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Abstract

Innovative life insurance products such as unit-linked life insur-
ance, hybrid life insurance, and variable annuities are rapidly gaining
popularity and becoming a major part of new business in Germany.
However, since traditional life insurance products still dominate the
portfolios of life insurance companies, discussions about the standard
formula for determining the solvency capital requirement have focused
on this type of business. Any detailed discussion on how to calculate
the solvency capital requirement for innovative life insurance products
within the standard formula has yet to occur.

This paper brings to light some interesting facts about unit-linked
business and Solvency II. In particular, it analyzes the impact of the
transition from Solvency I to Solvency II on the solvency capital re-
quirement of a German unit-linked insurance product with guaranteed
death benefits. The modeling of lapses is another focus of research,
reflecting the increased importance of lapse risks for innovative life
insurance products. Since there are strong concerns about nonlinear-
ities between the various risks, especially between market risk and
lapse risk, the paper examines this problem as well. Finally, an al-
ternative method for calculating the net solvency capital requirement,
the so-called single equivalent scenario (also referred to as the killer-
scenario), is presented.

Keywords: Unit-linked insurance, Solvency II, standard formula, single
equivalent scenario, dynamic policyholder behavior

iii



1 Introduction

Innovative life insurance products have been gaining in popularity during
the last decade and now represent nearly a third of new business in Germany
(see Helfenstein & Barnshaw (2003), Enz (2006) and Märten & Daalmann
(2009)). However, and despite the importance of these products for the future
of the insurance industry, most discussions about the Solvency II framework
focus on traditional insurance products. The results of the last quantitative
impact study, QIS4, indicate that most insurance companies do not calcu-
late the solvency capital requirement for innovative life insurance products
as systematically as they do for traditional products (see CEIOPS (2008a)).

In the academic literature of the last decade, fair valuation of life insur-
ance products has been an emerging field. Traditional life insurance contracts
with interest rate guarantees especially have been analyzed in detail (see
Bauer et al. (2006), Bacinello (2001) and Steffensen (2002)). Common op-
tions of traditional policies such as the option to surrender also draw growing
attention (see Grosen & Jorgensen (2000) and Steffensen (2002)). Further-
more, the recent low interest period, changing customer need and tax law led
to increased new business of unit-linked life insurance, hybrid life insurance
and variable annuities and therefore a development of pricing techniques (see
Bauer et al. (2008)). However, innovative life insurance products still need
to be examined in conjunction with recent regulatory changes in Europe (e.g.
Solvency II).

The aim of this paper is to provide the first contribution to a discussion
about the solvency capital requirement for innovative life insurance products.
The paper brings together fair valuation, risk analysis and a detailed product
design and should be of interest to academics as well as to practitioners.

Innovative life insurance products differ from traditional life insurance
products in some fundamental aspects and therefore require an in-depth risk
examination. For both insurers and policyholders, the value of an innovative
life insurance product is expected to be somewhat volatile, since the capi-
tal is mostly invested in risky assets, compared to the fixed-income-oriented
investment strategies of traditional life insurance products. Furthermore, in-
novative life insurance products are usually complex in their structure and
contain a broad range of options and guarantees (see Gatzert (2009)). These
insurance products also induce dynamic policyholder behavior. Their volatile
value, complexity, dynamic policyholder behavior, options, and guarantees
can all have an unexpected influence on the solvency capital requirement.
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The contribution of this paper is to identify the main risks of a unit-
linked life insurance product and to discuss two methods for calculating the
solvency capital requirement, namely the standard formula and the single
equivalent scenario. Furthermore, a way to implement dynamic policyholder
behavior in the standard formula is presented. This paper also provides a
methodology for calculating solvency capital requirement for other innova-
tive life insurance products.

The paper is organized as follows: To establish a methodology, a German
unit-linked insurance with guaranteed death benefits is examined based on
the standard formula method (see CEIOPS (2008c)). A simplified version
of the standard formula and information about the calculation of the sol-
vency capital requirement is presented in chapter 2. The product design is
illustrated in chapter 3 and includes fixed and variable costs, mortality, deter-
ministic and dynamic lapses, kickbacks, a bonus system in accordance with
German law, and a realistic set of parameters. The analysis is performed on
products with single premiums as well as on products with regular premiums.
Furthermore, the paper analyzes the impact of the transition from Solvency I
(see Müller (1997) and Bundesministerium der Justiz (2009)) to Solvency II
on the solvency capital requirement for the unit-linked insurance product.
Chapter 4 provides information about the asset and the liability models as
well as first results. The paper examines the linearity assumption by means
of a sensitivity analysis in chapter 5. A method for modeling dynamic lapses
is discussed in chapter 6. Different parameter sets are analyzed in chapter 7.
The single equivalent scenario is presented in chapter 8.

2 Solvency capital requirement

The solvency capital of an insurance company guarantees the solvability of
the latter during a financial distress. Regarding the importance of insurance
to society, economy and public welfare, the insurance company should have
enough capital to overcome almost every crisis. In Solvency I the solvency
capital requirement is calculated through a factor-based framework. This
framework is easy to understand and easy to use, and it requires only few
balance sheet values and the corresponding risk factors. The Solvency I
capital requirement for German unit-linked products, where the policyholder
bears the investment risk, is defined as 1% of the investment fund value plus
0.3% of the risk premium1. The downside of a factor-based framework is that

1See Bundesministerium der Justiz (2009) and Müller (1997).
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it does not depict the actual risks. Solvency II, as a risk based framework,
will provide a more sophisticated view on the risk taking of an insurance
company2.
In the Solvency II framework, the amount of solvency capital an insurance
company has to hold is in the broader sense defined as the amount of capital
needed to survive a ”one in two hundred years crisis”.

2.1 SCR - the mathematical approach

Let X denote a risk, the solvency capital requirement of SCRα(X) is defined
as

SCRα(X) = V aRα(X)−E[X]. (1)

The following transformations lead to a mathematical definition of the SCR3:

SCRα(X) = V aRα(X)−E[X]

= V aRα(X −E[X])

= argmin
x

(P [X −E[X] ≤ x] ≥ α)

= argmin
x

(1− P [X −E[X] > x] ≥ α)

= argmin
x

(P [X −E[X] > x] ≤ 1− α) .

Now consider a two-hundred-years crisis over a time horizon of one year.
Denote the available capital at time t by ACt

4. Then E[X] = −AC0 is the
negative available capital at time t = 0 and X = − AC1

(1+i)
the discounted

available capital at time t = 0. The solvency capital requirement SCR can
then be expressed as5

SCRα = argmin
x

(
P

[
AC0 −

AC1

(1 + i)
> x

]
≤ 1− α

)
(2)

with α = 0.995 and an interest rate i.

2See Doff (2008), Duverne & Le Douit (2009), Holzmüller (2009), Elderfield (2009) or
Steffen (2008) for a comparison of different regulatory frameworks and general information
about Solvency II.

3As introduced in Bauer et al. (2009). Bergmann’s notion is used for practical applica-
tions. It is approximately equivalent to P (AC1 ≥ 0|AC0 = x) ≥ α, but avoids the implicit
nature of the definition.

4The available capital can be expressed in terms of MCEV. See Bauer et al. (2009) for
more information.

5Implicitly assuming that dividends have not been paid to shareholders yet at t = 1.
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2.2 SCR - the Standard Formula of QIS4

Although the formula above perfectly defines the solvency capital require-
ment, it is not practical because of two reasons: it is very difficult to describe
an insurance company as a whole with a stochastic model, and nested sim-
ulations are needed. In order to provide a more simple approach, especially
for small insurance companies that do not use an internal model, CEIOPS
introduced the Standard Formula. The main simplification is the definition
of deterministic stress scenarios that should represent the one in two hundred
years crisis. In addition, risks are supposed to be multivariate normally dis-
tributed. Let X = −Π denote a random loss variable or the negative PVFP
(”Present Value of Future Profits”) Π, then the SCR can be simplified to6

SCR = V aR(−Π)−E[−Π]

= (Liabilities− Assets) |stress − (Liabilities− Assets)
= (Assets− Liabilities)− (Assets|stress − Liabilities|stress) .

The stress scenarios are formulated for various risk modules (interest
rates, equity, mortality, lapses and expenses) and are aggregated via a corre-
lation matrix. Let Xi denote the loss variable exposed to a risk i defined in
a risk module and SCR (Xi) denote the solvency capital requirement calcu-
lated for the same risk module.

Then the aggregated solvency capital requirement SCR (X) for the ag-
gregated loss variable7 X =

∑
i

Xi is defined as8:

SCRα(X) = V aRα(X)−E[X]

= V aRα

(∑
i

Xi

)
−E[X]

=

√∑
i,j

ρi,j (V aRα(Xi)−E[Xi]) (V aRα(Xj)−E[Xj])

+E

[∑
i

Xi

]
−E[X]

6Assets and Liabilities denote the expected present value of all Assets and Liabilities
as defined in QIS4 (∆-NAV approach).

7With E[X] = E

[∑
i

Xi

]
.

8See GDV (2005, page 88-93).
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=

√∑
i,j

ρi,jSCRα(Xi)SCRα(Xj).

Figure 1 shows a simplified modular view on the standard formula. Only
relevant risks for a German unit-linked insurance product are considered.

SCR

Adj SCRop
BSCR

SCRmkt SCRlife

MKTint

MKTeq

LIFEmort

LIFElapse

LIFEexp

Figure 1: Modular structure of the SCR

The solvency capital requirement can be expressed with the following
formulae9:

SCR =
√
SCR2

mkt + 2 · ρmkt,life · SCRmktSCRlife + SCR2
life

SCRmkt =
√
SCR2

int + 2 · ρint,eq · SCRintSCReq + SCR2
eq

SCRlife =
√
SCR2

mort + SCR2
lapse + SCR2

exp + 2 · ρmort,lapse · SCRmortSCRlapse

+2 · ρmort,exp · SCRmortSCRexp + 2 · ρlapse,exp · SCRlapseSCRexp.

The corresponding correlation factors can be obtained from table 1.
According to the principles of Solvency II, a ”best estimate is equal to

the probability-weighted average of future cash-flows, taking account of the
time value of money, using the relevant risk-free interest rate term structure.
The calculation of best estimate should be based upon current and credible
information and realistic assumptions and be performed using adequate ac-
tuarial methods and statistical techniques.”10. In this case, the best estimate

9See chapter 2.5 for details on the relevant risk modules.
10See CEIOPS (2008c, page 13-14).
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of technical provisions equals the best estimate of liabilities. In order to sim-
plify the task, a risk margin will not be calculated. The valuation of assets
is performed with a mark to model procedure. This framework ensures a
market-consistent valuation of all assets and liabilities.

CorrSCR= SCRmkt SCRlife
SCRmkt 1 0.25
SCRlife 0.25 1

CorrMkt= SCRint SCReq
SCRint 1 0
SCReq 0 1

CorrLife= SCRmort SCRlapse SCRexp
SCRmort 1 0 0.25
SCRlapse 0 1 0.5
SCRexp 0.25 0.5 1

Table 1: Correlation matrices

Let Π = Assets − Liabilities denote the value of an insurance policy.
Then, the solvency capital requirement for the particular risk modules as
described in chapter 2.5 is defined as

SCRint−up = Π− Π|up−shock
SCRint−down = Π− Π|down−shock

SCRint = max (SCRint−up, SCRint−down; 0)

SCReq = max (Π− Π|eqshock; 0)

SCRmort = max (Π− Π|mortshock; 0)

SCRlapse−up = Π− Π|up−shock
SCRlapse−down = Π− Π|down−shock
SCRlapse−mass = Π− Π|mass−shock

SCRlapse = max (SCRlapse−up;SCRlapse−down;SCRlapse−mass; 0)

SCRexp = max (Π− Π|expshock; 0) .

The solvency capital requirement for operational risk for unit-linked in-
surance is calculated with a factor-based formula. The risk factor rfop = 0.25
is set by CEIOPS and is multiplied with the best estimate annual expenses
(without aquisition costs) Expul of the unit-linked policy portfolio:

SCRop = 0.25 · Expul.
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2.3 Methodology – developing a partial internal model

Partial internal models are an interesting approach especially for midsized or
small insurers. Using a partial internal model, the difficult task of modeling
the insurance company as a whole can be avoided. With a full internal model,
the insurer is also required to model the correlations between all risks in order
to obtain an empirical distribution function of the economic balance sheet
and its quantiles. Instead, one can use the Solvency II standard formula
as a starting point. Further aspects of the nature of the business can be
modeled within the standard formula in the relevant risk modules while the
correlation matrices and most of the remaining modules remain unchanged.
The following partial internal model for calculating the SCR of unit-linked
insurance products is designed to mirror the high dependency on financial
markets of such products and probable dynamic policyholder behavior.

market model product model
best estimate
parameters for

mortality,
expenses, lapses

stress scenarios

Monte-Carlo Simulations

PVFP PVFP|Stressi PVFP|Stressj

SCR

Figure 2: Methodology

For its deterministic parts such as mortality, expenses or deterministic
lapses, the partial internal model requires the same best estimate parameters
as the standard formula. The financial market model consists of stochastic
models for assets and interest rates. The main part of the partial internal
model is the product model. It contains all relevant parameters of the unit-
linked policy, information about the insurers portfolio, management rules and
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a model for dynamic lapses. With most of the cash flows being stochastic
now, Monte-Carlo simulations are used to determine the expected discounted
value of the insurance portfolio (denoted by PVFP).
In order to obtain the solvency capital requirement, stress scenarios of the
standard formula are implemented. They affect either the best estimate
assumptions or parameters of the market model. Again, Monte-Carlo simu-
lations are used to determine the value of the insurance portfolio, now under
the assumption that a stress occurs. Applying this procedure to every stress
scenario of every relevant risk module, the outcomes can be aggregated to
the resulting SCR the same way as in the standard formula.

2.4 The risk absorbing effect of future profit sharing

Future bonuses paid out to the policyholders will change while calculating the
PVFP under a stress scenario when stochastic profit sharing rules are used.
The solvency capital calculated with adjusted bonuses is referred to as the
net solvency capital requirement (nSCR). The solvency capital calculated
with constant bonuses through a stress is referred to as the basic solvency
capital requirement (BSCR). The value of the future discretionary bonuses
(FDB) can be defined as

FDB = Π|no profit sharing − Π|profit sharing.

The adjustment for the risk absorbing effect of future profit sharing to the
BSCR is then defined as

AdjFDB = min (BSCR− nSCR,FDB)

and the overall SCR or net basic solvency capital requirement nBSCR is
defined as

SCR = nBSCR = BSCR− AdjFDB + SCRop.

The calculation of the BSCR is performed with ”constant” bonuses through-
out all stress scenarios. There are several interpretations what ”constant”
means. One interpretation is that the BSCR ”should be calculated under
the condition that the absolute amount of future discretionary benefits cash
flows per policy and year remain unchanged before and after the shock being
tested”11. This direct calculation of the BSCR requires storage of bonuses
for every simulation step and every simulation path. In order to avoid a huge

11See CEIOPS (2009b).
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computational capacity requirement and improve the practicability, the prob-
lem can be simplified using an alternative interpretation:
The calculation of theBSCR is performed with a ”constant value” of bonuses.
Therefore, the BSCR is ”calculated under the condition that the value of
future discretionary benefits remains unchanged before and after the shock
being tested”12. Let Liabilities = Bonuses + otherLiabilities be a decom-
position of the liabilities, then Π and BSRC can be defined as

Π = Assets−Bonuses− otherLiabilities
BSCR = (Assets−Bonuses− otherLiabilities)

− (Assets|stress −Bonuses|stress − otherLiabilities|stress) .

Since the bonuses should be constant in order to calculate the BSCR and
therefore Bonuses = Bonuses|stress, the above equation can be simplified to

BSCR = (Assets− otherLiabilities)
− (Assets|stress − otherLiabilities|stress) .

The above BSCR corresponds to the nSCR calculated without any profit
sharing. Therefore, in order to calculate the BSCR the profit sharing pa-
rameters ”risk profit participation rate” and ”expense profit participation
rate” are set to zero. In general, with participation rates other than zero,
the nSCR is defined as:

nSCR = (Assets−Bonuses− otherLiabilities)
− (Assets|stress −Bonuses|stress − otherLiabilities|stress)

with

Bonuses 6= Bonuses|stress.

Figures 3 and 4 show solvency balance sheets for both BSCR and nSCR.

2.5 QIS4 stress scenarios

The solvency capital requirement is defined as the difference of the best
estimate net asset value (PVFP) and the net asset value under stress. The
stress scenarios defined in this chapter originate from QIS4. The design of
the regarded insurance product requires the consideration of the following
risks: in the market risk module, the interest rate risk and the equity risk
are relevant. Mortality risk, lapse risk and expense risk are the relevant risks
in the life underwriting risk module.

12See CEIOPS (2009b).
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interest rate risk 13 – The interest rate risk module includes two stress
scenarios: up-shift of the interest rate curve (zero coupon bond rate)
and down-shift of the interest rate curve. The exact magnitude of the
shifts can be found in the QIS4 tables.

equity risk 14 – The equity risk module contains an immediate loss of 32%
of the risky assets15.

mortality risk 16 – The mortality stress is defined as an increase of the
mortality rates amounting to 10%.

lapse risk 17 – The lapse risk includes three stress scenarios: a long-term
increase of the lapse rates (50%), a long-term decrease of the lapse rates
(50%) and a massive immediate lapse of 30% of the policyholders.

expense risk 18 – The expense risk stress scenario is defined as an increase
of 10% in future expenses and an increased expenses inflation (+1%
per annum).

BSCR

Assets Assets

Liabilities

Bonus

PVFP

Liabilities

Bonus

PVFP

best estimate stressed

Figure 3: Risk absorbing effect of future profit sharing I

13See CEIOPS (2008c, pages 134-137).
14See CEIOPS (2008c, pages 137-143).
15The risky assets are assumed to belong to the asset category ”Global”.
16See CEIOPS (2008c, pages 162-164).
17See CEIOPS (2008c, pages 167-169).
18See CEIOPS (2008c, pages 169-170).
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nSCR

Assets Assets

Liabilities

Bonus

PVFP

Liabilities

Bonus

PVFP

best estimate stressed

Figure 4: Risk absorbing effect of future profit sharing II

3 Product design and parameter assumptions

Premiums
In this paper two forms of the product are considered: single premium con-
tracts and regular premium contracts. With a single premium contract, the
policyholder has to pay only a lump-sum at the beginning of the contract
period. Concluding a regular premium contract, the policyholder commits
to pay a premium at the beginning of every month until the end of the con-
tract period, death of the policyholder or lapse of the policy. The premium
income is immediately used to buy shares of the investment fund after de-
duction of acquisition charges. Let T denote the policy term in years, then
t = 0, . . . , 12T is counting the time steps (months). A premium payment at
time t is denoted by Pt.

Expenses
Three kinds of expenses can be identified regarding a standard unit-linked
insurance product: acquisition expenses, fixed monthly expenses, and vari-
able monthly expenses. In order to refinance, the insurer deducts charges
from the investment fund. These charges represent the prudent projected
expenses. The prudent projected expenses consist of the expected expenses
plus a risk margin. The acquisition charges for regular premium policies are
calculated with expected interest rates but without any mortality or lapse
assumptions. The fixed monthly charges are considered to be deterministic
and constant for all t, while the variable charges are driven by the current
investment fund value. The acquisition charges are immediately deducted
from the premiums; in the single premium case, they are deducted from the
single premium at once, in the regular premium case, the acquisition charges
are decomposed into small payments and deducted from the premiums (for a
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maximum of five years). The incurred monthly (fixed and variable) expenses
are paid at the end of every month. In order to finance the incurred expenses,
the insurer withdraws an amount equal to the prudent projected expenses
from the investment fund at the beginning of every month and deposits it on
a bank account earning the risk-free interest rate.

Mortality
German DAV 2008 T mortality tables are used for prudent mortality assump-
tions. Uniform distribution of deaths is used as an assumption for fractional
ages.

Death benefits
Death benefits are paid at the end of the month. A set of different kinds of
policies varying by their guaranteed death benefits structures were considered
in the study. The paper highlights one typical death benefit scheme, denoted
by ”policy A”. This guarantee refers to the current investment fund and
total premiums (P tot). Then, the death benefits DBt at time t are defined
as:

policy A: DBt = max (1.1 · FVt, P tot).

Like the charges, death benefits are also financed by withdrawing an
amount from the investment fund at the beginning of the month. The amount
withdrawn from the investment fund is referred to as the ”risk premium”
and denotes the prudent estimated excess of the death benefits over the
investment fund value. Let qx be the probability of an x-year-old dying
the ongoing year and let RPt denote the risk premium at time t, then the
following equation holds:

RPt = (DBt − FVt)
qx

12− qx
.

The risk premium is withdrawn from the investment fund at the beginning
of the month and deposited on a bank account earning the risk free interest
rate. Therefore, in case the death benefit paid to the policyholder is larger
than the value of the amount of shares of the investment funds associated
with the policy, the risk premium is used to close the gap. It is worth not-
ing that the risk premium is calculated at the beginning of the month with
respect to the fund value at the beginning of the month while the death ben-
efit is calculated with respect to the fund value at the end of the month. An
unfavorable development of the investment funds during the month can lead
to insufficient funds and therefore to a negative impact on the PVFP for the
insurer.

12



Assumptions
Best estimate assumptions are formulated for mortality, seperate assump-
tions are used for expenses.

• The best estimate mortality is assumed to be 60% of the prudent mor-
tality.

• The fixed monthly expenses are considered to be deterministic but
monthly increasing with a expenses inflation factor.

• The variable expenses are assumed to be zero.

• The aquisition charges equal the aquisition expenses.

The insurer uses prudent and best estimate assumptions for mortality and
different assumptions for charges and expenses. Therefore, in the long run,
the insurer will make profits out of the assumption of parameters. According
to German law, these profits have to be shared with the policyholders. Two
kinds of profits can be identified: mortality profits are profits generated by
mortality risk taking and expense profits are profits generated by expenses
risk taking. Expense profits also include profits from lapse fees and kick-
backs19. Profits are generated every month and deposited on a bank account
earning the risk free interest rate. At the end of the year the insurer credits
at least 75% of the mortality profits and at least 50% of the expense profits
to the policyholders investment fund. The rest of the profits are profits of the
insurance company and denote the value of the policy (discounted at time
t = 0) to the insurer.

Lapses
Evaluating the value of the policies in its portfolio, the insurance company
must take into account that the insured might use their option to surrender,
withdraw, or lapse his policy20. There are several factors that influence the
number of lapses: the remaining policy term, the performance of the pol-
icy compared to other products, the age of the policyholder, unemployment
rates, growth of the GDP, the rating of the insurance company, marketing
and marketing channels as well as personal reasons21. Lapses triggered by

19The investment fund management pays kickbacks to the insurer. Kickbacks are seen
as an allowance on management fees due to a high transaction volume.

20The three expressions are used synonymously in literature.
21For more information about lapse, see Anzilli & De Cesare (2007), Cerchiara et al.

(2008), Kuo et al. (2003), Mauer & Holden (2007), Bacinello (2003), Cox & Lin (2006),
Outreville (1990) and Prestele (2006).
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these factors are not incorporated in this model in particular but combined
and defined as deterministic lapses and modeled by deterministic lapse rates.
Dynamic lapses are triggered by the value of the policy to the policyholder,
more precisely, the surrender value of the policy. Dynamic lapses are also
often referred to as dynamic policyholder behavior, since they cannot be
modeled with deterministic assumptions. In literature, dynamic lapses are
frequently used in connection with the valuation of a surrender option and
therefore lapses are assumed to occur at any time the surrender value is larger
than the value of the policy. Note that this definition of lapses, also denoted
as rational lapses, differs from the lapses as presented in this paper. Dynamic
policyholder behavior should be carefully managed by the insurance company
because changes might be excessive and lead to huge financial losses22. This
paper also examines dynamic lapses (dynamic lapse functions)23.

Deterministic lapses are assumed to evolve with a deterministic mono-
tonically decreasing lapse rate lrdett . Deterministic lapse rates start at 10%
and decrease by 1% yearly until they reach 2%. They remain constant at 2%
for the rest of the policy term.

Parameter Value Description Category

T 30 policy term in years

general

gender male gender of the policyholders
x 30 age of the policyholders at t = 0
NP0 10000 number of policyholders at t = 0
P0 100000 single premium in Euro
Pt=0,...,12·T 305 regular premium in Euro

achargesrate 6% acquisition charges in per cent of P tot

charges

cpu 4 fixed charges per policy per month in Euro
vchargesrate 0% variable charges per month in per cent of FVt

(single premium case)
vchargesrate 0.15% variable charges per month in per cent of FVt

(regular premium case)

aexpensesrate′ 6% acquisition expenses in per cent of P tot

expenses
cpu′ 4 fixed expenses per policy per month in Euro
cinf 2% fixed expenses inflation per annum
vexpensesrate′ 0% variable expenses per month in per cent of FVt

rbrate 75% risk profit participation rate bonus
systemcbrate 50% expense profit participation rate

Table 2: Parameter assumptions

The insurance company is allowed to deduct a lapse fee from the surrender
value of the policy in most European countries24. The main reasons for lapse

22See CEIOPS (2009a) for more information about deterministic and dynamic lapses.
23See chapter 6.
24E.g. in Germany (see VVG §169(5)), but not in France (see Helfenstein & Barnshaw

(2003)), Norway (see Nordahl (2008)).
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fees are adverse selection, administration expenses, acquisition expenses and
solvency25.

Lapse fees are set to have a deterministic and monotonically decreasing
lapse fee rate. In case a policyholder decides to surrender his policy, he re-
ceives the investment fund value less the lapse fee. The lapse fee rate starts
at 5% and decreases by 0.5% yearly until it reaches 0%.

The parameters set in table 2 represent the standard setting unless oth-
erwise noted.

4 Financial market model and Simulations

The financial market model consists of one risky asset (e.g. a share) and a
riskfree investment possibility (e.g. a state bond). The risky asset is modeled
by using the standard Black-Scholes-Merton model, while the interest rates
are modeled with the Cox-Ingersoll-Ross model.

Investment fund
The investment fund contains only risky assets and is modeled with respect
to investment fund fees and kickbacks to the insurance company.
Let St denote the value of one share of the risky asset with a constant volatil-
ity σ, the risk-free short-rate rt

26 and a Brownian motion Wt under the risk-
neutral measure27 at time t ∈ [0, T ], then St solves the following SDE:

dSt = rtStdt+ σStdWt.

The explicit analytical solution is given by:

St = St−1 exp

(∫ t

t−1

(
rs −

σ2

2

)
ds+

∫ t

t−1

σ dWs

)
.

Now let FundFee denote a constant rate of fees, which will be retained
by the investment fund management and let At denote the value of one share
of the investment fund, then

dAt = rtAtdt+ σAtdWt + ln (1− FundFee)Atdt
25See DAV-Arbeitsgruppe Stornoabzüge (2007) and Gatzert (2009) for further informa-

tion.
26Assuming an adapted interest rate process rt, see Shreve (2000, page 215).
27See Shreve (2000, page 214-217).
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describes the evolution of the investment fund. The investment fund is mod-
eled as a dividend paying share28. The analytical solution of this SDE can
be written as

At = At−1 exp

(∫ t

t−1

(
rs −

σ2

2
+ ln (1− FundFee)

)
ds+

∫ t

t−1

σ dWs

)
= At−1

St
St−1

(1− FundFee) .

Kickbacks are paid by the investment fund management to the insurer
and are financed by the investment fund management fees29. The amount of
kickbacks per investment fund share is

Kickbacks (per share) = At · kickbackrate.

Interest rates
The Cox-Ingersoll-Ross model is used to model the short rate30. Unfortu-
nately, this model has no closed-form solution. Despite this drawback com-
pared to e.g. the Vasiceck model, the interest rates stay always positive. Let
lm denote the constant long run short rate, mrs the constant mean rever-
sion speed, σr the volatility of the interest rates and W r

t a Brownian motion
(uncorrelated to Wt), then the model for the short rate process rt is

drt = mrs (lm− rt) dt+ σr
√
rtdW

r
t .

Parameter assumptions
The parameters set in table 3 represent the standard setting and are used
unless otherwise noted.

Parameter Value Description Category

n 200000 number of simulations
general

ρ 0 correlation between the Brownian motions

S0 100 starting value of the risky asset
risky asset

σ 20% volatility per annum

r0 4% starting value
interest
rate

mrs 0.3 mean reversion speed
lm 4.5% long run short rate
σr 2.5% volatility per annum

aFundFee 1.5% investment fund fee per annum investment
fundakickbackrate 0.5% kickback rate per annum

Table 3: Financial market model parameter assumptions

28See Shreve (2000, page 234-240).
29Therefore, the rate of kickbacks should be chosen smaller than the rate of investment

fund management fees.
30See Shreve (2000, page 151-153).
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Figure 5 shows the simulation steps in a schematic manner.
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Figure 5: Timeline

Numerical results

Policy type P type SCR PVFP Solvency ratio BSCR SCR SES-BSCR SES-SCR

A sin € 14,98 mln € 39,69 mln 264,99% € 28,64 mln € 14,86 mln -4,51% -4,79%

A reg € 14,82 mln € 40,00 mln 269,92% € 27,37 mln € 14,70 mln -6,41% -6,28%

Table 4: Numerical results I

Table 4 presents the simulated SCRs and the insurer’s PVFP for policies
with both premium types (”sin” for single premium and ”reg” for regular
premium). Furthermore, it presents an important financial ratio, the sol-
vency ratio31. Figures 6 and 7 show the composition of the BCSR and the
nSCR before diversification.

The first observation is that market risks and lapse risk dominate the
risk structure of the respective product. Throughout all simulation runs the
long-term increase of the lapse rates proved to be the relevant stress scenario.
Expense risk and mortality risk are both almost negligible. Therefore, the
type of death benefits has also only little impact on the solvency capital
requirement.

31With solvency ratio = Π
SCR .
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Figure 6: Composition of the SCR – single premium
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Figure 7: Composition of the SCR – regular premium

Secondly, comparing the results of the simulations, the premium type
of the policy proves to be very important for the policies’ risk structure.
Although the regular premium policy is just insignificantly more risky than
the single premium policy (by comparing the solvency ratio), interest rate
risk accounts for market risks almost completely. This fact is not surprising,
since, with a regular premium policy, the fund value is small at the beginning.
On the other hand, the market risk of a single premium policy is dominated
by the equity risk. A shock of interest rates does not have a significant impact
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on the PVFP. Since a change of interest rates does affect the discounting of
future profits as well as the trend of the risky assets and since the profits
are mostly generated or triggered by the investment fund value, both effects
seem to offset each other.

Thirdly, the solvency capital requirement calculated with the standard
formula of the Solvency II framework, seems to be much higher than the sol-
vency capital requirement calculated according to the Solvency I framework
(which is about 1% of the investment fund value, the risk premium is almost
negligible). For the regular premium policy, Solvency I requires only little
solvency capital at the beginning of the policy term and the largest amount
of solvency capital at the end of the policy term although this is illogical
since the risk obviously decreases by the end of the policy term in general.

SCRmkt

SCRlife

Div

FDB

SCR

Figure 8: SCR - Structure - single premium

SCRmkt

SCRlife

Div

FDB

SCR

Figure 9: SCR - Structure - regular premium
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PVFP distribution with profit sharing Policy Type A Premium Type sin

total from risk from expenses

total from lapse from kickbacks

PVFP € 39,69 mln € 0,59 mln € 39,10 mln € 7,37 mln € 32,26 mln 

PVFP after mort-shock € 39,56 mln € 0,50 mln € 39,06 mln € 7,37 mln € 32,22 mln 

PVFP after exp-shock € 39,01 mln € 0,59 mln € 38,42 mln € 7,37 mln € 32,25 mln 

PVFP after lapse-shock up € 34,84 mln € 0,41 mln € 34,43 mln € 10,03 mln € 24,78 mln 

PVFP after eq-shock € 27,03 mln € 0,72 mln € 26,31 mln € 5,00 mln € 21,83 mln 

PVFP after int-shock up € 39,72 mln € 0,44 mln € 39,28 mln € 7,37 mln € 32,31 mln 

PVFP distribution without profit sharing Policy Type A Premium Type sin

total from risk from expenses

total from lapse from kickbacks

PVFP € 78,02 mln € 2,39 mln € 75,63 mln € 14,61 mln € 62,08 mln 

PVFP after mort-shock € 77,59 mln € 2,03 mln € 75,56 mln € 14,60 mln € 62,01 mln 

PVFP after exp-shock € 76,70 mln € 2,39 mln € 74,31 mln € 14,61 mln € 62,08 mln 

PVFP after lapse-shock up € 68,37 mln € 1,66 mln € 66,71 mln € 19,86 mln € 47,60 mln 

PVFP after eq-shock € 53,81 mln € 2,99 mln € 50,82 mln € 9,92 mln € 41,96 mln 

PVFP after int-shock up € 77,74 mln € 1,75 mln € 75,99 mln € 14,61 mln € 62,18 mln 

PVFP distribution with profit sharing Policy Type A Premium Type reg

total from risk from expenses

total from lapse from kickbacks

PVFP € 40,00 mln € 1,11 mln € 38,90 mln € 0,37 mln € 8,48 mln 

PVFP after mort-shock € 39,70 mln € 0,94 mln € 38,76 mln € 0,37 mln € 8,45 mln 

PVFP after exp-shock € 39,27 mln € 1,11 mln € 38,16 mln € 0,37 mln € 8,47 mln 

PVFP after lapse-shock up € 28,25 mln € 0,84 mln € 27,41 mln € 0,47 mln € 5,93 mln 

PVFP after eq-shock € 39,92 mln € 1,11 mln € 38,81 mln € 0,37 mln € 8,47 mln 

PVFP after int-shock up € 34,21 mln € 0,86 mln € 33,36 mln € 0,35 mln € 7,26 mln 

PVFP distribution without profit sharing Policy Type A Premium Type reg

total from risk from expenses

total from lapse from kickbacks

PVFP € 74,57 mln € 4,68 mln € 69,89 mln € 0,72 mln € 15,26 mln 

PVFP after mort-shock € 73,74 mln € 3,98 mln € 69,76 mln € 0,72 mln € 15,23 mln 

PVFP after exp-shock € 73,25 mln € 4,68 mln € 68,56 mln € 0,72 mln € 15,26 mln 

PVFP after lapse-shock up € 52,93 mln € 3,53 mln € 49,40 mln € 0,92 mln € 10,69 mln 

PVFP after eq-shock € 74,43 mln € 4,69 mln € 69,74 mln € 0,71 mln € 15,23 mln 

PVFP after int-shock up € 63,43 mln € 3,59 mln € 59,83 mln € 0,68 mln € 13,02 mln 

Table 5: Composition of the PVFP

Table 5 presents the impact of the stress-scenarios on the PVFP. Fur-
thermore, the composition of the PVFP is shown. Note that PVFP from
lapse fees and kickbacks are part of the PVFP from expenses. Table 5 also
displays the impact of profit sharing on PVFP and its risk absorbing effect.
Table 6 presents the effect of profit sharing in more detail. The insurer is
able to mitigate the risk almost identical to the profit participation rates.
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Policy Type A Premium Type sin

with profit sharing without profit sharing risk mitigation

PVFP € 39,69 mln € 78,02 mln 49%

SCR € 14,86 mln € 28,64 mln 48%

SCReq € 12,66 mln € 24,21 mln 48%

SCRint € 0,00 mln € 0,28 mln 100%

SCRmort € 0,13 mln € 0,43 mln 70%

SCRlapse € 4,85 mln € 9,66 mln 50%

SCRexp € 0,68 mln € 1,32 mln 49%

Policy Type A Premium Type reg

with profit sharing without profit sharing risk mitigation

PVFP € 40,00 mln € 74,57 mln 46%

SCR € 14,70 mln € 27,37 mln 46%

SCReq € 0,08 mln € 0,14 mln 43%

SCRint € 5,79 mln € 11,15 mln 48%

SCRmort € 0,30 mln € 0,84 mln 64%

SCRlapse € 11,75 mln € 21,64 mln 46%

SCRexp € 0,74 mln € 1,32 mln 44%

Table 6: Risk absorbing effect of future profit sharing

5 Linearities

The Solvency II standard formula is based on the assumption of linearity.
Two types of linearity can be identified: Linearity within a risk and linear
relations between risks. Linearity within a risk ensures that the solvency
capital requirement of a single risk module increases linearly with the risk
factor. Following equation holds:

kSCR(Xi) = SCR(kXi)

for any positive k and every risk i. The linearity between risks guarantees that
the separately calculated diversified solvency capital requirement of several
risk modules equals the solvency capital requirement of a simultaneous shock
with adjusted risk factors:

SCRk·SES(X) =

√∑
i,j

ρi,jSCR(kXi)SCR(kXj)

with X =
∑
i

Xi and the single equivalent scenario SES32.

Non-linearities can compromise the accuracy of the solvency capital require-
ment calculated with the standard formula. Excessive non-linearities nearing
the defined stress scenarios can lead to significant changes of the solvency
capital requirement. More crucially, non-linearities between risks can not be
evaluated with the standard formula. It is possible that an insurance com-
pany facing unfavorable developments in several risk modules is in need of
much more or much less capital than aggregated with the standard formula.
Furthermore, the single equivalent scenario method requires both, intra and
inter risk linearities.

32See chapter 8 for a thorough investigation on SES.
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Figure 10: Numerical results - Linearities - single premium
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Figure 11: Numerical results - Linearities - regular premium
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Figure 12: Numerical results - Non-linearities between risks

Figures 10 and 11 show sensitivity graphs of the relevant risks, equity
and lapse (up-shock) for a single premium policy (type A). For a regular
premium policy (type A), sensitivity graphs of the interest rate (up-shock)
and lapse (up-shock) are presented. The values on the x-axis denote the
reduction factor for the risk from zero (”no stress”) to one (full QIS4 stress-
scenario”)33. The grey curves represent the impact on the PVFP while the
black curves represent an assumed linear impact. Most graphs indicate al-
most perfect linearity. However, a nonlinear behavior can be found within the
lapse risk. There is also non-linearity between market risks and lapse risk as
seen in figure 12. Here, the grey curves represent the impact on the PVFP of
simultaneous stress-scenarios with adjusted risk factors, the black curves rep-
resent the total impact on the PVFP of separately calculated stress-scenarios
including diversification. This result is important for the single equivalent
scenario.

6 Dynamic policyholder behavior

Dynamic policyholder behavior is a major concern to actuaries. The lack
of statistical data and the amount of factors that may influence the policy-
holder’s behavior have to be taken into account and make it difficult to model
or project the policyholder’s actions. The challenge is even bigger consider-
ing a situation of a new product launch and therefore only little experience.
On the other hand, it is common sense among actuaries that dynamic policy-
holder behavior, especially dynamic lapses, can be a major risk. Throughout
the literature, there are indicators that suggest a more distinct dynamic be-

33A value of 0.5 for the equity risk would denote an immediate loss of 16% of the risky
assets.
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havior for unit-linked products34 caused by a higher volatility in the ”value”
of options, guarantees or the fund value. CEIOPS addresses the existence of
options and guarantees as well as the financial markets as reasons for possible
dynamic policyholder behavior35.

In this chapter, since it is rather unlikely that policyholders would tie
their lapse behavior to the guaranteed death benefits of a simple German
unit-linked insurance, dynamic lapses are triggered by the fund value. A
very simple lapse function is used, more sophisticated lapse functions can be
found in literature36.

The impact of dynamic policyholder behavior on the solvency capital re-
quirement is measured with the following approach: the output of a lapse
function, denoted as the dynamic lapse multiplier, adjusts the deterministic
lapse rates. The lapse rates therefore reflect a combination of deterministic
lapse bahavior and dynamic lapse behavior. This setup ensures that, when
the lapse stress scenario is performed, only the deterministic lapse rates are
affected directly while the risk from dynamic lapses is taken into account in
the sub-module of the trigger (here: the market risk at most)37. In the sec-
ond step, the solvency capital requirement is recalculated with the average
annual lapse rates of the first step just as if the insurer would experience
lapses without the assumption of dynamic policyholder behavior. The im-
pact of dynamic lapse rates is then the ratio of the SCR’s obtained.

Using a simple step function and assuming that bad fund performance
leads to higher lapse rates while good fund performance reduces lapses, the
dynamic lapse multiplier can be defined as follows:

lrt = lrdett · dlmt with

dlmt =


dlmmin, for At

Amax {0,t−d}
> adja

dlmmax, for At

Amax {0,t−d}
< adjb

1, else

where dlmmax and dlmmin denote the maximum and the minimum value of

34See Helfenstein & Barnshaw (2003, page 20), Hochreiter et al. (2007, page 8), Edwards
(2008), Cerchiara et al. (2008) and Milliman (2009).

35See TS.II.D.11-15 CEIOPS (2008c, page 34).
36See Kolkiewicz & Tan (2006), Smink (2001), Zenios (1999), De Giovanni (2010) and

Kochanski (2009).
37This approach is presented in CEIOPS (2009a, page 20-24).
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the dynamic lapse multiplier, while adja and adjb set the fund value perfor-
mance that triggers dynamic lapse behavior and d denotes the number of
months the policyholder monitors the fund value until he makes a decision.

Parameter Value Description Category

dlmmax 1.5 maximum value of the dynamic lapse multiplier
Dynamic lapse
multiplier triggered by
the fund value

dlmmin 0.5 minimum value of the dynamic lapse multiplier
adja 1.5 fund value performance triggering lower lapses
adjb 0.9 fund value performance triggering higher lapses
d 12 monitoring period in months

Table 7: Dynamic lapse model parameter assumptions

Policy Type P type lapse function SCR PVFP Solvency ratio SCRmkt SCRmort SCRlapse SCRexp

A sin 2 -3,20% -1,04% 2,23% -3,99% -0,47% -0,10% -0,06%

A reg 2 0,52% -0,84% -1,35% 2,32% -0,20% 0,07% -0,13%

Table 8: Numerical results - dynamic lapses triggered by the fund value

Table 8 shows relevant results from simulations with dynamic lapses trig-
gered by the fund value (lapse function 2). Dynamic lapses lead mainly to
changes of the SCRmkt. For single premium policies, the SCRmkt has a
bigger influence on the SCR than for regular premium policies. The PVFP
decreases in both cases. Overall, the use of dynamic lapses triggered by the
fund value defined as in the model improves the solvency ratio for single pre-
mium policies and worsens the solvency ratio for regular premium policies.
The changes of the deterministic lapses (run 1 – original deterministic lapses
and run 2 – average overall lapses from run 1) are presented in table 1438.

The impact of dynamic lapse behavior as modeled in this paper on the
solvency capital requirement of a German unit-linked insurance with guar-
anteed death benefits is not alarming. However, this may not be the case
with unit-linked products that contain strong guarantees and options.

7 Parameter analysis

In order to gain stability for the results achieved so far, simulations should
also be performed with other values of the crucial parameters policy term and
deterministic lapse vector. The solvency capital requirement for unit-linked
products is calculated for policy terms of 10, 20, 40 and 50 years (parameter
0.5 to 1.5) and for several multiples of the original deterministic lapse vector
(0.5, 0.75, 1.25, 1.5).

38See Appendices.
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parameter SCR PVFP solvency ratio SCReq SCRint SCRmort SCRlapse SCRexp

0,5 € 9,53 mln € 28,27 mln 296,71% € 9,01 mln € 0,00 mln € 0,04 mln € 1,05 mln € 0,34 mln 

0,75 € 12,27 mln € 34,29 mln 279,54% € 10,94 mln € 0,00 mln € 0,07 mln € 2,92 mln € 0,51 mln 

1 € 14,98 mln € 39,69 mln 264,99% € 12,66 mln € 0,00 mln € 0,13 mln € 4,85 mln € 0,68 mln 

1,25 € 17,20 mln € 43,78 mln 254,53% € 13,94 mln € 0,00 mln € 0,23 mln € 6,53 mln € 0,83 mln 

1,5 € 18,78 mln € 46,51 mln 247,72% € 14,77 mln € 0,05 mln € 0,38 mln € 7,76 mln € 0,93 mln 

Table 9: Parameter analysis – policy term – single premium

parameter SCR PVFP solvency ratio SCReq SCRint SCRmort SCRlapse SCRexp

0,5 € 4,84 mln € 17,82 mln 367,80% € 0,08 mln € 1,60 mln € 0,05 mln € 3,87 mln € 0,36 mln 

0,75 € 9,34 mln € 28,89 mln 309,20% € 0,09 mln € 3,41 mln € 0,14 mln € 7,48 mln € 0,54 mln 

1 € 14,82 mln € 40,00 mln 269,92% € 0,08 mln € 5,79 mln € 0,30 mln € 11,75 mln € 0,74 mln 

1,25 € 19,81 mln € 48,33 mln 243,99% € 0,07 mln € 8,12 mln € 0,58 mln € 15,53 mln € 0,91 mln 

1,5 € 23,27 mln € 52,97 mln 227,67% € 0,06 mln € 9,88 mln € 0,98 mln € 18,04 mln € 1,03 mln 

Table 10: Parameter analysis – policy term – regular premium

parameter SCR PVFP solvency ratio SCReq SCRint SCRmort SCRlapse SCRexp

0,5 € 17,61 mln € 46,87 mln 266,13% € 14,95 mln € 0,00 mln € 0,19 mln € 5,55 mln € 0,95 mln 

0,75 € 15,88 mln € 42,93 mln 270,40% € 13,69 mln € 0,00 mln € 0,16 mln € 4,63 mln € 0,80 mln 

1 € 14,98 mln € 39,69 mln 264,99% € 12,66 mln € 0,00 mln € 0,13 mln € 4,85 mln € 0,68 mln 

1,25 € 14,10 mln € 37,03 mln 262,61% € 11,81 mln € 0,00 mln € 0,11 mln € 4,77 mln € 0,58 mln 

1,5 € 13,27 mln € 34,84 mln 262,61% € 11,12 mln € 0,00 mln € 0,09 mln € 4,50 mln € 0,50 mln 

Table 11: Parameter analysis – lapse vector – single premium

parameter SCR PVFP solvency ratio SCReq SCRint SCRmort SCRlapse SCRexp

0,5 € 19,52 mln € 57,16 mln 292,78% € 0,11 mln € 8,52 mln € 0,42 mln € 14,88 mln € 1,02 mln 

0,75 € 15,42 mln € 47,77 mln 309,74% € 0,09 mln € 7,02 mln € 0,36 mln € 11,49 mln € 0,87 mln 

1 € 14,82 mln € 40,00 mln 269,92% € 0,08 mln € 5,79 mln € 0,30 mln € 11,75 mln € 0,74 mln 

1,25 € 14,10 mln € 33,58 mln 238,20% € 0,07 mln € 4,78 mln € 0,26 mln € 11,66 mln € 0,63 mln 

1,5 € 13,11 mln € 28,25 mln 215,54% € 0,07 mln € 3,95 mln € 0,22 mln € 11,14 mln € 0,54 mln 

Table 12: Parameter analysis – lapse vector – regular premium

8 Single equivalent scenario

The single equivalent scenario was developed to avoid double-counting of
the loss-absorbing capacity of future discretionary benefits and to detect
non-linearities39. As opposed to perform single stress tests to determine the
solvency capital requirement for every risk module and then using the SCR-
formulas, only one stress scenario is performed but with all stresses at once

39See CEIOPS (2009b) for general description and CEIOPS (2008b) for implementation
in the standard formula.
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and therefore with reduced shocks. The calibration of the shocks should be
performed on the BSCR, therefore the derivation starts with the standard
formula for basic solvency capital requirement:

BSCR =

√∑
i,j

ρi,jSCRiSCRj.

Since the stresses in the single equivalent scenario happen simultaneously,
all correlation factors are changed to ρi,j = 1, ∀i, j40. The change of the
correlation factors increases the level of significance. To ensure a constant
level of significance, a change of correlation factors must be accompanied
by an adjustment to the stress scenarios. Furthermore, linearity is assumed
throughout the entire model, therefore, the solvency capital requirement for
every sub-module can be adjusted by multiplying with a diversification reduc-
tion factor, which is also applied to the stress scenarios. Using the adjusted
SCRi and replacing the correlation factors, the BSCR can be expressed as

BSCR =

√√√√(∑
i

drfi SCRi

)2

=

√(
SCRSES

int + SCRSES
eq + SCRSES

mort + SCRSES
lapse + SCRSES

exp

)2

= SCRSES
int + SCRSES

eq + SCRSES
mort + SCRSES

lapse + SCRSES
exp

= BSCRSES

= Π− Π|SES (without profit sharing)

where SCRSES
i denotes the solvency capital requirement of the sub-module

i resulting from an adjusted shock41. In QIS4, most shocks are expressed
with factors to the relevant rates (e.g. mortality rates, lapse rates), reduced
shocks as used in the single equivalent scenario are created with diversifi-
cation reduction factors. The diversification reduction factors that adjust
the shock rates are derived through the following approach: The diversified
solvency capital requirement is allocated to every sub-module with the co-
variance principle42. Then, the diversification reduction factors that adjust
the stress scenarios are defined as the proportion of the allocated diversified
solvency capital requirement to the stand-alone solvency capital requirement.

40The single equivalent scenario method requires positive definite initial correlation ma-
trices (see CEIOPS (2009a) for further information).

41SCRSES
i = drfi SCRi holds only with a linear model.

42See Albrecht & Koryciorz (2004).
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Let CSCR, Cmkt and Clife denote the correlation matrices of the overall SCR,
the market risk and the underwriting risk modules. Let

U =

(
SCRmkt

SCRlife

)
, V =

(
SCRint

SCReq

)
, W =

SCRmort

SCRlapse

SCRexp

 ,

then the 1st step diversification reduction factors f are defined by:(
fmkt
flife

)
=

1

BSCR
CSCRU,(

fint
feq

)
=

1

SCRmkt

CmktV,fmortflapse
fexp

 =
1

SCRlife

ClifeW.

The 2nd step diversification reduction factors drf are obtained by multiply-
ing the risk module 1st step diversification reduction factors with the overall
1st step diversification reduction factors, e.g. drfmort = fmortflife (the re-
duced mortality shock would be 10% · drfmort).

Now, the reduced shocks can be used to calculate the net solvency cap-
ital requirement via the single equivalent scenario. A significant difference
between the nSCR and the nSCRSES suggests a significant double counting
of loss-absorbing capacity of future discretionary benefits.

The existence of non-linearities leads to significant difference between the
BSCR and the BSCRSES. Therefore, the single equivalent scenario can also
be used to detect non-linearities.

Table 13 shows the BSCR and the SCR obtained by the standard for-
mula and the percental deviation of the BSCR and the SCR obtained by
the single equivalent scenario method. There is no indication for double
counting of loss-absorbing capacity of future discretionary benefits since the
deviation is almost identical for the BSCR and the SCR. The deviation
does not change with different bonus participation rates43. The reason for
the difference of the solvency capital requirements is non-linearity44. The

43Tested with higher and lower bonus participation rates and also without minimum
participation rates.

44As shown in chapter 5, figure 12.
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diversification reduction factors are presented in table 15, the composition
of the PVFP is shown in table 1645. Nevertheless, requiring less computa-
tional capacities than the standard formula, the single equivalent scenario
can be useful, once the diversification reduction factors are obtained. Unfor-
tunately, the adjustment of the diversification reduction factors requires the
calculation of the solvency capital requirement with the standard formula
method. Therefore, the single equivalent scenario can not be used to replace
the standard formula.

Policy type P type SCR PVFP Solvency ratio BSCR SCR SES-BSCR SES-SCR

A sin € 14,98 mln € 39,69 mln 264,99% € 28,64 mln € 14,86 mln -4,51% -4,79%

A reg € 14,82 mln € 40,00 mln 269,92% € 27,37 mln € 14,70 mln -6,41% -6,28%

Table 13: Numerical results - SES

9 Summary

The analysis reveals that market and lapse risk are in fact the main risks
associated with a German unit-linked insurance product with guaranteed
death benefits. Mortality and expense risks are negligible. The type of the
death benefits has no impact on the solvency capital requirement. On the
other hand, the premium type influences the type of market risks. The prod-
uct is linear to the risk factors for the most part. Some non-linearity has
been revealed attached to lapse risks. This matter of fact causes a lower
solvency capital requirement calculated with the single equivalent method.
There is no indication of double-counting of the loss-absorbing capacity of
future discretionary benefits so far. The single equivalent scenario method
also proves to be a tool to review main assumptions of the standard formula.
Dynamic policyholder behavior does not have a large impact on the solvency
capital requirement for this particular insurance product. Nevertheless, dy-
namic lapses have the potential to be a major risk and an analysis with other
unit-linked products and other lapse functions is left for further research.

45See Appendices for both tables.
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Appendices
policy det. lapse det. lapse

year Run 1 Run 2

1 10,00% 10,94%

2 9,00% 10,14%

3 8,00% 9,01%

4 7,00% 7,89%

5 6,00% 6,76%

6 5,00% 5,64%

7 4,00% 4,51%

8 3,00% 3,38%

9 2,00% 2,26%

10 2,00% 2,26%

11 2,00% 2,26%

12 2,00% 2,26%

13 2,00% 2,26%

14 2,00% 2,26%

15 2,00% 2,26%

16 2,00% 2,26%

17 2,00% 2,25%

18 2,00% 2,26%

19 2,00% 2,26%

20 2,00% 2,26%

21 2,00% 2,26%

22 2,00% 2,26%

23 2,00% 2,26%

24 2,00% 2,26%

25 2,00% 2,26%

26 2,00% 2,25%

27 2,00% 2,26%

28 2,00% 2,25%

29 2,00% 2,26%

30 2,00% 2,25%

Table 14: Change of deterministic lapses - dynamic lapses triggered by the
fund value - single and regular premium policy type A

Policy Type A

premium type sin

drf_eq 0,936

drf_int 0,011

drf_mort 0,042

drf_lapse 0,570

drf_exp 0,346

Policy Type A

premium type reg

drf_eq 0,008

drf_int 0,612

drf_mort 0,048

drf_lapse 0,917

drf_exp 0,508

Table 15: Diversification reduction factors - SES
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PVFP distribution – SES Policy Type A Premium Type sin

total from risk from expenses

total from lapse from kickbacks

with profit sharing

PVFP € 39,69 mln € 0,59 mln € 39,10 mln € 7,37 mln € 32,26 mln 

PVFP after combined shock € 25,55 mln € 0,57 mln € 24,97 mln € 6,27 mln € 19,32 mln 

without profit sharing

PVFP € 78,02 mln € 2,39 mln € 75,63 mln € 14,61 mln € 62,08 mln 

PVFP after combined shock € 50,67 mln € 2,37 mln € 48,30 mln € 12,41 mln € 37,11 mln 

PVFP distribution – SES Policy Type A Premium Type reg

total from risk from expenses

total from lapse from kickbacks

with profit sharing

PVFP € 40,00 mln € 1,11 mln € 38,90 mln € 0,37 mln € 8,48 mln 

PVFP after combined shock € 26,23 mln € 0,74 mln € 25,49 mln € 0,45 mln € 5,56 mln 

without profit sharing

PVFP € 74,57 mln € 4,68 mln € 69,89 mln € 0,72 mln € 15,26 mln 

PVFP after combined shock € 48,96 mln € 3,08 mln € 45,88 mln € 0,88 mln € 10,01 mln 

Table 16: Composition of the PVFP – SES
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