On optimal stopping of autoregressive sequences

Sören Christensen (joint work with A. Irle, A. Novikov)

Mathematisches Seminar, CAU Kiel

September 24, 2010

Outline

- AR(1) processes
- 2 Basic results on optimal stopping
- 3 Threshold times as optimal stopping times
- 4 Phasetype distributions and overshoot
- Continuous fit condition
- 6 Summary

Outline

- AR(1) processes
- Basic results on optimal stopping
- Threshold times as optimal stopping times
- 4 Phasetype distributions and overshoot
- Continuous fit condition
- Summary

AR(1) process

$$X_n = \lambda X_{n-1} + Z_n,$$
 $X_0 = x,$

AR(1) process

$$X_n = \lambda X_{n-1} + Z_n, X_0 = x,$$

 $\lambda \in (0,1), Z_1, Z_2, ... iid.$

AR(1) process

$$X_n = \lambda X_{n-1} + Z_n, \qquad X_0 = x,$$

 $\lambda \in (0,1), Z_1, Z_2, \dots \text{ iid.}$

•
$$\Delta X_n = -(1-\lambda)X_{n-1}\Delta n + \Delta L_n$$
, $L_n = \sum_{i=1}^n Z_i$

AR(1) process

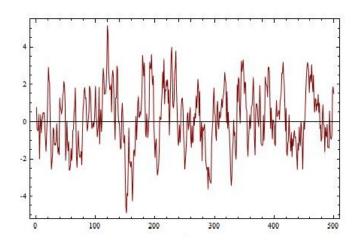
$$X_n = \lambda X_{n-1} + Z_n, X_0 = x,$$

 $\lambda \in (0,1), Z_1, Z_2, ... iid.$

- $\Delta X_n = -(1-\lambda)X_{n-1}\Delta n + \Delta L_n,$
 - $L_n = \sum_{i=1}^n Z_i$

• $X_n = \lambda^n X_0 + \sum_{i=0}^{n-1} \lambda^i Z_{n-i}$.

Path of an AR(1) process



Threshold time, overshoot

In many applications – such as statistical surveillance – it is of interest to find the joint distribution of

$$au_a = \inf\{n \in \mathbb{N}_0 : X_n \ge a\}$$
 (threshold time)

$$X_{\tau_a} - a$$
 (overshoot).



Outline

- AR(1) processes
- 2 Basic results on optimal stopping
- 3 Threshold times as optimal stopping times
- 4 Phasetype distributions and overshoot
- Continuous fit condition
- Summary

Optimal stopping of Markov processes

Let $(X_n)_{n\in\mathbb{N}_0}$ be a Markov process on E, $g:E\to\mathbb{R}$, $\rho\in(0,1)$.

Optimal stopping of Markov processes

Let $(X_n)_{n\in\mathbb{N}_0}$ be a Markov process on E, $g:E\to\mathbb{R}$, $\rho\in(0,1)$. Find a stopping time τ^* that maximizes

$$E_{x}(\rho^{\tau}g(X_{\tau})).$$

Optimal stopping of Markov processes

Let $(X_n)_{n\in\mathbb{N}_0}$ be a Markov process on E, $g:E\to\mathbb{R}$, $\rho\in(0,1)$. Find a stopping time τ^* that maximizes

$$E_{\mathsf{x}}(\rho^{\mathsf{\tau}} g(X_{\mathsf{\tau}})).$$

"Solution":

$$v(x) := \sup_{ au} E_x(
ho^{ au} g(X_{ au}))$$
 value function.

$$S := \{x \in E : v(x) \le g(x)\}$$
 optimal stopping set.

Optimal stopping time:

$$\tau^* = \inf\{n \in \mathbb{N}_0 : X_n \in S\}.$$

Outline

- AR(1) processes
- Basic results on optimal stopping
- 3 Threshold times as optimal stopping times
- 4 Phasetype distributions and overshoot
- Continuous fit condition
- Summary

Elementary approach to optimal stopping of AR(1) processes

• Reduce the set of potential optimal stopping times to threshold time.

Elementary approach to optimal stopping of AR(1) processes

- Reduce the set of potential optimal stopping times to threshold time.
- ② Find the joint distribution of $(au_a, X_{ au_a} a)$ to obtain an expression for

$$E_x(\rho^{\tau_a}g(X_{\tau_a})).$$

Elementary approach to optimal stopping of AR(1) processes

- Reduce the set of potential optimal stopping times to threshold time.
- ② Find the joint distribution of $(\tau_a, X_{\tau_a} a)$ to obtain an expression for

$$E_{\mathsf{X}}(\rho^{\tau_{\mathsf{a}}}\mathsf{g}(\mathsf{X}_{\tau_{\mathsf{a}}})).$$

Find the optimal boundary a*.

Novikov-Shiryaev problem

Let
$$g(x) = (x^+)^{\alpha}$$
, $\alpha > 0$. Consider
$$\sup_{\tau} E_x(\rho^{\tau}(X_{\tau}^+)^{\alpha}) = \sup_{\tau} E(\rho^{\tau}((\lambda^{\tau}x + X_{\tau})^+)^{\alpha}).$$

Novikov-Shiryaev problem

Let
$$g(x) = (x^+)^{\alpha}$$
, $\alpha > 0$. Consider
$$\sup_{\tau} E_x(\rho^{\tau}(X_{\tau}^+)^{\alpha}) = \sup_{\tau} E(\rho^{\tau}((\lambda^{\tau}x + X_{\tau})^+)^{\alpha}).$$

Proposition

If $(X_n)_{n\in\mathbb{N}_0}$ is a AR(1) process, then there exists a^* such that the optimal stopping set S is given by

$$S = [a^*, \infty)$$

Proof

For simplicity: $Z_1 \ge 0$. State-space: $[0, \infty)$

Proof

For simplicity: $Z_1 \ge 0$. State-space: $[0, \infty)$ Then

$$\frac{v(x)}{g(x)} = \frac{\sup_{\tau} E(\rho^{\tau} (\lambda^{\tau} x + X_{\tau})^{\alpha})}{x^{\alpha}} = \sup_{\tau} E(\rho^{\tau} (\lambda^{\tau} + X_{\tau}/x)^{\alpha}) \quad \searrow$$

Proof

For simplicity: $Z_1 \ge 0$. State-space: $[0, \infty)$ Then

$$\frac{v(x)}{g(x)} = \frac{\sup_{\tau} E(\rho^{\tau} (\lambda^{\tau} x + X_{\tau})^{\alpha})}{x^{\alpha}} = \sup_{\tau} E(\rho^{\tau} (\lambda^{\tau} + X_{\tau}/x)^{\alpha}) \quad \searrow$$

Hence
$$S = \{x : v(x) \le g(x)\}$$
 is of the form $[a^*, \infty)$.

Outline

- AR(1) processes
- Basic results on optimal stopping
- 3 Threshold times as optimal stopping times
- 4 Phasetype distributions and overshoot
- Continuous fit condition
- Summary

Motivation

If $(X_n)_{n\in\mathbb{N}_0}$ is a random walk (or an AR(1) process) with $Exp(\beta)$ -distributed jumps. Then

 $au_a, \ X_{ au_a} - a$ are independent

and

$$X_{\tau_a} - a \stackrel{d}{=} Exp(\beta).$$

Distributions of phasetype

 $(J_t)_{t\geq 0}$: Markov chain in continuous time on $\{1,...,m\}\cup \{\Delta\}$. 1,...,m: transient, Δ absorbing.

Distributions of phasetype

 $(J_t)_{t\geq 0}$: Markov chain in continuous time on $\{1,...,m\}\cup\{\Delta\}$. 1, ..., m: transient, Δ absorbing.

Generator:
$$\hat{Q} = \begin{pmatrix} Q & q \\ 0 & 0 \end{pmatrix}$$
, $Q \in \mathbb{R}^{m \times m}$, $q = -Q \begin{pmatrix} 1 \\ .. \\ 1 \end{pmatrix}$. $\hat{\alpha} = (\alpha_1, ..., \alpha_m, 0)$ initial distribution

Distributions of phasetype

 $(J_t)_{t\geq 0}$: Markov chain in continuous time on $\{1,...,m\} \cup \{\Delta\}$. 1, ..., m: transient, Δ absorbing.

Generator:
$$\hat{Q} = \begin{pmatrix} Q & q \\ 0 & 0 \end{pmatrix}$$
, $Q \in \mathbb{R}^{m \times m}$, $q = -Q \begin{pmatrix} 1 \\ .. \\ 1 \end{pmatrix}$. $\hat{\alpha} = (\alpha_1, ..., \alpha_m, 0)$ initial distribution

$$\eta := \inf\{t \geq 0 : J_t = \Delta\}$$

 $PH(Q,\alpha):=P_{\hat{\alpha}}^{\eta}$ is called phasetype distribution with parameters Q,α .

Properties of phasetype distributions

- density: $f(t) = \alpha e^{Qt} q$
- Laplace transform: $E_{\hat{\alpha}}(e^{s\eta}) = \alpha(-sI Q)^{-1}q$, $s \in \mathbb{C}$ with $\Re(s) < \delta$.
- closed under mixture and convolution.
- Phasetype distributions are dense in all distributions on $(0, \infty)$.

Properties of phasetype distributions

- density: $f(t) = \alpha e^{Qt} q$
- Laplace transform: $E_{\hat{\alpha}}(e^{s\eta}) = \alpha(-sI Q)^{-1}q$, $s \in \mathbb{C}$ with $\Re(s) < \delta$.
- closed under mixture and convolution.
- Phasetype distributions are dense in all distributions on $(0, \infty)$.

$$\underline{\mathsf{Ex}}$$
: $m=1,\ Q=(-\lambda)\ \to\ \mathsf{PH}(Q,(1)):=\mathsf{Exp}(\lambda)$.

Phasetype distribution and overshoot

Generalization:

If $(X_n)_{n\in\mathbb{N}_0}$ is AR(1) process with innovations $Z_n=S_n-T_n$, S_n , $T_n\geq 0$ independent, $S_n\sim PH(Q,\alpha)$, then

$$E_{x}(\rho^{\tau_{a}}g(X_{\tau_{a}})) = \sum_{i=1}^{m} E_{x}(\rho^{\tau_{a}}1_{K_{i}})E(g(a+R^{i})),$$

 $R^i \sim PH(Q, e_i)$, K_i events.

Phasetype distribution and overshoot

Generalization:

If $(X_n)_{n\in\mathbb{N}_0}$ is AR(1) process with innovations $Z_n=S_n-T_n$, S_n , $T_n\geq 0$ independent, $S_n\sim PH(Q,\alpha)$, then

$$E_{x}(\rho^{\tau_{a}}g(X_{\tau_{a}})) = \sum_{i=1}^{m} E_{x}(\rho^{\tau_{a}}1_{K_{i}})E(g(a+R^{i})),$$

 $R^i \sim PH(Q, e_i)$, K_i events.

How to find $E_{x}(\rho^{\tau_a}1_{K_i})$?

Phasetype distribution and overshoot

Generalization:

If $(X_n)_{n\in\mathbb{N}_0}$ is AR(1) process with innovations $Z_n=S_n-T_n$, S_n , $T_n\geq 0$ independent, $S_n\sim PH(Q,\alpha)$, then

$$E_{x}(\rho^{\tau_{a}}g(X_{\tau_{a}})) = \sum_{i=1}^{m} E_{x}(\rho^{\tau_{a}}1_{K_{i}})E(g(a+R^{i})),$$

 $R^i \sim PH(Q, e_i)$, K_i events.

How to find $E_{x}(\rho^{\tau_a}1_{K_i})$?

Answer: Use the stationary distribution, complex martingales and complex analysis.

Outline

- AR(1) processes
- Basic results on optimal stopping
- Threshold times as optimal stopping times
- Phasetype distributions and overshoot
- Continuous fit condition
- Summary

How to find the find the optimal threshold a^* ?

For each $a \in \mathbb{R}$ we consider

$$v_a(x) = E_x(\rho^{\tau_a}g(X_{\tau_a})).$$

How to find the find the optimal threshold a^* ?

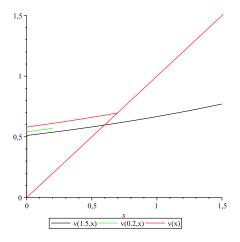
For each $a \in \mathbb{R}$ we consider

$$v_a(x) = E_x(\rho^{\tau_a}g(X_{\tau_a})).$$

Choose a* such that

$$v_{a^*}(a^*)=g(a^*).$$

Continuous fit



 $a^* \approx 0.7$ is the unique solution to the transcendental equation $g(a^*) = v_{a^*}(a^*)$.

Smooth and continuous fit condition

Principle for continuous time processes

Let g be differentiable, then the following can be expected:

• If the process X enters the interior of the optimal stopping set S immediately after starting on $a^* \in \partial S$, then the value function v is smooth at a^* .

Smooth and continuous fit condition

Principle for continuous time processes

Let g be differentiable, then the following can be expected:

- ① If the process X enters the interior of the optimal stopping set S immediately after starting on $a^* \in \partial S$, then the value function v is smooth at a^* .
- ② If the process X doesn't enter the interior of the optimal stopping set S immediately after starting on $a^* \in \partial S$, then the value function v is **continuous** at a^*

Smooth and continuous fit condition

Principle for continuous time processes

Let g be differentiable, then the following can be expected:

- If the process X enters the interior of the optimal stopping set S immediately after starting on $a^* \in \partial S$, then the value function v is smooth at a^* .
- ② If the process X doesn't enter the interior of the optimal stopping set S immediately after starting on $a^* \in \partial S$, then the value function v is **continuous** at a^*

The second principle holds in our situation.

Outline

- AR(1) processes
- Basic results on optimal stopping
- Threshold times as optimal stopping times
- 4 Phasetype distributions and overshoot
- Continuous fit condition
- **6** Summary

Summary

- We studied optimal stopping problems driven by autoregressive processes.
- Elementary arguments reduces the problem to finding an optimal threshold time.
- The joint distribution of $(\tau_a, X_{\tau_a} a)$ can be obtained for phasetype innovations.
- The optimal threshold can be found using the continuous fit principle.