

Universität Ulm

Bearbeitungszeit: 120 Minuten

Alle Aussagen sind zu begründen!

Dr. Gerhard Baur Dr. Jochen Glück Attila Klimmek Wintersemester 2016/17

Punktzahl: 100

Erste Klausur zur Linearen Algebra 1: Lösung

1. Beweisen oder widerlegen Sie die folgenden Aussagen:

 (6×5)

(8)

(a) Sei $n \in \mathbb{N}$. Die Menge aller ungeraden Permutationen in S_n ist eine Untergruppe von (S_n, \circ) (wobei \circ wie üblich die Hintereinanderausführung von Permutationen bezeichnet).

Lösung: Die Aussage ist falsch.

Erste Möglichkeit: Die Identität ϵ ist eine gerade Permutation. Also liegt das neutrale der Gruppe S_n nicht in der Menge aller ungerade Permutationen.

Zweite Möglichkeit: Die Abbildung $\sigma \mapsto \operatorname{sgn} \sigma$ ist ein Gruppenhomomorphismus von S_n nach $\{-1,1\}$. Für zwei ungerade Permutationen σ,τ ist daher $\operatorname{sgn} (\sigma \circ \tau) = (-1) \cdot (-1) = 1$. Somit ist $\sigma \circ \tau$ keine ungerade Permutation. Daher ist diese Menge nicht abgeschlossen bezüglich der Verknüpfung und daher keine Untergruppe von S_n .

(b) Sei V ein Vektorraum über einen Körper K. Sind $u, v \in V$ linear unabhängig, so sind auch u, u + v linear unabhängig.

Lösung: Die Aussage ist richtig. Da u, v linear unabhängig sind, folgt aus $\mu_1 u + \mu_2 v = 0$, dass $\mu_1 = \mu_2 = 0$ gilt, wobei $\mu_1, \mu_2 \in K$. Seien nun $a, b \in K$ mit 0 = au + b(u + v) = (a + b)u + bv. Nach der Vorbemerkung gilt dann b = 0 und a + b = a = 0. Somit sind u, u + v linear unabhängig.

(c) Sei $n \in \mathbb{N}$ und sei $A \in \mathbb{C}^{n,n}$. Ist A^2 invertierbar, so ist auch A invertierbar.

Lösung: Die Aussage ist richtig. Nach dem Determinantenmultiplikationssatz und wegen der Invertierbarkeit von A^2 gilt $0 \neq \det A^2 = (\det A)^2$. Daher ist auch det $A \neq 0$ und daher ist A invertierbar.

(d) Die Matrix $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix} \in \mathbb{C}^{3,3}$ ist diagonalisierbar.

Lösung: Die Aussage ist richtig. Besitzt eine Matrix $A \in \mathbb{K}^{n,n}$ genau n verschiedene Eigenwerte, so ist A diagonalisierbar. Die Eigenwerte einer Dreiecksmatrix sind gerade die Diagonalelemente, die in diesem Fall alle verschieden sind. Daher ist A diagonalisierbar.

(e) Sei $n \in \mathbb{N}$, seien V und W Vekorräume über \mathbb{R} und sei $T: V \to W$ linear und surjektiv. Wenn für Vektoren $v_1, \ldots, v_n \in V$ die Gleichheit $\mathcal{LH}(v_1, \ldots, v_n) = V$ gilt, dann ist $\mathcal{LH}(Tv_1, \ldots, Tv_n) = W$.

Lösung: Die Aussage ist richtig. Sei $w \in W$ beliebig. Wegen der Surjektivität gibt es $v \in V$ mit Tv = w.(1) Nach Annahme gibt es Skalare $\lambda_1, \ldots, \lambda_n \in K$ mit $v = \sum_{i=1}^n \lambda_i v_i$. (1). Wegen der Linearität von T gilt

$$w = Tv = \sum_{i=1}^{n} \lambda_i Tv_i.$$
 (2)

Dies bedeutet gerade, dass $w \in \mathcal{LH}(Tv_1, \dots, Tv_n)$. (1)

(f) Sei $n \in \mathbb{N}$. Die Menge der unitären Matrizen in $\mathbb{C}^{n,n}$ ist ein Untervektorraum von $\mathbb{C}^{n,n}$.

Lösung: Die Aussage ist falsch.

Erste Möglichkeit: Die Einheitsmatrix E ist unitär, aber 2E ist nicht unitär wegen $\overline{2E}^T 2E = 4E \neq E$.

Zweite Möglichkeit: Die Nullmatrix ist nicht unitär, muss aber in jedem Untervektorraum von $\mathbb{C}^{n,n}$ enthalten sein.

2. Sei $t \in \mathbb{R}$ fest und seien die Vektoren $v_1, v_2, v_3, v \in \mathbb{R}^3$ durch

$$v_1 = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} -7 \\ 2 \\ 0 \end{pmatrix}, \quad v = \begin{pmatrix} -6t \\ t^2 + 2t \\ 1 \end{pmatrix}.$$

gegeben

Zeigen Sie, dass es eindeutig bestimmte Skalare $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ gibt, für welche $v = \sum_{k=1}^{3} \lambda_k v_k$ gilt, und berechnen Sie diese Skalare in Abhängigkeit von t.

Lösung

Erste Möglichkeit: Sei $A = \begin{pmatrix} 0 & 3 & -7 \\ 0 & -1 & 2 \\ 2 & 0 & 0 \end{pmatrix} \in \mathbb{R}^3$ die durch die Spaltenvektoren v_1, v_2, v_3 aufge-

spannte Matrix. Die Gleichung $v = \sum_{k=1}^3 \lambda_k v_k$ ist äquivalent zu

$$\begin{pmatrix} 0 & 3 & -7 \\ 0 & -1 & 2 \\ 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = v. \tag{1}$$

Ist die Matrix A invertierbar, so gibt es eindeutig bestimmte $\lambda_1, \lambda_2, \lambda_3$ wie gewünscht (1) und es gilt

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = A^{-1}v \qquad (1).$$

Man sieht, dass det $A = -2 \neq 0$ gilt, also ist A invertierbar (1) und somit existieren für alle v solche eindeutigen Skalare.

Zur Berechnung von A^{-1} : Mit Gauß sieht man, dass

$$A^{-1} = \begin{pmatrix} 0 & 0 & \frac{1}{2} \\ -2 & -7 & 0 \\ -1 & -3 & 0 \end{pmatrix}$$

gilt. (3) Somit ist

Zweite Möglichkeit: Sei $A=\begin{pmatrix}0&3&-7\\0&-1&2\\2&0&0\end{pmatrix}\in\mathbb{R}^3$ die durch die Spaltenvektoren v_1,v_2,v_3

aufgespannte Matrix. Die Gleichung $v = \sum_{k=1}^3 \overset{\backprime}{\lambda}_k v_k$ ist äquivalent zu

$$\begin{pmatrix} 0 & 3 & -7 \\ 0 & -1 & 2 \\ 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = v. \tag{1}$$

Wir wenden das Gauß-Verfahren an. Damit sieht man, dass die Gleichung in der vorangehenden Zeile eine eindeutige Lösung besitzt, also existieren eindeutig bestimmte $\lambda_1, \lambda_2, \lambda_3$ mit der gewünschten Eigenschaft (2). Außerdem erhält man aus dem Gauß-Algorithmus

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} -7t^2 - 2t \\ -3t^2 \end{pmatrix}. \tag{5}$$

3. Betrachten Sie die Matrix

$$(8+6)$$

$$(1 1 0)$$

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \in \mathbb{R}^{3,3}.$$

(a) Bestimmen Sie alle Eigenwerte von A sowie die dazu gehörigen Eigenräume. Ist A diagonalisierbar?

Lösung: Wir berechnen zuerst das charakteristische Polynom:

$$p_A(\lambda) = \det(A - \lambda E) = (2 - \lambda) \left((1 - \lambda)^2 - 1 \right) = -(2 - \lambda)^2 \lambda.$$
 (1)

Daher sind die Eigenwerte 0 und 2. (1) Eigenräume:

$$A - 0E \rightsquigarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \operatorname{Eig}_{A}(0) = \mathcal{LH} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}; \qquad (2)$$

$$A - 2E \rightsquigarrow \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \operatorname{Eig}_{A}(2) = \mathcal{LH} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \qquad (2)$$

Weil die Summe der geometrischen Vielfachheien ist gleich 3, ist A diagonalisierbar. (2) [Alternatives Argument: Für beide Eigenwerte stimmen algebraische und geometrische Vielfachheiten überein.]

(b) Berechnen Sie A^{10} .

Lösung: Sei

$$S = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

die Matrix der Eigenvektoren von A mit inverser Matrix

$$S^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$
 (2)

Es gilt

$$S^{-1}AS = D \iff A = SDS^{-1}, \quad \text{mit } D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$
 (1)

Somit ist

$$A^{10} = SD^{10}S^{-1} = S \begin{pmatrix} 0 & 0 & 0 \\ 512 & 512 & 0 \\ 0 & 0 & 1024 \end{pmatrix} = \begin{pmatrix} 512 & 512 & 0 \\ 512 & 512 & 0 \\ 0 & 0 & 1024 \end{pmatrix}.$$
(3)

(Von den drei Punkten in der vorangehenden Zeile: einen Punkt für die Formel für A^{10} , zwei Punkte für das richtige Ausrechnen.)

(10)

4. Betrachten Sie die folgenden Untervektorräume des \mathbb{R}^4 :

$$U = \mathcal{LH} \left\{ \begin{pmatrix} 1 \\ 0 \\ 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}, \qquad V = \mathcal{LH} \left\{ \begin{pmatrix} 3 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 8 \\ 0 \end{pmatrix}, \begin{pmatrix} 6 \\ -2 \\ 0 \\ 2 \end{pmatrix} \right\}.$$

Bestimmen Sie $\dim(U \cap V)$.

Lösung: Wir bezeichnen die Vektoren in den jeweiligen Aufspännen mit u_1, u_2 bzw. v_1, v_2, v_3 . Offenbar sind u_1, u_2 linear unabhängig, wegen der Null und der 1 in den vierten Komponenten. Mit dem gleichen Argument sieht man direkt, dass v_1 und v_2 linear unabhängig sind. Jedoch sind v_1, v_3 linear abhhängig, da $v_3 = 2v_1$ gilt. Daher gilt dim $U = \dim V = 2$. (Insgesamt (4) Punkte. (2) für das Ergebnis und (2) für das saubere (!) Argumentieren.

Zur Berechnung von dim (U+V) betrachten wir $\mathcal{LH}(u_1,u_2,v_1,v_2)$. Da $v_2=2u_1$ gilt, kann der Vektor v_2 im Folgenden weggelassen werden.

Mit Gauss sieht man, dass die Matrix

$$(u_1|u_2|v_1) = \begin{pmatrix} 1 & 1 & 3\\ 0 & 1 & -1\\ 4 & 1 & 0\\ 0 & 1 & 1 \end{pmatrix}$$

Rang Drei besitzt. Somit gilt dim (U+V)=3. (Insgesamt (4) Punkte. (2) für das Ergebnis und (2) für das saubere (!) Argumentieren.)

Mit der Dimensionsformel folgt

$$\dim (U \cap V) = \dim U + \dim V - \dim (U + V) = 2 + 2 - 3 = 1.$$
 (2)

5. Sei $n \in \mathbb{N}$ und sei $A \in \mathbb{C}^{n,n}$ unitär. Ferner sei $\lambda \in \mathbb{C}$ ein Eigenwert von A. Zeigen Sie, dass $|\lambda| = 1$ (7)

Erste Lösung: Sei $x \in \mathbb{C}^n \setminus \{0\}$ ein Eigenvektor von A zum Eigenwert λ . Da A unitär ist, gilt $\overline{A}^T A = E$. (2) Daraus folgt

$$\langle x, x \rangle = \overline{x}^T x = \overline{x}^T E x = \overline{x}^T \overline{A}^T A x = (\overline{Ax})^T A x = (\overline{\lambda x})^T \lambda x = |\lambda|^2 \langle x, x \rangle. \tag{4}$$

Wegen $x \neq 0$ und damit $\langle x, x \rangle \neq 0$ folgt $|\lambda| = 1$. (1)

Zweite Lösung: Sei $x \in \mathbb{C}^n \setminus \{0\}$ ein Eigenvektor von A zum Eigenwert λ . Da A unitär ist, gilt ||Ax|| = ||x||.(2) Hieraus folgt

$$||x|| = ||Ax|| = ||\lambda x|| = |\lambda|||x||.$$
 (4)

Da $x \neq 0$ und damit $||x|| \neq 0$ gilt, folgt $|\lambda| = 1.(1)$

- **6.** Sei $n \in \mathbb{N}$ fest. (5+5)
 - (a) Sei $U = \{A = (a_{jk}) \in \mathbb{R}^{n,n} | a_{jk} \ge 0 \text{ für alle } j,k \in \{1,...,n\} \}$. Ist U ein Untervektorraum von $\mathbb{R}^{n,n}$?

Lösung: Diese Menge ist kein Untervektorraum des $\mathbb{R}^n(1)$: Die Einheitsmatrix $E \in U$, aber $-1 \cdot E$ ist kein Element von U(2). Daher ist U nicht abgeschlossen bezüglich der Skalarmultiplikation und kein Untervektorraum des \mathbb{R}^n .(2)

(b) Sei K ein Körper und sei $U = \{A \in K^{n,n} | \operatorname{tr} A = 0\}$. Ist U ein Untervektorraum von $K^{n,n}$? Zur Erinnerung: Für eine Matrix $A = (a_{jk}) \in K^{n,n}$ ist tr A durch tr $A := \sum_{k=1}^{n} a_{kk}$ definiert. Lösung: Diese Menge ist ein Untervektorraum.

Erste Möglichkeit: Sei $\lambda \in K$ und $A, B \in U$. Dann gilt nach Übung

$$\operatorname{tr} (A + \lambda B) = \operatorname{tr} A + \lambda \operatorname{tr} B = 0 + \lambda \cdot 0 = 0.(3)$$

Somit ist $A + \lambda B \in U$. (1)

Ferner ist die Nullmatrix $0 \in U.(1)$. Mit dem Unterraumkriterium folgt die Behauptung. **Zweite Möglichkeit:** Nach der Übung ist die Abbildung tr : $K^{n,n} \to K$ linear (1) und die Menge U ist der Kern dieser Abbildung (2). Da der Kern einer linearen Abbildung ein Unterraum ist, folgt die Behauptung.(2)

7. Sei $n \in \mathbb{N}$, sei $A \in \mathbb{R}^{n,n}$ symmetrisch und sei die lineare Abbildung $T : \mathbb{R}^n \to \mathbb{R}^n$ durch T(x) = Ax(7)für alle $x \in \mathbb{R}^n$ gegeben.

Zeigen Sie: Jeder Vektor aus dem Bild von T steht (bezüglich des kanonischen Skalarproduktes) senkrecht auf jedem Vektor aus dem Kern von T.

Lösung: Sei $z \in \text{Im } T$ und $y \in \text{ker } T$. Dann gibt es ein $x \in \mathbb{R}^n$ derart, dass z = Tx = Px.(2) Daraus folgt

$$\langle y, z \rangle = \langle y, Px \rangle = y^T P x = y^T P^T x = (Py)^T x = 0^T x = 0.$$
 (5)

Somit gilt $z \perp y$.

8. Es sei die lineare Abbildung

(3+6+5)

$$T: \mathbb{R}^3 \to \mathbb{R}^3, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} -x+y+3z \\ x+z \\ 2x-2y-6z \end{pmatrix}$$

gegeben.

(a) Zeigen Sie, dass T den Rang 2 besitzt.

Lösung: Nach Vorlesung besitzen T und die Darstellungsmatrix $B = B(T; e_1, e_2, e_3; e_1, e_2, e_3)$ den gleichen Rang. Es gilt

$$B = \begin{pmatrix} -1 & 1 & 3\\ 1 & 0 & 1\\ 2 & -2 & -6 \end{pmatrix}. \tag{1}$$

Durch Vergleich der zweiten Einträge des ersten und zweiten Zeilenvektors sieht man, dass diese Zeilenvektoren linear unabhängig sind. Die dritte Zeile ist das -2-fache der ersten Zeilse. Somit besitzt A Zeilenrang 2 und damit Rang 2.(2)

(b) Bestimmen Sie eine Basis b_1, b_2 des Bildes von T und ergänzen Sie diese zu einer Basis b_1, b_2, b_3 des \mathbb{R}^3 .

Lösung: Das Bild von T wird durch die Spaltenvektoren von B aufgespannt. Nach Aufgabe (a) ist das Bild von T zwei-dimensional und daher bilden zwei linear unabhängigen Spaltenvektoren der Darstellungsmatrix eine Basis von im T. (2)

Wir wählen als b_1 bzw b_2 die ersten beiden Spaltenvektoren von B. Diese sind wegen den jeweiligen Einträgen der zweiten Komponenten linear unabhängig.(1)

Als dritten Basisvektor wählen wir $b_3 = (0 \ 1 \ 1)^T$. Mit Gauss oder mit der Determinante sieht man, dass diese drei Vektoren linear unabhängig sind (die Studenten müssen dies zeigen!) (2) und daher eine Basis des dreidimensionalen \mathbb{R}^3 bilden. (1)

(c) Seien e_1, e_2, e_3 die kanonischen Einheitsvektoren im \mathbb{R}^3 und seien $b_1, b_2, b_3 \in \mathbb{R}^3$ die Vektoren aus Teilaufgabe (b). Bestimmen Sie die Darstellungsmatrix $A = A(T; e_1, e_2, e_3; b_1, b_2, b_3)$ von T.

Lösung: Seien

$$b_1 = \begin{pmatrix} -1\\1\\2 \end{pmatrix}, \qquad b_2 = \begin{pmatrix} 1\\0\\-2 \end{pmatrix}, \qquad b_3 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}.$$

Es gilt

$$Te_1 = 1 \cdot b_1 + 0 \cdot b_2 + 0 \cdot b_3 \tag{1}$$

$$Te_2 = 0 \cdot b_1 + 1 \cdot b_2 + 0 \cdot b_3 \tag{1}$$

$$Te_3 = 1 \cdot b_1 + 4 \cdot b_3 + 0 \cdot b_3 \tag{2}$$

Damit ist

$$A(T; e_1, e_2, e_3; b_1, b_2, b_3) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{pmatrix}.$$
 (1)