CR) and &, (CR only).

5.2 In Figure 3 the only practical distinction between the DDE and CR models is for the &,
parameter, as the lines are largely coincident for the plots for «, and §,. The DDE model has
unsmoothed r, values, so the DDE parameter line in effect joins the dots for the original Lee-
Carter model. In contrast, the CR model shows deviations from the Lee-Carter x, parameters due
to smoothing.

5.3 Note that the a, parameters are unsmoothed in any of the models, hence the DDE and CR
parameter curves for «, in effect join the dots for the original Lee-Carter model. The plots for «, in
Figure 3 show a high degree of regularity, and suggest that all three models are over-parameterised
with respect to age: the full freedom of a separate parameter for each «, is unnecessary when each
value is so closely place next to its immediate neighbours. A further simplification could therefore
be achieved by spline smoothing for «,. This is not straightforward, however, since the constraints
in (3) interact with the penalty on a.



8 Assessing longevity risk and annuity pricing with the Lee-Carter model

« Lee-Carter parameters

=2 DDE parameters § 0.05
- - CR parameters 7]
=37 = 0.00
x © )
5 -4 >
= -0.05
-5 g
£ -0.10
-6 — (o}
| T T T T | | T T T T |
40 50 60 70 80 a0 40 50 60 70 80 9(

£e)
Q
1%
>
2
g @
() >
S
()
£
&
Age Age
0.2
S 0.04 —
0.1 4 % 0.02
0.0 H "g 0.00
< -0.1 2 ~0.02
©
o —0.04 —
—_ —] [
02 £ -0.06 —
-0.3 — ¥ -0.08 -
| T T T | | T T T |
1960 1970 1980 1990 2000 1960 1970 1980 1990 2000
Year Year

Figure 3. Parameter plots for «a,, §, and x, (left column), and the same parameters after linear
adjustment (right column). The original Lee-Carter parameters are shown as solid red dots, while
the DDE parameters are shown by a solid blue line and the CR parameters are shown by a dashed
black line. The linear-adjusted plots show the same coefficients on the left after subtracting a fitted
straight line. They show for example that the pattern of o, by age is not as linear as it seems (ONS
data).

5.4 Figure 4 shows the crude mortality rates and the model fits under the various models. The
crude mortality rates are shown as open circles, while the original Lee-Carter parameters are shown
as solid red line. The DDE parameters are shown by a solid blue line and the CR parameters are
shown by a dashed black line. The original Lee-Carter parameters are largely obscured by the DDE
line due to them being almost completely co-incident, i.e. the LC and DDE fits are almost identical.
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5.5 Figure 5 shows the projected log-mortality at age 65 under the DDE and CR approaches
(the original LC approach is left out as it produces near-identical results to the DDE one). While the
central projections are very different, we can see that the confidence bounds substantially overlap,
suggesting that the projection from one model is quite consistent with the projection from the other.
It is interesting that the original Lee-Carter model has a confidence area which is essentially the
more optimistic half of the confidence area for the CR (smoothed-x,) model. One notable feature
is that the CR model has a much wider confidence interval.
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Figure 4. Log mortality at selected ages (ONS data). The solid red line for original Lee-Carter
parameters is largely obscured by the DDE line due to them being almost completely co-incident,

i.e. the LC and DDE fits are almost identical.
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Figure 5. Mortality forecast at age 65 with 95 per cent confidence intervals. The solid blue line is
the time-series Lee-Carter forecast, together with shaded 95 per cent confidence area. The dashed
black line is the smoothed-x, Lee-Carter forecast, together with 95 per cent confidence bounds
(ONS data for England and Wales population).
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Figure 6. Mortality forecast at age 65 with 95 per cent confidence intervals. The solid blue line is
the time-series Lee-Carter forecast, together with shaded 95 per cent confidence area. The dashed
black line is the smoothed-x, Lee-Carter forecast, together with 95 per cent confidence bounds. In
contrast to Figure 5, the projections from the two types of model are largely coincident, while this
time it is the smoothed-x, model with the narrower confidence bounds (CMI assured-lives data).
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5.6 In Figure 6 the central projections are now broadly coincident, but this time it is the original
Lee-Carter approach which has the wider confidence area. This is because the CMI data set is much
smaller, and a much greater degree of smoothing is being applied. The smoothing is achieved by
the penalty function, which is also what forms the basis of the forecast. Thus, a heavy degree
of smoothing yields an apparently greater degree of certainty in the forecast. This is the reverse
of Occam’s Razor, where simpler models are preferable. In contrast, with smaller data sets it is
hard to prove the existence of more complicated patterns, thus leading to only simplistic models
being fitted with narrow confidence bands which might give an illusion of certainty. This paradox
is discussed in greater detail in CMI (2005).

200000

150000

100000

50000

Exposure data in CMI assured-lives dataset

[ I I I |
20 40 60 80 100

Figure 7. Exposures in CMI assured-lives data set. The rapid reduction in data volumes of recent
years carries the risk that the composition of the data has materially changed. The distribution by
age also militates against relying on this data set for applications to post-retirement mortality.

5.7 One concern about the assured-lives data is that the data volumes have reduced radically in
recent years — see Figure 7 — which raises concerns about whether the socio-economic composition
might have changed, thus affecting the projections. The other obvious comment is that the CMI
data are in any case rather limited for post-retirement ages. It is for these reasons that most of
the illustrations in the tables and graphs in this paper are based on the ONS population data.
There is the obvious question of whether results based on the general population are applicable to
annuitants and pensioners, known as basis risk to actuaries and as bias to statisticians. In answer
to this we would say that this paper presents a methodology, not an answer, and readers can apply
the methods here to the data set of their choice. For those wishing to produce projections for one
population with reference to another, we refer readers to Currie, Durban and Eilers (2004).

5.8 In discussing interest-rate models, Cairns (2004) wrote ‘[...] probability statements derived
from the use of a single model and parameter set should be treated with caution’. The same can
equally well be said of models of longevity risk, and is a reason for exploring trend risk with multiple
data sets and multiple models.
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6. FINANCIAL COMPARISON OF THE MODELS

6.1 One issue when presenting results from these models is what to do about the missing
mortality rates above age 89. One approach would be to use mortality rates from the Human
Mortality Database, and assume that each age above 89 experiences the same changes as at age 89.
However, this seems somewhat arbitrary, and it risks introducing distortions for the purpose of this
paper. Instead of calculating life expectancies and annuity values throughout life, we will therefore
calculate temporary values up to age 90. This enables conclusions to be drawn about the various
projection methodologies without worrying if they are in part influenced by the further assumptions
above age 89.

6.2 Table 3 shows the time lived between age 60 and 90 for a male aged 60 at outset in 2007.
The first row shows the number of years lived between ages 60 and 90 at the estimated period rates
in 2007. These rates are estimated using the Lee-Carter model and data up to 2006, so the small
variation in the first row shows the uncertainty over projections even for just one year.

6.3 The second row shows the same time lived, but this time using the time-series projection
method in the original Lee-Carter (1992) model. This projection adds 2.33 years to the time lived
on current rates, but it could be as high as 3.45 years or as low as 1.04 years on the 15t and 99t
percentiles, respectively

6.4 The third row shows the same figures for the DDE model, which differs only in that the
0, values are smoothed before projection. The projection methodology is the same time-series
approach as the Lee-Carter model, hence the near-identical values.

6.5 The fourth row of Table 3 shows the values produced by the model with smoothed (3, and
k, values. Unlike the LC and DDE models, the projections here are based on the penalty function
used to smooth the k, values. As we can see, this adds anything from 0.75 to 1.04 extra years to
the time lived for the original Lee-Carter model. However, even the most optimistic scenario still
has an average loss of four-and-a-half years of life out of the possible 30. Table 4 shows how these
life expectancies compare to those derived from some common projections in current use.

Table 3. Years lived up to age 90 for a 60-year-old male in 2007.

Model 1% 5% 50% 95% 99%
Current rates 21.03 20.96 20.81 20.65 20.58
LC 24.48 24.11 23.14 22.08 21.62
DDE 24.48 24.11 23.14 22.09 21.62
CR 25.51 25.14 24.12 22.92 22.37

Complete life expectancy using population data and projected current rates in 2007 (ONS data).

Table 4. Years lived up to age 90 for a 60-year-old male in 2007 according to some deterministic
bases in current use.

Basis Years lived
Medium-cohort 22.97
Long-cohort 23.30
QIS4 24.65

Own calculations using bases from CMI (2002) and CEIOPS (2007). Projected current rates for population in 2007,
with reduction factors as listed. The QIS4 value is a 25 per cent reduction to the central projection of mortality
rates under the original Lee-Carter model, i.e. it compares with the 23.14 figure in Table 3.

6.6 Table 5 shows the annuity factors corresponding to the expected years lived in Table 3. To
put these in perspective, Table 6 shows equivalent reserves calculated using some current determin-
istic bases. We can see that the medium-intensity cohort projection (“medium cohort”) produces
a lower reserve than all three central projections under the Lee-Carter models. It is for this reason
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that Willets (2007) labelled the medium cohort as a “trend-reversal scenario”: mortality improve-
ments under the medium cohort tail off too sharply to be a sensible best-estimate projection. The
figure for the long cohort is almost identical to the central projections for the Lee-Carter and DDE
models. However, the long cohort is clearly weaker than the central projection for the CR model,
and much weaker than the proposed Solvency II standard in QIS4 at this age.

Table 5. Value of temporary continuous annuity to age 90 for a 60-year-old male in 2007, discounting
at b per cent interest per annum.

Model 1% 5% 50% 95% 99%
Current rates 12.50 1248 12.41 12.35 12.32
LC 13.67 13.55 13.22 12.85 12.69
DDE 13.68 13.55 13.22 12.85 12.69
CR 14.00 13.8%8 13.55 13.16 12.98

Table 6. Value of temporary continuous annuity to age 90 for a 60-year-old male in 2007, discounting
at b per cent interest per annum, according to some deterministic bases in current use.

Basis Reserve
Medium cohort 13.13
Long cohort 13.23
QIS4 13.78

Own calculations using bases from CMI (2002) and CEIOPS (2007). The QIS4 value is a 25 per cent reduction to
the central projection of mortality rates under the original Lee-Carter model, i.e. it compares with the 13.22 figure
in Table 5.

6.7 Table 7 shows the change in the annuity factor relative to the central projection. We can see
that there is a 5% chance that mortality trends will cost over 21% more than the central projection
for each model, while equally there is a 5% chance that mortality trends will cost around 21% less.
This is the normal understanding of the financial uncertainty over annuity pricing: within a given
model framework, we can calculate the size of each loss along with a probability for it. The key
phrase is ‘within a given model framework’, however, since it is not possible to know if the model is
(or will be) correct. This leads us to next consider model risk, namely the consequence of a pricing
actuary’s model not being the correct one.

Table 7. Change in value of temporary continuous annuity to age 90 for a 60-year-old male in 2007,
discounting at 5 per cent interest per annum. Values from Table 5 expressed relative to central
projection (50" percentile).

Model 1% 5% 50% 95% 99%
Current rates 0.73% 0.52% 0% -0.52% —0.74%
LC 3.45% 250% 0% -2.76% -3.97%
DDE 3.45% 250% 0% -2.76% -3.97%
CR 3.34% 245% 0% -2.88% -4.19%

6.8 Table 5 showed the annuity factors corresponding to the expected years lived in Table
3, while Table 8 shows the change in the annuity factor relative to the current rates without
improvements. We can see that the median increase in reserve due to Lee-Carter improvements
is an extra 6.48% in cost, although it could be as high as 9.36% or as low as 3.02% according to
the 1t and 99t percentiles, respectively. However, the stronger mortality improvements resulting
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from smoothing the x, values has resulted in a further increase in reserve of 2.68% on the central
scenario. This is broadly similar in size to the uncertainty cost referred to in 96.7 and in Table 7,
suggesting that model risk is just as important as trend risk. The problem is that you can quantify
uncertainty within a given model, but you cannot quantify the uncertainty over the model itself.

Table 8. Increase in value of temporary continuous annuity to age 90 for a 60-year-old male in
2007, 5 per cent interest per annum. Values from Table 5 expressed relative to figures using current
rates, i.e. without any projection. For comparison the equivalent figure for the high-intensity cohort
projection (“long cohort”) is 6.56 per cent.

Model 1% 5% 50% 95% 99%
Current rates 0% 0% 0% 0% 0%
LC 9.36% 8.58% 6.48% 4.09% 3.02%
DDE 9.39% 861% 6.51% 4.11% 3.04%
CR 12.00% 11.26% 9.16% 6.58% 5.37%

6.9 To put all these figures in a financial perspective, the typical pricing margin for an immediate
annuity is around 4-5% of premium. The uncertainty over which model to use can either cut
calculated annuity profits in half, or else increase them by half. This is quite separate from the
uncertainty over trend, which can itself have the same effect. The model does not directly affect
the profitability itself, just its measurement.

6.10 Another important risk we have not considered is basis risk, namely whether projections
based on the population data or assured lives applies to pensioners and annuitants. People in receipt
of private pensions and annuitants are a select sub-group of the population in general, and may not
exhibit the same pattern of mortality trends. There may be felt to be less basis risk with the CMI
assured-lives data, but this mainly comprises holders of endowment policies at ages younger than
65. The population data covers the right age range, but not the select group that pensioners are.
Equally, the CMI data covers private insured lives, but does not cover the right age range. Neither
seems wholly satisfactory, and so some degree of basis risk must remain as long the data set for
projections is not the same as the population whose benefits are being valued.

7. RESERVING FOR LONGEVITY RISK

“The rates of mortality or morbidity should contain prudent margins for adverse deviation [...]. In setting those
rates, a firm should take account of [...] anticipated or possible future trends in experience [...] but only where they

increase the liability.”
FSA (2008), INSPRU ¢€1.2.60(5)

“The longevity shock to be applied is a (permanent) 25% decrease in mortality rates for each age.”
CEIOPS (2008) YTS.XI.C.6

“For recovery plans based on valuations with effective dates from March 2007, mortality improvement assump-
tions that appear to be weaker than the long cohort assumption will attract further scrutiny and dialogue with the
trustees where appropriate. Furthermore, assumptions which assume that the rate of improvement tends towards
zero, and do not have some form of underpin, will also attract further scrutiny.”

Pensions Regulator (2008a) 92.7
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“though long cohort with some form of underpin will be used when looking at the secondary trigger, a medium

cohort assumption with a stronger underpin would clearly be equivalent”
Pensions Regulator (2008b)

7.1 One way of looking at trend risk is to consider the probability of reserve adequacy. This
is done for the DDE and CR models in Figure 8. The curves plotted are the ogives from under
each model, i.e. the cumulative probability distribution function that the annuity reserve factor on
the horizontal axis will be adequate. The ogive for the CR model is markedly to the right of the
ogive for the DDE model because the CR model requires higher reserves for the same probability of
reserve adequacy. This is because the CR model projects faster improvements, as shown in Figure 5.
The reserve factors for the medium- and high-intensity cohort projections are also marked, together
with the 991% stress scenarios under each model.
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Figure 8. Probability of reserve adequacy against trend risk according to the DDE model (solid
blue line) and the CR model (dashed black line). Temporary 30-year continuous annuity to male
aged 60 at outset, valued at 5 per cent interest per annum using population mortality (ONS data).
For a given annuity reserving factor on the horizontal axis you can read off the probability that it
will be adequate for trend risk under the two models. The “99.5% stress scenario”is the reserve
using the 99.5th worst projection under each model.

7.2 Figure 8 illustrates one of the difficulties of model risk: the 991% stress scenario under the
DDE model might just be regarded as prudent under the CR model. Note that it is important
to consider reserving margins as a whole, and it is particularly important not to overdo things
by combining 993% stress scenarios for all the various risks. Thus, the 993% stress scenario in
Figure 8 is a result of stressing the trend assumption, but any reserve sufficiently above 50% might
be regarded as prudent with respect to trend risk.

7.3 Figure 8 also shows the reserves calculated according to two bases in common use at the
time of writing. The long cohort could function as a best-estimate under the DDE model, but it
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could not be regarded as prudent. Under the CR model the long cohort would be too weak to be
even a best-estimate, let alone a prudent reserving basis. The medium cohort would be regarded as
inadequate under either model. The comparison with the 991% values is also instructive, since it
suggests the long cohort cannot be regarded as a stress scenario for ICA purposes. Figure 8 further
suggests that, at this age at least, the Pensions Regulator (2008a) was reasonable in requiring a
strengthened version of the long cohort for pension-scheme reserving to be considered prudent.
Prudence is, of course, a matter of judgement, and therefore an opinion, rather than an absolute
value. Equally, however, a claim of prudence has to be substantiated, and it is hard to do this
convincingly without reference to a statistical projection model.

7.4 Figure 8 also shows the reserve calculated according to the proposed Solvency II standard
known as QIS4 (CEIOPS, 2007). Under the DDE model this would be regarded as a beyond-ICA
stress scenario with a probability 99.8% of reserves at this level being adequate. However, under
the CR model the probability of QIS4 reserves being adequate is a merely prudent-seeming 86.7%.
Figure 8 suggests that the 25% shock in QIS4 is not an unreasonable reserving standard for new
annuity business written around age 60.

7.5 All these calculations are for a specimen level pension at age 60, so it is important to
consider the effect for some real portfolios, which we will do in the next section.

8. PORTFOLIO SIMULATIONS

“trustees [...] must take advice from their actuary [...] on best estimates and on appropriate margins for
prudence. This may be by way of stochastic modelling to illustrate the variability of outcomes and their relative
likelihood.”

Pensions Regulator (2008a) 91.12
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Figure 9. Age distribution of three portfolios at 1st January 2007 for pensions or annuities in
payment to lives aged between 40 and 90. The larger portfolio on the left contains both IFA-
introduced open-market annuities, and internal-vesting business from the insurer’s personal pensions
(see also Table 9). The medium-sized portfolio in the middle contains internal-vesting annuities only
(see also Table 10), while the small portfolio on the right is a defined-benefit pension scheme (see
also Table 11).

8.1 Leaving aside economic assumptions like interest rates, there are three components of
longevity risk which we can test via simulation. We will assume that current base mortality is
known, although this is not the case in practice and is therefore also a component of longevity risk.
The first component is the uncertain direction of future trends, which includes uncertainty about
the model for trends as well as uncertainty within a model. The second is the binomial risk for a
particular portfolio’s experience, namely who happens to die when. The third is the concentration
risk, where a large proportion of the financial liabilities is concentrated in a relatively small number
of lives. Table 7 shows the impact of trend risk on a specimen annuity, but it is instructive to
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look at the impact on some actual portfolios whose age distribution is shown in Figure 9. As well
as considering trend risk, we can also simulate the portfolio in run-off to examine binomial and
concentration risk as well. The recent availability of inexpensive computers with multiple floating-
point cores has made it possible to quickly simulate entire portfolios. This is in contrast to the
error-prone approach of trying to pick a handful of policies which are supposed to be representative
of the portfolio as a whole. Using purpose-written C++ programs we can simulate the larger of the
two annuity portfolios here in run-off 10,000 times in around an hour on an eight-core server.

8.2 Tables 9 and 10 show the results of 10,000 simulations of two different annuity portfolios.
As expected, the smaller portfolio has to hold proportionately more extra capital for a given level
of certainty. Larger portfolios benefit from the law of large numbers, as the binomial experience
variation is proportionately less. Thus, there is a direct capital benefit from scale in the annuity
business. However, the benefit is relatively modest, as the difference at the 991% level is just
0.62% of the median value, despite the larger portfolio being more than ten times the size of the
smaller one. Conversely, this shows that annuity portfolios and pension schemes are exposed to a
non-diversifiable amount of longevity trend risk, and that trend risk usually dominates binomial
experience risk above modest portfolio sizes.

Table 9. Variation around median run-off cost for a large annuity portfolio.

Trend
risk Measure min %% 1% 5% 95% 99% 99%% max
No Lives -0.29% -0.20% -0.18% -0.12% 0.13% 0.18% 0.20% 0.26%
Amounts -0.70% -0.51% -0.46% -0.32% 0.31% 0.45% 0.50% 0.74%
Yes Lives -4.95% -3.25% -291% -2.01% 1.85% 2.56% 2.88% 4.89%

Amounts -5.44% -3.61% -3.24% -2.21% 2.02% 2.73% 3.12% 5.21%

Own calculations using 10,000 simulations of portfolio of 207,190 males aged between 40 and 90, amounts-weighted
average age of 72.52. Temporary annuities to age 90 valued continuously at 5 per cent interest per annum. Projections
according to CR model and population mortality. The age profile of this portfolio is given in left-hand panel of Figure 9

Table 10. Variation around median run-off cost for a small annuity portfolio.

Trend
risk Measure min %% 1% 5% 95% 99% 99%% max
No Lives -0.92% -0.66% -0.59% -0.42% 0.41% 0.57% 0.63% 0.87%
Amounts -1.78% -1.12% -1.00% -0.71% 0.68% 0.94% 1.07% 1.43%
Yes Lives —-6.43% -411% -3.67% -2.52% 2.15% 3.08% 3.44% 4.31%

Amounts -6.58% -3.98% -3.61% -2.52% 2.18% 3.10% 3.50% 4.74%

Own calculations using 10,000 simulations of portfolio of 15,429 males aged between 40 and 90, amounts-weighted
average age of 67.3. Temporary annuities to age 90 valued continuously at 5 per cent interest per annum. Projections
according to CR model and population mortality. The age profile of this portfolio is given in the middle panel of
Figure 9

8.3 However, trend uncertainty is not always the dominant part of the mortality risk, as shown
in Table 11. In this example, the combination of binomial risk and concentration risk comprises
nearly two-thirds of the variation in cost at the 99:% level. Indeed, the vast majority of pension
schemes in the UK are much smaller than the one in Table 11: according to GAD (2005) there
were 7,470 private-sector defined-benefit pension schemes in the UK with fewer than 100 members.
For such schemes binomial and concentration risk often dominate all other sources of risk, leading
Richards and Jones (2004) to recommend that schemes of this size should consider annuity purchase
as their default investment option.
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Table 11. Variation around median run-off cost for a small pension scheme.

Trend
risk  Measure min 3% 1% 5% 95% 99%  991% max
No Lives -3.55% -2.09% -1.85% -1.31% 1.30% 1.86% 2.02% 2.99%
Amounts -7.64% —-4.98% —-4.54% -3.25% 2.90% 4.06% 4.52% 5.90%
Yes Lives ~10.11% -7.25% -6.53% -4.33% 3.77% 5.19% 5.73% 7.56%

Amounts -12.72% -831% -7.37% -5.19% 4.66% 6.55% 7.23% 10.57%

Own calculations using 10,000 simulations of portfolio of 2,268 males aged between 40 and 90, amounts-weighted
average age of 67.2. Temporary annuities to age 90 valued continuously at 5 per cent interest per annum. Projections
according to CR model and population mortality. The age profile of this portfolio is given in right-hand panel of
Figure 9.

8.4 Figure 10 shows the probability of adequacy for a large annuity portfolio under the DDE and
CR models using population data. The model risk is considerable: whereas a long-cohort reserve
is a prudent best estimate under the DDE model, it is wholly inadequate under the CR model.
In one sense the comparison is a little harsh, as the projection basis is being required to allow for
binomial risk and concentration risk as well as trend risk. In practice, of course, a mortality basis
would include a margin for adverse deviation (MAD) in the base-table rates, which would have
the effect of shifting the reserve lines in Figure 10 to the right. However, the comparison is not so
unreasonable for this portfolio as trend risk dominates the other two, as shown in Table 9.
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Figure 10. Probability of reserve adequacy for a large annuity portfolio against combined binomial
risk, concentration risk and trend risk according to the DDE model (solid blue line) and the CR
model (dashed black line). Temporary 30-year continuous annuities payable to males until age 90,
valued at 5 per cent interest per annum using population mortality (ONS data).
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8.5 An oft-unappreciated element of model risk is the choice of data set, and this is illustrated
in Figure 11. Here the reserves are much higher due to the lower rates of mortality experienced by
assured lives. The projections are now quite different, as shown in Figure 6, and in Figure 11 the
long-cohort projection appears beyond prudent as it produces reserves beyond what were required
in any of the 10,000 simulations.

8.6 In both Figures 10 and 11 the reserve under the QIS4 stress scenario is higher than than
any of the 10,000 simulations under either model or data set. This suggests that the QIS4 shock of
a 25% permanent fall in mortality rates is perhaps over-prudent for very mature portfolios, while
it does not look at all unreasonable at new-business ages in Figure 8.

8.7 On each occasion, we have fitted a model within the Lee-Carter framework. Whether or
not we choose to smooth the r, values results in very different projections, with very different
pictures of what is an adequate reserve for trend risk. Equally, even within the same model-
fitting framework, using a different data set gives a radically different picture again. Both choices
— of model, and of data set — are aspects of model risk, which has been shown here to be
very important for annuities and pensions. There are, of course, many other models available for
mortality, which can only add to model risk. In light of this it would seem sensible for insurers
to have large margins in their reserving basis for the highly uncertain direction of future mortality
improvements. Equally, insurance-company shareholders need to make sure the pricing of annuity
business adequately compensates them for the undiversifiable risk they run.
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Figure 11. Probability of reserve adequacy for a large annuity portfolio against combined binomial
risk, concentration risk and trend risk according to the CR model (dashed black line). Temporary
30-year continuous annuities payable to males until age 90, valued at 5 per cent interest per annum
using assured-lives mortality (CMI data).
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9. CONCLUSIONS

9.1 This paper has presented a smoothed approach to the fitting of the parameters in a Lee-
Carter model for mortality. The smoothing of the time component, s, allows an alternative means
of projection to the usual time-series approach. This approach does not materially change the fitted
values of p, ,, but it does change the projections. We emphasise that we have only touched on the
problem of model risk, the first of the four problem areas identified in 43.2. Forecasting methods
other than the Lee-Carter model could be used or indeed other variants of the Lee-Carter model
itself. Within the Lee-Carter model the principal source of variation is the variation in k and this
we have addressed. The variation and stability of both a and 8 have not been addressed and these
sources of variation can only add to our uncertainly about the future. Forecasting of mortality
should be approached with both caution and humility.

9.2 This paper shows how the measurement of uncertainty within a given model framework
is financially material to writers of immediate annuities. However, the presentation of alternative
projections within the same framework shows how model uncertainty is just as important financially.
This model risk limits what can be expected of long-term mortality projections, and serves as a
reminder as to why explicit margins for prudence are required in pricing and reserving for pensions
and annuities.

9.3 It is not the aim of this paper to provide all the answers to the question of projecting
mortality and longevity risk. However, it may prompt life-office boards to ask questions about
annuity pricing: if model risk is so significant, is a 5% pricing margin enough for the risk in
guaranteed annuities at ages 60-657. Equally, trustees and employers may probe scheme funding
bases: should companies with defined-benefit pension plans not buy-out liabilities while there is
still capacity and appetite from insurers? Perhaps the actuary’s role should be a little less about
calculating the value of the liability, and much more about demonstrating the depths of what we
do not — and can not — know.
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