Lösung Blatt 3, Aufgabe 5b

Sei $A \neq \emptyset$ eine Menge und \sim eine Äquivalenzrelation auf A. Definiere die Relation \sim^* auf A via

$$a \sim^* b :\Leftrightarrow b \sim a$$

Zeige, dass auch \sim^* eine Äquivalenrelation auf A ist.

Lösungsvorschlag 1 (kurz):

Bemerke, dass

$$a \sim^* b \Leftrightarrow b \sim a \Leftrightarrow a \sim b$$

wobei die letzte Äquivalenz aus der Symmetrie von \sim folgt, welch gilt, da \sim eine Äquivalenzrelation ist. Damit sind also \sim und \sim * die gleichen Relationen (und damit die gleichen Teilmengen von $A \times A$). Da nun \sim eine Äquivalenzrelation ist, muss \sim * auch eine sein.

Lösungsvorschlag 2 (via Definition):

Wir rechnen per Hand die Definition einer Äquivalenzrelation nach:

Reflexivität: Sei $a \in A$. Nun ist

$$a \sim^* a \Leftrightarrow a \sim a$$

was gilt, da \sim als Äquivalenzrelation reflexiv ist. Also ist \sim^* reflexiv.

Symmetrie: Sei $a \sim^* b$. Zu zeigen ist, dass $b \sim^* a$. Wegen $a \sim^* b$ gilt per Definition, dass $b \sim a$. Da \sim als Äquivalenzrelation symmetrisch ist, folgt aber auch $a \sim b$, was wiederum mit $b \sim^* a$ gleichbedeutend ist. Damit ist \sim^* symmetrisch.

Transitivität: Sei $a \sim^* b, b \sim^* c$. Daraus folgt per Definition von \sim^* , dass $b \sim a$ und $c \sim b$. Dann ist aber auch $c \sim a$, da \sim als Äquivalenzrelation transitiv ist. Dies ist gleichbedeutend mit $a \sim^* c$, womit \sim^* transitiv ist.

Insgesamt ist also \sim^* eine Äquivalenzrelation.