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FAST SOLVERS WITH BLOCK-DIAGONAL PRECONDITIONERS FOR

LINEAR FEM-BEM COUPLING

STEFAN A. FUNKEN AND ERNST P. STEPHAN

Abstract. The purpose of this paper is to present optimal preconditioned iterative methods to
solve indefinite linear systems of equations arising from symmetric coupling of finite elements and
boundary elements [14]. This is a block-diagonal preconditioner together with a conjugate resid-
ual method (PCR) and a preconditioned inner-outer iteration (PIO). We prove the efficiency of
these methods by showing that the number of iterations to preserve a given accuracy is bounded
independently of the number of unknowns. Numerical examples underline the efficiency of these
methods.

1. Introduction

This paper deals with the problem of efficiently solving systems of linear equations Axxx = bbb where
A has a 2×2 block structure such that the diagonal matrices are positive semidefinite and negative
definite. Particularly, we consider matrices arising from the symmetric coupling of finite element
method (FEM) and boundary element method (BEM) when dealing with elliptic transmission
problems.

In the case of an indefinite and symmetric FEM-BEM coupling matrix, we may write

(1.1) A :=

(
A+H B>

B −C

)

where A,H ∈ R
m×m are both positive semidefinite (A,H ≥ 0) and C ∈ R

n×n is positive definite
(C > 0). Let a block-diagonal preconditioner

(1.2) P :=

(
PA 0
0 PC

)

with symmetric submatrices PA and PC be given, which are spectrally equivalent to the Schur
complement A + H + B>C−1B and C. This idea of using matrices as preconditioners which are
spectrally equivalent to diagonal submatrices of A in the context of solvers for linear FEM-BEM
equations was also used in [23, 24, 27, 32]. In the latter works, the matrix A is substructured into
a 3× 3 system. The theoretical and numerical results [32] indicate, that the convergence rate of a
preconditioned conjugate residual method depends on the discretization. We show in this paper,
that the block-diagonal preconditioned conjugate residual method (PCR) which we use, leads to
convergence rates, which are independent of the mesh size h. The used theoretical tool gives also
results for the case, such that the preconditioner P is a 2× 2 block diagonal matrix. Bramble and
Pasciak [7] introduced for problems like (1.1) a special inner product which then gives a symmetric
and positive definite system. But the system is based on the assumption that there exists a matrix
PC and positive constants α0, α1 such that α0C ≤ PC ≤ α1C where α1 < 1 is desired. This can
always be satisfied by scaling but it affects the rate of convergence of the applied iteration scheme
e.g. conjugate gradient method. There will be no parameter to choose in the here presented block
diagonal preconditioner resulting in an optimal rate of convergence.

Sylvester’s law of inertia gives together with the following congruent transform of A

(1.3) A =

(
I −B>C−1

0 I

) (
A+H +B>C−1B 0

0 −C

)(
I 0

−C−1B I

)
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shows that the matrix A has m positive and n negative eigenvalues, where I denotes a generic
identity matrix. In Section 2 we give bounds of intervals which contain the spectrum of A in a
general setting, i.e., Λ(A) ⊂ [−a,−b] ∪ [c, d] (a, b, c, d > 0). In the subsequent section we introduce
the interface model problem and rewrite it with boundary integral operators into an equivalent
weak formulation. In Section 4 we introduce discrete basis functions and discretize the integral
operators appearing in the symmetric coupling problem. In the following Section 5 we deal firstly
with the fact that the convergence rate of the PCR is bounded by a term depending on a, b, c, d.
Secondly, we present a block-diagonal preconditioner for which we prove the existence of constants
θ, Θ, and ∆ independently of the mesh size h. Using these constants Theorem 2 gives some h
independent bounds of â, b̂, ĉ, d̂ for the preconditioned Matrix A := P−1/2AP−1/2. Hence, we
get an upper bound for the convergence rate of the block-diagonal preconditioned PCR-algorithm,
which is independent of the discretization. In Section 7 we analyse the inner-outer iteration [3],
applied to the FEM-BEM coupling matrix. First, we present a convergence analysis of the inner-
outer iteration for a general saddlepoint problem and apply finally this procedure to the FEM-BEM
problem that we want to solve. Here, we also get a convergence rate, which is independent of the
discretization (Theorem 4).

Numerical experiments in Sections 5 and 7 will give approximations for the constants θ, Θ, and
∆ and underline that they are independent of the mesh size h. They also show optimal convergence
for the preconditioned PCR method and the preconditioned inner-outer iteration, in the sense, that
the number of iterations to reach a given exactness is bounded from above.

2. Block-Diagonal Preconditioner in a general setting

In the following we will use bold letters xxx,yyy, . . . for column vectors and R
k×k
sym will denote real-

valued symmetric k× k-matrices. The next theorem provides a basic conditioning estimate for the
operator P−1/2AP−1/2.

Theorem 1. Let H ∈ R
m×m
sym be a positive semidefinite matrix, C ∈ R

n×n
sym be positive definite, and

B ∈ Rn×m. Further, let A ∈ R
m×m
sym s.t. A + H + B>C−1B is positive definite, and T ∈ R

m×m
sym

s.t. A + T is positive definite. Let the positive constants ∆, Θ, θ be given such that the following
inequalities hold for all xxx ∈ R

m \ {0}

(2.1)
xxx>(A+H)xxx

xxx>(A+ T )xxx
≤ ∆ ,

xxx>B>C−1Bxxx

xxx>(A+ T )xxx
≤ Θ2 ,

and

(2.2) θ2 ≤
xxx>(A+H +B>C−1B)xxx

xxx>(A+ T )xxx
.

We define

A :=

(
A+H B>

B −C

)
and P :=

(
PA 0
0 PC

)

where PA ∈ R
m×m
sym and PC ∈ R

n×n
sym are positive definite matrices. The eigenvalues of P−1

A (A+ T )
are denoted by

0 < η1 ≤ η2 ≤ . . . ≤ ηm

and eigenvalues of P−1
C C by

0 < λ1 ≤ λ2 ≤ . . . ≤ λn .

Then, the eigenvalues µ−n ≤ . . . ≤ µm of P−1/2AP−1/2 lie in the union of intervals
[
−

1

2

(
λn +

√
λ2
n + 4ηmλnΘ2

)
,−λ1

]

∪

[
1

2

(
−λ1 +

√
λ2

1 + 4η1λ1θ2

)
,
1

2

(
−(λ1 −∆ηm) +

√
(λ1 + ∆ηm)2 + 4ηmλnΘ2

)]
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Proof. The proof uses techniques similar to that used in [30] and is given here for completeness.
Here, additional matrices H and T occur and constants ∆, θ and Θ are defined in differently.

First, we derive an upper bound for the singular values of P
−1/2
C BP

−1/2
A , continue with estimates for

the negative eigenvalues of P−1/2AP−1/2, and conclude with bounds for the positive eigenvalues.
We define matrix A and its submatrices by

P−
1

2AP−
1

2 =

(
P
− 1

2

A (A+H)P
− 1

2

A P
− 1

2

A B>P
− 1

2

C

P
− 1

2

C BP
− 1

2

A −P
− 1

2

C CP
− 1

2

C

)
=

(
A+H B

>

B −C

)
= A

and order the singular values of B as 0 ≤ σ1 ≤ σ2 . . . ≤ σn . First we give an upper bound for the
singular values of B. For all xxx ∈ R

m we get with λn, ηm, and Θ defined by (2.1)

xxx>B
>
Bxxx = xxx>P

− 1

2

A B>P−1
C BP

− 1

2

A xxx ≤ λn xxx
>P

− 1

2

A B>C−1BP
− 1

2

A xxx

≤ λnΘ
2 xxx>P

− 1

2

A (A+ T )P
− 1

2

A xxx ≤ λnηmΘ2 xxx>xxx .

This gives the upper bound

(2.3) σn ≤ Θ
√
λnηm .

Let µ be an eigenvalue of A. Then, there is a vector (xxx,yyy)> ∈ R
m+n \ {0} with

(A+H)xxx+B
>
yyy = µxxx ,(2.4)

Bxxx− C yyy = µyyy ,(2.5)

which follows from the following consideration. If µ > 0, then xxx 6= 0, since otherwise (2.5) implies
µ = 0, as C is positive definite. If µ < 0, then yyy 6= 0, since otherwise (2.4) implies xxx = 0, as A+H
is positive semidefinite.
For µ < 0, I−µ−1(A+H) is invertible. We take the scalar product of (2.5) with µyyy and substitute

xxx from (2.4), i.e., xxx = µ−1(I − 1
µ(A+H))−1B

>
yyy. This gives

µ2 yyy>yyy = yyy>B
(
I − µ−1(A+H)

)−1
B
>
yyy − µyyy>C yyy ≤ yyy>B B

>
yyy − µyyy>C yyy ,

since all eigenvalues of
(
I − 1

µ(A+H)
)−1

are less or equal than 1 for µ < 0. We obtain

0 ≥ µ2yyy>yyy + µyyy>Cyyy − yyy>BB
>
yyy

≥ µ2yyy>yyy + µλn yyy
>yyy − σ2

n yyy
>yyy =

{
(µ+ λn/2)

2 − (λ2
n + 4σ2

n)/4
}
yyy>yyy .

Hence, we have

−
1

2

(
λn +

√
λ2
n + 4σ2

n

)
≤ µ ≤ −

1

2

(
λn −

√
λ2
n + 4σ2

n

)
.

Together with (2.3) we get a lower bound for negative eigenvalues of P−1A,

µ−n ≥ −
1

2

(
λn +

√
λ2
n + 4σ2

n

)
≥ −

1

2

(
λn +

√
λ2
n + 4λnηmΘ2

)
.

Let µ < 0. Taking the scalar product of (2.4) with xxx and the scalar product of (2.5) with yyy and
subtracting gives

xxx>(A+H)xxx+ yyy>Cyyy = µxxx>xxx− µyyy>yyy ≥ λ1 yyy
>yyy .

Since µ was assumed to be negative, as mentioned above yyy>yyy is positive and we deduce from the
last inequality an upper bound for the negative eigenvalues

0 ≥ µxxx>xxx ≥ (λ1 + µ)yyy>yyy ⇒ µ−1 ≤ −λ1 .

Next we prove a lower bound for the positive eigenvalues of A. For µ > 0, C + µI is invertible.
Substituting yyy from (2.5), i.e., yyy = (C + µI)−1Bxxx, into the scalar product of (2.4) and xxx, gives

µxxx>xxx = xxx>(A+H)xxx+ xxx>B
>
(C + µI)−1Bxxx

= xxx>(A+H)xxx+ xxx>BC
− 1

2 (I + µC
−1

)−1C
− 1

2B
>
xxx .
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Since for the eigenvalues of (I + µC
−1

)−1 there holds

0 <

(
1 +

µ

λ1

)−1

≤

(
1 +

µ

λ2

)−1

· · · ≤

(
1 +

µ

λn

)−1

≤ 1

we have

µxxx>xxx ≥ xxx>(A+H)xxx+ (1 + µ/λ1)
−1xxx>B

>
C
−1
Bxxx

≥ (1 + µ/λ1)
−1
(
xxx>(A+H)xxx+ xxx>B

>
C
−1
Bxxx
)
.

Rewriting this inequality in terms of the blocks of the original unpreconditioned matrix A gives

(1 + µ/λ1)
−1xxx>P

− 1

2

A

(
A+H +B>C−1B

)
P
− 1

2

A xxx ≤ µxxx>xxx .

We employ the definition (2.2) of θ to obtain

θ2(1 + µ/λ1)
−1xxx>P

− 1

2

A (A+ T )P
− 1

2

A xxx ≤ µxxx>xxx .

This gives with the definition of η1

η1θ
2(1 + µ/λ1)

−1xxx>xxx ≤ µxxx>xxx .

We assumed µ > 0. Hence, we have xxx 6= 0 and obtain

(2.6) 0 ≤ µ2 + λ1µ− λ1η1θ
2 =

(
µ+

λ1

2

)2

−
λ2

1 + 4λ1η1θ
2

4

which yields µ ≥ 1
2(−λ1+

√
λ2

1 + 4λ1η1θ2). Therefore, the result for the lower bound of the positive
eigenvalues is proven.

We take now the scalar product of xxx and (2.4), substitute yyy from (2.5), and use ∆ defined by
(2.1), to deduce

µxxx>xxx = xxx>(A+H)xxx+ xxx>B
> (
C + µI

)−1
Bxxx ≤ ∆ηm xxx>xxx+ xxx>B

>
(C + µI)−1Bxxx

≤ ∆ηm xxx>xxx+ (λ1 + µ)−1xxx>B
>
Bxxx ≤ (∆ηm + (λ1 + µ)−1σ2

n) xxx
>xxx

from which we obtain

0 ≥ µ2 + (λ1 −∆ηm)µ− λ1∆ηm − σ2
n =

(
µ+

λ1 −∆ηm
2

)2

−
(λ1 + ∆ηm)2 + 4σ2

n

4

for xxx 6= 0 in this case. From inequality (2.3) with considering different cases we obtain an upper
bound for the positive eigenvalues. �

3. Model problem

In this section we present the interface problem and we rewrite it equivalently, using boundary
integral operators. We discretize the resulting system by FEM/BEM coupling, which leads to linear
systems that will be solved by several efficient methods as described below.

Let Ω be a bounded Lipschitz-domain and Ωc = R
2\Ω be its complement. The partial differential

equation to be considered in Ω will involve D = (dij)i,j=1,2. Let the coefficients dij = dji ∈ L
∞(Ω)

be uniformly bounded in Ω, i.e.,

(3.1) ∃ d0 > 0 :
2∑

i,j=1

dij(xxx) ξiξj ≤ d0

2∑

i=1

ξ2i (xxx ∈ R
2 , ξ1, ξ2 ∈ R)

and positive definite, i.e.,

(3.2) ∃ d1 > 0 :
2∑

i,j=1

dij(xxx) ξiξj ≥ d1

2∑

i=1

ξ2i (xxx ∈ R
2 , ξ1, ξ2 ∈ R) .

We consider the following problem involving the prescribed jumps u0, t0 across the interface Γ :=
∂Ω:
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Interface Poblem: Given f ∈ H−1(Ω), u0 ∈ H1/2(Γ) and t0 ∈ H−1/2(Γ). Find u1 ∈ H1(Ω),
u2 ∈ H

1
loc(Ωc), such that

div (D · grad u1) + f = 0 in Ω ,(3.3)

div (grad u2) = 0 in Ωc, and(3.4)

u1 = u2 + u0, n · (D · grad u1) =
∂u2

∂n
+ t0 on Γ ,(3.5)

where n is the normal on Γ pointing from Ω into Ωc and the regularity condition on u2 at infinity,

(3.6) u2(x) = a+ b log |x|+ o(1) for |x| → ∞ ,

with a, b ∈ R.

Let Hs(Ω) denote the usual Sobolev spaces [26] with the trace spaces H s−1/2(Γ) (s ∈ R) for a
bounded Lipschitz domain Ω with boundary Γ. Let ‖ · ‖Hk(ω) and | · |Hk(ω) denote the norm and

semi-norm in Hk(ω) for ω ⊆ Ω and an integer k. Recall that (·, ·) denotes the L2(Ω)-scalar product
while 〈·, ·〉 denotes duality between Hs(Γ) and H−s(Γ) (defined by extending the scalar product in

L2(Γ)). Given v ∈ H1/2(Γ) and φ ∈ H−1/2(Γ), the boundary integral operators which we will use
in the following are defined, for z ∈ Γ, by

(V φ)(z) := −
1

π

∫

Γ
φ(ζ) log |z − ζ| dsζ ,

(Kv)(z) := −
1

π

∫

Γ
v(ζ)

∂

∂nζ
log |z − ζ| dsζ ,

(K∗φ)(z) := −
1

π

∫

Γ
φ(ζ)

∂

∂nz
log |z − ζ| dsζ ,

(Wv)(z) :=
1

π

∂

∂nz

∫

Γ
v(ζ)

∂

∂nζ
log |z − ζ| dsζ .

The linear and boundary integral operators are continuous when mapping between the following
Sobolev–spaces

V : Hs−1/2(Γ) → Hs+1/2(Γ), K : Hs+1/2(Γ) → Hs+1/2(Γ),

K∗ : Hs−1/2(Γ) → Hs−1/2(Γ), W : Hs+1/2(Γ) → Hs−1/2(Γ),

where s ∈ [−1/2, 1/2] [13]. The single layer potential V and the hyper singular operator W are
symmetric, the double layer potential K has the dual K∗. Both, V and W are strongly elliptic in
the sense that they satisfy a Gaaarding inequality (in the above spaces with s = 0) [13].

There are various of formulae which characterise the Cauchy data (u2, ∂u2/∂n)|Γ of a function
u2 with (3.4), (3.6) and we quote only one from the literature.

Lemma 1 ([15]). Let u2 ∈ H1
loc(Ωc) satisfy (3.4) and (3.6), then (ξ, φ) := (u2, ∂u2/∂n)|Γ ∈

H1/2(Γ)×H−1/2(Γ) satisfies

(3.7) 2

(
ξ
φ

)
=

(
I +K −V
−W I −K∗

)(
ξ
φ

)
+

(
2a
0

)
.

Conversely, for each (ξ, φ) ∈ H1/2(Γ)×H−1/2(Γ) there exists a function u2 ∈ H
1
loc(Ωc) with (3.4),

(3.6) if and only if (3.7) holds. The function u2 is given by the representation formula, for x ∈ Ωc,

(3.8) u2(x) =
1

2π

∫

Γ
φ(z) log |x− z| dsz −

1

2π

∫

Γ
ξ(z)

∂

∂nz
log |x− z| dsz + a .

Notice that W 1 = 0 = (K + 1) 1 (proved by (3.7) for (ξ, φ) = (1, 0) and a = 1).
The interface problem (3.3)-(3.6) is equivalent to the following weak formulation which is known

as symmetric coupling method [13].

Weak Formulation: Find (uuu,φφφ) ∈ H1(Ω)×H−1/2(Γ), such that

(3.9) B
(
( uφ), (

v
ψ)
)

= L( vψ)
(
( vψ) ∈ H1(Ω)×H−1/2(Γ)

)
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with

B
(
( uφ) , ( vψ)

)
= 2 ·

∫

Ω
(∇u)> ·D · ∇v dx+ 〈Wu+ (K∗ − 1)φ, v〉+ 〈ψ, (K − 1)u− V φ〉

and

L( vψ) = 2 ·

∫

Ω
f v dx+ 〈Wu0 + (K∗ + 1)t0, v〉+ 〈ψ, (K − 1)u0 − V t0〉 .

The problem (3.3)-(3.6) has a unique solution and so the equivalent problem (3.9) has a unique
solution as well.

Notice that the variable u2 is determined by (3.9) up to the additive constant a defined by (3.6),
e.g. u1 = u+ a, u2|Γ = u|Γ − u0 + a with (u1, u2) satisfying (3.3)-(3.6) and (u, φ) satisfying (3.9).

4. The Discrete Problem

In this section we consider the discretization of problem (3.9). Therefore we define finite dimen-

sional vector spaces Hh ⊂ H1(Ω), H
−1/2
h ⊂ H−1/2(Γ). Let Hh be the space of continuous piecewise

linear functions of a quasi-uniform and regular triangulation of Ω and H
−1/2
h be the space of piece-

wise constant functions on the discretization of the boundary Γ induced by Hh. Let ηi, i = 1, . . . ,m

be basis functions of Hh, i.e., spani=1,m{ηi} = Hh and ti, i = 1, . . . , n be basis functions of H
−1/2
h ,

i.e., spani=1,n{ti} = H
−1/2
h . Furthermore, let uuu = (u1, . . . , um)> ∈ R

m, φφφ = (φ1, . . . , φn)
> ∈ R

n be

the vectors with u =
∑m

i=1 ui ηi ∈ Hh and φ =
∑n

i=1 φi ti ∈ H
−1/2
h . We define the discretization of

the operators W , K, V , etc.

Ah :=
{
2
∫
Ω(∇ηi)

>D∇ηj dΩ
}j=1,m

i=1,m
, Wh := {〈W ηi|Γ, ηj |Γ〉}

j=1,m
i=1,m ,

Kh := {〈ti,K ηj |Γ〉}
j=1,m
i=1,n , Vh := {〈V ti, tj〉}

j=1,n
i=1,n

Ih := {〈ti, ηj |Γ〉}
j=1,m
i=1,n .

Hence, we have (with ≈ denoting equivalence of norms)

2
∫
Ω(∇u)>D∇v dΩ = uuu>Ahvvv , 2‖D

1

2 ∇u ‖2
L2(Ω) = uuu>Ahuuu (u, v ∈ Hh) ,

〈W u, v〉 = uuu>Whvvv , ‖u ‖2

H
1
2 (Γ)\R

≈ uuu>Whuuu (u, v ∈ Hh) ,

〈φ, V ψ〉 = φφφ>Vhψψψ , ‖φ ‖2

H−
1
2 (Γ)

≈ φφφ>Vhφφφ (φ, ψ ∈ H
− 1

2

h ) ,

〈φ, (K − 1)u〉 = φφφ>(Kh − Ih)uuu (u ∈ Hh , φ ∈ H
− 1

2

h ) .

5. Block–Diagonal Preconditioner

In the following we consider linear systems of equations with symmetric matrices of the form

(5.1) Ah =

(
Ah +Wh K>

h − I>h
Kh − Ih −Vh

)
.

Given the preconditioner

(5.2) Ph =

(
PAh

0
0 PVh

)
,

where PAh
and PVh

are both symmetric and positive definite. Consequential, Ph is a symmetric
and positive definite matrix, too. In [12, Thm. 3.2] it was proven that if the eigenvalues µi of a

preconditioned matrix P
−1/2
h AhP

−1/2
h lie in intervals of the form

(5.3) [−â,−b̂] ∪ [ĉ, d̂]
6



with â− b̂ = d̂− ĉ > 0, where â, b̂, ĉ and d̂ are positive constants, then the PCR convergence rate
is

(5.4)

(
‖P

−1/2
h (bbb−Ahxxxk) ‖2

‖P
−1/2
h (bbb−Ahxxx0) ‖2

)2

≤ 2


1−

√
b̂ĉ/âd̂

1 +

√
b̂ĉ/âd̂



k

where ‖ · ‖2 denotes the Euclidean norm and xxxk is the kth iterate.
In the following we will use Theorem 1 to estimate the extreme eigenvalues of the preconditioned

matrix Ah

(5.5) Ah := P
−1/2
h AhP

−1/2
h =

(
P
−1/2
Ah

(Ah +Wh)P
−1/2
Ah

P
−1/2
Ah

(Kh − Ih)P
−1/2
Vh

P
−1/2
Vh

(K>
h − I>h )P

−1/2
Ah

−P
−1/2
Vh

VhP
−1/2
Vh

)
,

in order to estimate the convergence of the PCR-method.
We obtain from Sylvester’s law of inertia together with the congruent transform (1.3) of Ah that

the matrix Ah has m positive and n negative eigenvalues. We get the same result for Ah, if we
apply this law again to the transform (5.5). We denote the eigenvalues of Ah by

µ−n ≤ µ−n+1 ≤ . . . ≤ µ−1 < 0 < µ1 ≤ µ2 ≤ . . . ≤ µm .

We define bounds of the spectrum of P
−1/2
Vh

VhP
−1/2
Vh

which may depend on the mesh size by

(5.6) 0 < λmin(h) ≤
xxx>Vhxxx

xxx>PVh
xxx
≤ λmax(h) (xxx ∈ R

n \ {0}) .

Since Ah is positive semi-definite we add a symmetric matrix Th, s.t. Ah + Th is positive definite.
In our model problem we can choose for example Th = Wh + γId>hD

−1
h Idh (γ > 0) where Dh :=

{ti, tj}i,j=1,...,n denotes a diagonal matrix, or let Th = Mh := {
∫
Ω ηiηj dΩ}i,j=m be the mass matrix.

Since PAh
and Ah are both symmetric and positive definite, we can define constants depending on

the mesh size h = h(n) to bound the extreme eigenvalues

(5.7) 0 < ηmin(h) ≤
xxx>(Ah + Th)xxx

xxx> PAh
xxx

≤ ηmax(h) (xxx ∈ R
m \ {0}) .

For our assertion in the following Theorem 2 we have to show, that there exist some constants θ,
Θ, and ∆, which are independent of the mesh size h, satisfying for all xxx ∈ R

m \ {0}

(5.8)
xxx>(Ah +Wh)xxx

xxx>(Ah + Th)xxx
≤ ∆ ,

xxx>{(K>
h − I>h )V −1

h (Kh − Ih)}xxx

xxx>(Ah + Th)xxx
≤ Θ2 , and

(5.9) θ2 ≤
xxx>{Ah +Wh + (K>

h −I
>
h )V −1

h (Kh−Ih)}xxx

xxx>(Ah + Th)xxx

In the following we motivate and prove the existence of these constants for both before mentioned
choices of Th, i.e. Th = Mh and Th = Wh + γId>hD

−1
h Idh.

5.1. Existence of θ, Θ, and ∆ for choice Th = Mh.
In the sequel ci (i = 1, 2, . . .) will denote positive constants which are independent of mesh size h.

First we show the existence a positive constant ∆ satisfying (5.8) independent of the mesh size h.
Such an estimate can be obtained directly by estimating the numerator and denominator of (5.8)
as follows: For all u ∈ Hh there holds with d0 from (3.1)

uuu>Ahuuu =
1

2
‖D1/2∇u ‖2

L2(Ω) ≤
d0

2
‖D1/2∇u ‖2

L2(Ω) and uuu>Whuuu ≈ ‖u ‖2
H1/2(Γ)/R

This yields with a trace mapping that there exists a positive constant c1 independent of mesh size
h s.t.

uuu>(Ah +Wh)uuu ≤ c1‖u ‖
2
H1(Ω) .
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Furthermore with the choice Th = Mh there exists a positive constant c2 independent of h satisfying

(5.10) uuu>(Ah +Mh)uuu ≥ c2‖u ‖
2
H1(Ω) .

Altogether this shows ∆ ≤ c1/c2. Assuming that the capacity of the boundary Γ is smaller than

one, the single layer potential is positive definite on H−1/2(Γ) (see, e.g. [13, 15]). Next we employ

the facts, that V is bijective from H−1/2(Γ) → H1/2(Γ) under the assumption that cap(Γ) < 1

and that (K − I) is a continuous mapping from H1/2(Γ) onto itself and the trace operator from

H1(Ω) → H1/2(Γ) is continuous. Furthermore, for u ∈ Hh there holds with positive and mesh
independent constant c3, c4, and c5

(5.11) uuu>(K>
h − I>h )V −1

h (Kh − Ih)uuu ≤ c3‖ (K − 1)u ‖2

H
1
2 (Γ)

≤ c4‖u ‖
2

H
1
2 (Γ)

≤ c5‖u ‖
2
H1(Ω) .

This yields together with (5.10), that there exists a constant Θ ∈ R independent of h with

(5.12)
xxx>{(K>

h − I>h )V −1
h (Kh − Ih)}xxx

xxx>(Ah +Mh)xxx
≤ Θ2 (xxx ∈ R

n \ {0}) .

In [13] it is proven, that we can define an extension operator T , with the following properties.

Given v ∈ H1/2(Γ), then there exists a w := Tv with w = v on Γ and

(5.13) ‖w ‖H1(Ω) ≤ c6‖ v ‖
H

1
2 (Γ)

.

Now we have for all u ∈ H1(Ω), if we use the first Friedrich’s inequality and (5.13)

‖u ‖H1(Ω) ≤ ‖u− Tu|Γ ‖
2
H1(Ω) + ‖Tu|Γ ‖

2
H1(Ω) ≤ c7|u− Tu|Γ|

2
H1(Ω) + ‖Tu|Γ ‖

2
H1(Ω)(5.14)

≤ c7|u|
2
H1(Ω) + 3‖Tu|Γ ‖

2
H1(Ω) ≤ c8

(
|u|2H1(Ω) + ‖u ‖2

H
1
2 (Γ)

)
,

with c8 = max{c7, 3 c
2
6}. It is known, that the operator W + (K> − 1)V −1(K − 1) : H1/2(Γ) →

H−1/2(Γ) is elliptic on H1/2(Γ) [11]. Hence we have together with (5.14) for all u ∈ Hh the
inequality

(5.15) ‖u ‖2
H1(Ω) ≤ c8

(
|u|2H1(Ω) + ‖u ‖2

H
1
2 (Γ)

)
≤ c9uuu

>{Ah +Wh + (K>
h −I

>
h )V −1

h (Kh−Ih)}uuu .

From the equivalence of ‖u ‖2
H1(Ω) and uuu>(Ah + Mh)uuu for u ∈ Hh we conclude the existence of

θ ∈ R with

(5.16) θ2 ≤
xxx>{Ah +Wh + (K>

h − 1)V −1
h (Kh − 1)}xxx

xxx>(Ah +Mh)xxx
(xxx ∈ R

n \ {0})

which is independent of h.

5.2. Alternative choice Th = Wh + γId>hD
−1
h Idh. Let γ > 0 and Dh = {< ti, tj >}i,j=1,...,n

denote a diagonal matrix. Before we show the existence of constants ∆, θ, and Θ defined by
(2.1) and (2.2) for Th = Wh + γId>hD

−1
h Idh, we make a few preparations. Let Γi ⊂ Γ denote the

support of ti (i = 1, . . . , n), hi its diameter, and hmax := maxi=1,...,n{hi}. For the integral mean
um =< u, 1 > /|Γ| of u ∈ L2(Γ) we get by straight forward calculation

(5.17) ‖u‖2
L2(Γ) = ‖u− um‖

2
L2(Γ)+ < u, 1 >2 /|Γ| .

Using Hölder’s-inequality and the definitions of Ih and Dh we deduce

(5.18) < u, 1 >2=

(
n∑

i=1

h
1/2
i h

−1/2
i

∫

Γi

u dx

)2

≤ |Γ|
n∑

i=1

h−1
i

(∫

Γi

u dx

)2

≤ |Γ|uuu>I>h D
−1
h Ihuuu .

By using the two last results (5.17) and (5.18) we get for uh ∈ Hh|Γ ⊂ H1/2(Γ) and using a standard

approximation property ‖u− um‖
2
L2(Γ) ≤ c9 hmax‖u‖

2
H1/2(Γ)\R

≤ c10 h
1/2
maxuuu>Whuuu

(5.19) ‖u‖2
L2(Γ) = ‖u− um‖

2
L2(Γ)+ < u, 1>2 /|Γ| ≤ c10 hmaxuuu

>Whuuu+ uuu>I>h D
−1
h Ihuuu .
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Using this result and the compactness property of K as in (5.11) we obtain

uuu>(K>
h − I)V −1

h (Kh − I)uuu ≤ c11‖(K − I)u‖2
H1/2(Γ)

≤ c12‖u‖
2
H1/2(Γ)

(5.20)

≤ c13‖u‖
2
H1/2(Γ)\R

+ ‖u‖2
L2(Γ) ≤ c14(1 + c10 hmax)uuu

>Whuuu+ c13uuu
>I>h D

−1
h Ihuuu .

That proves the existence of a positive constant ∆ < max{c13, c14(1 + c10|Γ|)} which is bounded
independent of h. Since γI>h D

−1
h Ih is positive semidefinite, we obtain

xxx>(Ah +Wh)xxx ≤ xxx>(Ah +Wh + γI>h D
−1
h Ih)xxx (xxx ∈ R

m) .

Hence, we can choose ∆ = 1 in (5.8) independently of the mesh size h. Taking into account that
I>h D

−1
h Ih can be rewritten as sum of local quantities as in (5.18), we get by using Hölder’s inequality

uuu>(I>h D
−1
h Ih)uuu =

n∑

i=1

h−1
i

(∫

Γi

u dx

)2

≤
n∑

i=1

∫

Γi

u2 dx = uuu>Mhuuu

Hence, we obtain for u ∈ Hh

uuu>(Ah +Wh + γI>h D
−1
h Ih)uuu ≤ uuu>(Ah +Wh + γMh)uuu ≤ c15 max{1, γ}‖u‖H1(Ω).

Together with (5.15) this proves, that there exists a mesh size independent constant θ2 ≥
c9 c15 max{1, γ} > 0.

What will be a good choice of γ? Let 111 denote a generic 1-vector, i.e. 111 = (1, . . . , 1)>. Since
kern{Ah +Wh} = {111}, we expect

γ ≈
111>(K>

h − Ih)V
−1
h (Kh − Ih)111

111>I>h D
−1
h Ih111

to be a good choice. Note, from the representation formula (3.7) we get K1 = −1 and numerical
observations show (111>IhV

−1
h Ih111)/(111

>IhD
−1
h Ih111) ≈ (111>Dh111)/(111

>Vh111) = |Γ|/(111>Vh111) (see Section 7
below for numerical experiments). Therefore, we get

111>(K>
h − Ih)V

−1
h (Kh − Ih)111 = 4 · 111>IhV

−1
h Ih111 ≈

4|Γ|

111>Vh111
111>IhD

−1
h Ih111

Hence, we end up with

(5.21) γ =
4|Γ|

111>Vh111
=

− 4π |Γ|∫
Γ

∫
Γ log |x− y| dsxdsy

.

Note, that 111>Vh111 and also |Γ| are independent of the discretisation.
From Subsections 5.1 and 5.2 we deduce the following lemma.

Lemma 2. Let Th be Mh or Wh + γIhD
−1
h Ih (γ > 0). Then, there exist positive constants ∆, θ,

and Θ satisfying (5.8) and (5.9) independent of the mesh size h and the discretisation of Γ.

If ∆, θ, and Θ are independent from the mesh size h, Theorem 1 gives bounds for the spectrum

of P
−1/2
h AhP

−1/2
h depending only on the extreme eigenvalues of P−1

Ah
(Ah + Th) (5.7) and P−1

Vh
Vh

(5.6). Using (5.4), also the rate of convergence of the PCR-method can be bounded by the extreme
eigenvalues (5.6) and (5.7). With Lemma 2, we get from Theorem 1 the following result.

Theorem 2. Let PAh
, PVh

be spectral equivalent to Ah+Th and Vh, respectively. Then, there exist

independently of the mesh size h positive constants â, b̂, ĉ, and d̂ such that the extreme eigenvalues of

the preconditioned matrix P
−1/2
h AhP

−1/2
h lie in intervals of the form (5.3). Hence, the convergence

rate of the PCR-method applied to Ah with preconditioner Ph is bounded independently of the mesh
size h.
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Remark 1. i.) In the situation that there holds only ηmax = 1 and ηmin(h) → 0 as h → 0, and
PVh

is spectrally equivalent to Vh the eigenvalues of the preconditioned matrix lie in the union of
the intervals

[
−

1

2

(
λmax +

√
λ2

max + 4λmaxΘ2
)
,−λmin

]

∪

[
O(
√
ηmin(h)),

1

2

(
−(λmin −∆) +

√
(λmin + ∆)2 + 4λmaxΘ2

)
.

]

This leads to a asymptotic convergence rate of the PCR method

lim
k→∞

‖P
−1/2
h (bbb−Axxxk) ‖2

‖P
−1/2
h (bbb−Axxx0) ‖2

= 1−O(
√
λmin)

where we used Lebedev’s results [25].
ii.) Using the assumptions on the preconditioners as mentioned in i. If we choose PAh

as the di-
agonal of Ah we get ηmin(h) = h2. Hence O(h−1) preconditioned PCR iterates are required for
convergence.
iii. Numerical results ([17]) indicate that also the QMR, bi-CGstab, and GMRES methods [4] when

applied the diagonal preconditioned matrix P
−1/2
h AhP

−1/2
h bounded number of iterations (indepen-

dent of the meshsize h) to reduce the error to a given tolerance.

6. Multigrid algorithm for single layer potential V .

We assumed that there exists symmetric matrices PA and PC , which are spectrally equivalent
to the Schur complement A+H +B>C−1B and C. In the following numerical examples we used
multigrid algorithms. The h-independence of these methods is well known (e.g. see [6, 8, 9, 10, 22,
33]). There exists also alternative approaches as well for the finite elment part as for the boundary
element part. (See e.g. [5, 16, 19, 28, 31, 29] and the references therein.)

For completeness we present a multigrid V-cycle algorithm for single layer potential V which will
be used in the following numerical examples. Since V is an pseudo-differential operator of order
−1 the smoothing step has to be modified in comparison to standard multigrid algorithms. For the
analysis we refer to [6] where the three dimensional case is considered.

We assume that a coarse triangulation T1 of Ω is given and develop a sequence of nested tri-
angulations of Ω in the usual way. Successively finer triangulations Tk for k > 1 are defined by
subdividing each triangle into four by connecting the midpoints of the edges. Each triangulation
Tk induces a triangulation Gk of the boundary Γ in an obvious way.

We let the number of levels in the multigrid algorithm be determined by J ≥ 1 and define
Mk (k = 1, . . . , J) to be the space of functions which are piecewise constant with respect to the
triangulation Gk. Since the triangulations Tk are nested and consequently Gk, it follows that

M1 ⊂M2 ⊂ · · · ⊂ MJ .

For k = 1, . . . , J , let tki , i = 1, . . . , nk be basis functions of Mk, h
k
i = diam (supp (tki )), h

k
max =

max
i
hki , and the coarsening matrix

Pk = {pkij}
j=1,nk+1

i=1,nk
, pkij be defined by tki =

nk+1∑

j=1

pkij t
k+1
j .

The space S1
k is defined to be the space of functions which are affine between two successive

midpoints with respect to the triangulation Gk and continuous on Γ. Also, we define S2
k to be the

space of splines of order three. A plot of the B-spline basis functions φk,µi (i = 1, . . . , nk) for Sµk
(µ = 1, 2) is given in Fig. 1. Note, that the basis functions φk,µi form a decomposition of unity.

10



PSfrag replacements

xi xi+1 mi+2 mi+3

ti φk,1
i+2

φk,2
i+2

1

s

PSfrag replacements

xi xi+1

mi+2

mi+3

ti
φk,1

i+2

φk,2
i+21

s

Figure 1. B-spline basis functions φk,1i (i = 1, . . . , nk) for S1
k (left) and φk,2i for S2

k (right)

In the following we neglect the upper index to keep the notation simple. For k = 1, . . . , J we define

Lk := diag{h1, . . . , hnk
} , Dk,µ := {〈

(
1 +

d2

ds2

)
φk,µi , φk,µj 〉}i,j=1,nk

(6.1)

Mk,µ := {〈tki , φ
k,µ
j 〉}i,j=1,nk

, Vk := { 〈V tki , t
k
j 〉 }i,j=1,nk

.(6.2)

Further, let χ∗k be an upper bound of

(6.3) χk = sup
xxx∈R

nk

xxx>Vkxxx

xxx>Mk,µD
−1
k,µM

>
k,µxxx

Algorithm MgV : Matrix form of multigrid V-cyle algorithm for single layer potential
with ν pre and post smoothing steps.

Set MgV1 = V −1
1 . Assume MgVk−1 has been defined and

define MgVk yyy ∈ R
nk as follows:

i) Set xxx0 = 0 and define xxx` for ` = 1, . . . , ν by

xxx` = xxx`−1 +
1

χ∗k
M−>
k,µ Dk,µM

−1
k,µ (yyy − Vkxxx

`−1).

i) Define xxxν+1 = xxxν + P>k−1qqq where

qqq = MgVk−1 Pk−1(yyy − Vkxxx
ν) .

iii) Finally, set MgVk yyy = xxx2ν+1 where xxx` for ` = ν + 2, . . . , 2ν + 1 are defined by

xxx` = xxx`−1 +
1

χ∗k
M−>
k,µ Dk,µM

−1
k,µ(yyy − Vkxxx

`−1) .

Remark 2. i.) The smoother 1
χ∗k
M−>
k,µ Dk,µM

−1
k,µ is symmetric and hence MgV is a symmetric

operator.
ii.) Note, that Mk,µ is sparse and diagonal dominant, so an approximate inverse can be computed
by the Jacobi iteration. Numerical examples in Section 7 indicate that only a few iterations will be
needed to keep the contraction number of the multigrid method bounded. See Tab. 9 and Tab. 10
below where only 3 Jacobi iterations were used.
iii.) The following numerical examples show, that we get also very good results if we choose µ = 1
and substitute Mk,µ just by the diagonal matrix Lk.

7. Numerical Example

The following numerical experiments illustrates the sharpness of the bounds given by Theorem 2
in case of a FEM-BEM coupling problem (3.9), underlines the choices of β in Th = βMh, resp.
γ (5.21) in Th = Wh + γId>hD

−1
h Idh, the smoother in MgV , and highlights the quasi-optimal

convergence rate of the PCR-method, independent of the mesh size h and mesh-structure.
11



Figure 2. L-shaped domain of Example 1 and Z-shaped domain of Example 2.

Example 1: (L-shaped domain, uniform mesh).
Let Ω be the L-shaped domain with vertices (0, 0), (s, 0), (s, s), (−s, s), (−s,−s), (0,−s) with s =
0.25. Therefore the single layer potential operator V is positive definite. On a shape-regular mesh
with triangular elements we use piecewise linear functions in Ω and piecewise constant functions
on Γ for discretization. The coarsest triangulation consists of six have squares with edge length
h1 = 0.25 as depicted in Fig. 2 (left). The implementation is realized in Matlab in the way like
[1, 2, 18].

In Tab. 1 we give the extreme eigenvalues of the unpreconditioned matrix Ah (5.1) and the
resulting behavior of the bounds in terms of the mesh size h.

Table 1. Extreme eigenvalues of the unpreconditioned matrix Ah.

h/h1 -ve ev’s min / max +ve ev’s min / max
1/1 -0.6194194 -0.014306039 0.4035585 9.280412
1/2 -0.2813471 -0.003824051 0.1689828 13.20866
1/4 -0.1216139 -0.000998319 0.0630067 15.08379
1/8 -0.0515328 -0.000255008 0.0214023 15.73712
1/16 -0.0219900 -0.000064265 0.0067335 15.92962
1/32 -0.0096163 -0.000016083 0.0019840 15.98179

O(h) O(h2) O(h2) O(1)

As P−1
Ah

we choose a symmetric multigrid V-cycle with Gauss-Seidel smoother applied to the

matrix Ah + Th and as P−1
Vh

we take the modified multigrid V-cycle algorithm MgV as explained

in Section 6 with χ∗k = 2.5/2k (k = 1, . . . , J) and 1
χ∗L

−1
k Dk,1L

−1
k as smoother. In both cases we use

one pre and post smoothung step on each level.
By solving generalized eigenvalue problems using the QZ algorithm [20] we approximated nu-

merically the constants θ, Θ, ∆, λ1, λn, η1, and ηm. The values are given in Tab. 2 for Th = 50Mh

and in Tab. 3 for Th = Wh + γId>hD
−1
h Idh (For γ see (5.21)). All results underline for both choices

of Th the h-independence of the constants θ, Θ, ∆, λ1, λn, η1, and ηm.

Table 2. Constants θ, Θ, ∆, λ1, λn, η1 and ηm (Th = 50Mh)

η1 ηm ∆ θ2 Θ2

h/h1 λ1 λn Th = 50Mh

1/1 1.00000 1 1.00000 1 1.31705 1.04108 2.21626
1/2 0.94793 1 0.73407 1 1.44296 0.90202 2.31344
1/4 0.96172 1 0.75646 1 1.54046 0.88215 2.38436
1/8 0.96266 1 0.75627 1 1.59630 0.87648 2.42884
1/16 0.96275 1 0.75631 1 1.63252 0.87492 2.45798
1/32 0.96276 1 0.75629 1 1.65821 0.87449 2.47739

In Tab. 4, resp. 5 we give the extreme eigenvalues of the preconditioned matrix P−1
h · Ah and

in brackets its estimates by Theorem 2 using values from Tab. 2, resp. 3. The bounds for the
12



Table 3. Constants θ, Θ, ∆, η1 and ηm (Th = Wh + γId>hD
−1
h Idh)

ηmin ηmax ∆ θ2 Θ2

h/h0 Th = Wh + γId>hD
−1

h Idh

1/1 1.00000 1 1 0.84419 1.03581
1/2 0.80521 1 1 0.82932 1.05373
1/4 0.75072 1 1 0.82016 1.07151
1/8 0.71708 1 1 0.81680 1.08549
1/16 0.69343 1 1 0.81564 1.09695
1/32 0.68075 1 1 0.81526 1.11419

negative eigenvalues are very close to the exact values (relative error between estimated and exact
value < 5%).

Table 4. Extreme eigenvalues of the preconditioned matrix P−1
h · Ah (Th = Ah + 50Mh)

-ve ev’s min / max +ve ev’s min / max

h/h1 in brackets the estimated bounds by Theorem 1
1/1 -2.04598 (-2.07043) -1.00000 (-1.00000) 0.88180 (0.63625) 1.75550 (2.04490)
1/2 -2.04571 (-2.10107) -0.95193 (-0.94793) 0.79933 (0.52267) 1.74285 (2.18207)
1/4 -2.04671 (-2.12307) -0.96621 (-0.96172) 0.74581 (0.45632) 1.77405 (2.27672)
1/8 -2.04718 (-2.13671) -0.97127 (-0.96266) 0.70534 (0.42116) 1.79372 (2.33322)
1/16 -2.04754 (-2.14559) -0.97275 (-0.96275) 0.68945 (0.39916) 1.80994 (2.37003)
1/32 -2.04777 (-2.15148) -0.97286 (-0.96276) 0.67847 (0.39057) 1.82286 (2.39583)

Table 5. Extreme eigenvalues of the preconditioned matrix P−1
h · Ah (Th = Wh + γId>hD

−1
h Idh)

-ve ev’s min / max +ve ev’s min / max

h/h1 in brackets the estimated bounds by Theorem 1
1/1 -1.63094 (-1.63393) -1.00000 (-1.00000) 0.61307 (0.54603) 1.08685 (1.42681)
1/2 -1.60470 (-1.64180) -0.95174 (-0.94793) 0.58339 (0.45212) 1.09834 (1.44107)
1/4 -1.59517 (-1.64956) -0.96604 (-0.96172) 0.57321 (0.42653) 1.11860 (1.44518)
1/8 -1.59086 (-1.65563) -0.97099 (-0.96266) 0.56680 (0.41058) 1.14644 (1.44992)
1/16 -1.58904 (-1.66058) -0.97233 (-0.96275) 0.56343 (0.39967) 1.16660 (1.45391)
1/32 -1.58828 (-1.66798) -0.97242 (-0.96276) 0.56176 (0.39386) 1.18543 (1.45990)

The rate of convergence of the PCR-method can be bounded by a function of ((b̂ĉ)/(âd̂))1/2

(see (5.4)). In Fig. 3 we show the dependence of ((b̂ĉ)/(âd̂))1/2 on β in (5.4) for P−1
h · Ah and

Th = Ah + βMh and the rate of convergence of the PCR method. We get from the figure, that
β ≈ 50 minimizes the expression ((b̂ĉ)/(âd̂))1/2 for the computed meshsizes h1/h = 1, 2, 4, 8, 16.
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Figure 3. Dependence of the ’condition number’ ((b̂ĉ)/(âd̂))1/2 of P−1
h · Ah (left)

and the rate of convergence of the PCR method (right) on β.
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Example 2: (Z-shaped domain, quasi-uniform mesh).
In our next example we consider a domain with a stronger singularity at the reentrant corner and
a non equally sized mesh as depicted in Fig. 2 (right). The vertices are (0, 0), (0.5, 0), (0.15, 0.22),
(0.6, 0.2), (0, 0.4). We choose P−1

Ah
and P−1

Vh
to be the same multigrid V-cycle algorithms as in

Example 1 and use ν = 1, 3, 5 pre and post smoothing steps. For all computations we get λn =
ηm = 1. In Tab. 6 and 7 we give the results for the Z-shaped domain.

Table 6. Lower bounds λ1 and η1 of the applied multigrid methods for different
number of pre and postsmoothing steps (Th = 50Mh and Th = Wh + γId>hD

−1
h Idh)

λ1 η1 (Th = 50Mh) η1 (Th = Wh + γId>hD
−1

h Idh)

h/h1 ν = 1 ν = 3 ν = 5 ν = 1 ν = 3 ν = 5 ν = 1 ν = 3 ν = 5
1/2 0.66961 0.94160 0.98419 0.46635 0.84235 0.92829 0.54526 0.89685 0.96725
1/4 0.64043 0.93618 0.98079 0.25122 0.68272 0.84646 0.32022 0.78705 0.92465
1/8 0.63512 0.93551 0.97887 0.22201 0.61625 0.80320 0.25767 0.69394 0.86920
1/16 0.63420 0.93543 0.97796 0.21464 0.59903 0.78006 0.23071 0.63883 0.82864
1/32 0.63405 0.93542 0.97753 0.21160 0.58992 0.77093 0.21915 0.61423 0.81013

The numerical experiments indicate that the contraction number of both V-cyles improves uni-
formly as the number of smoothing steps is increased and is bounded independently from the
meshsize h. (For a prove see [10] for second order elliptic pde’s.)

Table 7. Constants ∆, θ, and Θ, (Th = 50Mh and Th = Wh + γId>hD
−1
h Idh)

Th = 50Mh Th = Wh + γId>hD
−1

h Idh

h/h1 ∆ θ2 Θ2 ∆ θ2 Θ2

1/1 1.62331 0.97108 11.22716 1 0.80743 3.32681
1/2 1.74237 0.94476 12.82658 1 0.79408 3.53328
1/4 1.81163 0.93656 14.10010 1 0.78772 3.82199
1/8 1.85523 0.93422 15.04025 1 0.78561 4.17655
1/16 1.88295 0.93359 15.73391 1 0.78496 4.63942
1/32 1.89515 0.93396 16.02164 1 0.78461 4.89112

All results underline for both choices of Th the h-independence of the constants θ, Θ, ∆, λ1, λn,
η1, and ηm.
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Figure 4. Dependence of the rate of convergence of the PCR method on γ using
Th = Wh + γId>hD

−1
h Idh (left) resp. on β using Th = βMh (right).

In Subsection 5.2 we stated the property

c19
111>Dh111

111>Vh111
≤

111>IhV
−1
h Ih111

111>IhD
−1
h Ih111

≤ c20
111>Dh111

111>Vh111
= c20|Γ|/(111

>Vh111)
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For both examples and different meshsizes h the ratio between (111>IhV
−1
h Ih111)/(111

>IhV
−1
h Ih111) and

(111>Dh111)/(111
>Vh111) is given in Tab. 8. Further numerical experiments on different domains show

c19 ≤ 0.9 and c20 ≥ 1.

Table 8. Ratio between (111>IhV
−1
h Ih111)/(111

>IhV
−1
h Ih111) and (111>Dh111)/(111

>Vh111)

111
>IhV

−1

h
Ih111

111>IhV
−1

h
Ih111

/111
>Dh111

111>Vh111

h/h1 Example 1 Example 2
1/1 0.98215 0.95306
1/2 0.97590 0.94109
1/4 0.97256 0.93609
1/8 0.97127 0.93388
1/16 0.97075 0.93288
1/32 0.97055 0.93243

Example 3: (Different smoothers in MgV ).

In our numerical example we compare our three proposed smoother in the multigrid algorithm
MgV with respect to the extreme eigenvalues λ1, λn of MgV Vh for the geometries and meshes in
Example 1 and 2. To execute the action M−1

k,1 , we use the Jacobi iteration; i.e. we replace M−1
k,1

by M̃−1
k,1 , which is the matrix representation of 3 Jacobi iterations applied to Mk,1. We computed

for all smoothers the damping parameter χk (6.3) and the resulting extreme eigenvalues λ1, λn.
Numerical experiments show, that the χk given by (6.3) is not optimal. By bisection we computed
an optimal parameter χk (given in the last row), which minimizes the contraction number of the
multigrid method MgV , i.e. maximizes λ1 while λn = 1. The resulting minimal eigenvalue λ1 is
given in brackets.

In Tab. 9 we give the results for Example 1, resp. in Tab. 10 for Example 2. For all computations
we get λn = 1.

Table 9. Constant λ1 in Example 1 for different smoother.

1

χk

L−1

k Dk,1L
−1

k
1

χk

M̃−>

k,1 Dk,1M̃
−1

k,1
1

χk

M̃−>

k,2 Dk,2M̃
−1

k,2

k = # level χk/2
k λ1 χk/2

k λ1 χk/2
k λ1

2 2.37308 0.96501 (0.96964) 1.32083 0.93219 (0.96674) 6.06185 0.79858 (0.89694)
3 2.30758 0.97893 (0.98045) 1.36793 0.92411 (0.96482) 6.33462 0.78011 (0.90203)
4 2.31010 0.98130 (0.98235) 1.38358 0.91275 (0.96688) 6.44986 0.76161 (0.89422)
5 2.30250 0.98218 (0.98332) 1.38792 0.90856 (0.96874) 6.49317 0.75410 (0.89076)
6 2.30178 0.98251 (0.98384) 1.38906 0.90719 (0.96910) 6.50737 0.75130 (0.88948)

optimal 2.10867 1.17063 4.88401

All three smoothers used with MgV provide constant bounds for the spectrum, which do not
depend on the meshsize h. All three smoothers can be used to construct an efficient multigrid
method for the single layer potential V ; however the smoothers M−>

k,µ Dk,1M
−1
k,µ require twice the

appilaction of M−1
k,µ, resp. M−>

k,µ compared with used a diagonal scaling when using L−1
k Dk,1L

−1
k .

8. Inner–Outer Iteration

In this section we discuss the convergence of an inner-outer iteration, which can be written for
a general system Ax = b as follows:
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Table 10. Constant λ1 in Example 2 for different smoother.

1

χk

L−1

k Dk,1L
−1

k
1

χk

M̃−>

k,1 Dk,1M̃
−1

k,1
1

χk

M̃−>

k,2 Dk,2M̃
−1

k,2

k = # level χk/2
k λ1 χk/2

k λ1 χk/2
k λ1

2 3.72814 0.49728 (0.63756) 1.88333 0.55408 (0.69623) 7.72710 0.54991 (0.70662)
3 3.52539 0.48804 (0.67501) 1.84899 0.53167 (0.71827) 7.81520 0.52436 (0.68449)
4 3.52403 0.48541 (0.66984) 1.84878 0.52720 (0.71923) 8.25247 0.50133 (0.67973)
5 3.52397 0.48493 (0.66894) 1.84876 0.52634 (0.71955) 8.46519 0.48847 (0.67886)
6 3.52397 0.48485 (0.66879) 1.84876 0.52620 (0.71956) 8.53971 0.48307 (0.67875)

optimal 2.31715 1.20125 5.47552

Algorithm 1: Inner-Outer-Iteration applied to Ax = b

Let Ã be ’close’ to A.
Choose initial guess xxx0

for k = 0, 1, 2, . . . until convergence do % begin outer iteration
compute residual rrrk = bbb−Axxxk

compute approximation d̃dd
k,s

to Ã−1 rrrk by s iterations % inner iteration

update xxxk+1 = xxxk + d̃dd
k,s

end do % end outer iteration

The iteration was introduced by Axelsson and Vassilevski [3]. In the following we will analyze
the convergence of this method for indefinite and symmetric matrix. First we give a general
perturbation argument for perturbed linear systems of equations, which we will use in the sequel.
We quote the convergence rate for the steepest descent method under consideration of perturbations.
The steepest descent method will be used as inner iteration. After we have shown the convergence of
the inner-outer iteration for indefinite and symmetric matrices in general, we prove the convergence
of this method for discretized problems (3.9), independent of mesh size h.

8.1. Preliminaries. In the sequel we consider an indefinite and symmetric system of equations

(8.1)

(
A B>

B −C

)(
xxx1

xxx2

)
=

(
bbb1
bbb2

)

where 0 ≤ A ∈ R
m×m
sym and 0 < C ∈ R

n×n
sym , m−rank(A) ≤ rank(C), and B ∈ R

n×m be given, s.t. the

Schur complement S := A+B>C−1B is positive definite. Let 0 < PC ∈ R
n×n
sym and 0 < P �

S
∈ R

m×m
sym

’close’ to C, resp. S̃ := A+B>P−1
C B be given.

Now, let us motivate how to apply Algorithm 1 to system (8.1) with right hand side bbb = (bbb1, bbb2)
and exact solution xxx = (xxx1,xxx2) which is approximated after k outer iterations by xxxk = (xxxk1,xxx

k
2)

(k = 0, 1, 2, . . .). In each outer iteration the residuum rrr = (rrrk1, rrr
k
2) (k = 0, 1, . . .) given by

(8.2)

(
rrrk1
rrrk2

)
=

(
bbb1 −Axxxk1 −B>xxxk2
bbb2 −Bxxxk1 + Cxxxk2

)

is calculated and an approximation to the exact defect (dddk1, ddd
k
2) = (xxx1 − xxx

k
1,xxx2 − xxx

k
2) is calculated.

Notice

(8.3)

(
rrrk1
rrrk2

)
=

(
A(xxx1 − xxx

k
1) +B>(xxx2 − xxx

k
2)

B(xxx1 − xxx
k
1)− C(xxx2 − xxx

k
2)

)
=

(
A B>

B −C

)(
dddk1
dddk2

)

Hence, xxxi = dddki +xxxki (i = 1, 2) would give the exact solution. The inverse of
(
A B>
B −C

)
can be written

as

(8.4)

(
A B>

B −C

)−1(
rrrk1
rrrk2

)
=

(
S−1(rrrk1 +B>C−1rrrk2)

C−1
(
(BS−1(rrrk1 +B>C−1rrrk2))− rrr

k
2

)
)
.
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Our modification of the inner-outer iteration to compute an approximation to (dddk1, ddd
k
2) resp. (xxxk1,xxx

k
2)

is to use two different approximations. Firstly, using a matrix PC which is ”close” to C. That gives

an approximation (d̃dd
k

1, d̃dd
k

2) satisfying

(8.5)

(
A B>

B −PC

)(
d̃dd
k

1

d̃dd
k

2

)
=

(
rrrk1
rrrk2

)
resp.

(
d̃dd
k

1

d̃dd
k

2

)
=

(
S̃−1(rrrk1 +B>P−1

C rrrk2)

P−1
C

(
(BS̃−1(rrrk1 +B>P−1

C rrrk2))− rrr
k
2

)
)
.

Secondly, an approximation (d̃dd
k,s

1 , d̃dd
k,s

2 ) to (d̃dd
k

1, d̃dd
k

2) which will be calculated by s iterations of the

steepest descent method, i.e. d̃dd
k,s

1 will be computed as approximation to d̃dd
k

1 = S̃−1(rrrk1 +B>P−1
C rrrk2)

and d̃dd
k,s

2 = P−1
C (Bd̃dd

k,s

1 − rrrk2). Notice, dddki = xxxi − xxxki and xxxk+1
i = xxxki + d̃dd

k,s

i (i = 1, 2). Hence,

xxxi − xxx
k+1
i = dddki − d̃dd

k,s

i and from (8.4) and (8.5) we get

(8.6)
Sdddk1 = rrrk1 +B>C−1rrrk2 , dddk2 = C−1(Bdddk1 − rrr

k
2)

S̃d̃dd
k

1 = rrrk1 +B>P−1
C rrrk2 , d̃dd

k

2 = P−1
C (Bd̃dd

k

1 − rrr
k
2)

Algorithm 2 applied to the system (8.1) with s inner iterations of the steepest descent method
and the specific choice of approximations PC and P �

S
can be written as pseudocode as follows

Algorithm 2: Inner-Outer-Iteration applied to (8.1)

Choose initial guess xxx0 = (xxx0
1,xxx

0
2)

for k = 0, 1, 2, . . . % begin outer iteration
rrrk1 = bbb1 −Axxxk1 −B>xxxk2
rrrk2 = bbb2 −Bxxxk1 + Cxxxk2
check convergence; continue if necessary
zzz0

1 = 0

ppp0
1 = rrrk1 +B>P−1

C rrrk2
for l = 0, 1, 2, . . . , s− 1 do % begin inner iteration

qqq`1 = P−1
�

S
ppp`1

aaa`1 = (A+B>P−1
C B)qqq`1

β` = (ppp`1, qqq
`
1)/(aaa

`
1, qqq

`
1)

zzz`+1
1 = zzz`1 + β` qqq

`
1

ppp`+1
1 = ppp`1 − β` aaa

`
1

end do % end inner iteration
xxxk+1

1 = xxxk1 + zzzs1
xxxk+1

2 = xxxk2 + P−1
C (Bzzzs1 − rrr

k
2)

end do % end outer iteration

Theorem 3. Let the positive constants ξ1, ξm, λ1, λn, and τ be given such that the following
inequalities hold for all xxx ∈ R

m \ {0}

(8.7) ξ1 ≤
xxx>S̃xxx

xxx>P �

S
xxx
≤ ξm

resp. xxx ∈ R
n \ {0}

(8.8) λ1 ≤
xxx>Cxxx

xxx>PCxxx
≤ λn ,

xxx>(BS−1B>)xxx

xxx>Cxxx
≤ τ2 .

Furthermore, let [λ1, λn] ⊂ [α−1, α] with α > 1. Then, the iterates (xxxk1,xxx
k
2) (k = 0, 1, 2, . . .) of

Algorithm 2 satisfy

(8.9) ‖S1/2(xxx1 − xxx
k+1
1 ) ‖2 + ‖C1/2(xxx2 − xxx

k+1
2 ) ‖2 ≤ ρ

(
‖S1/2(xxx1 − xxx

k
1) ‖2 + ‖C1/2(xxx2 − xxx

k
2) ‖2

)
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with rate of convergence

ρ = 2α(1 + τ α)
(
α− 1 +

(
ξm−ξ1
ξm+ξ1

)s)
+ (α− 1)α

(
1 + 2τ + 2τ

(
ξm−ξ1
ξm+ξ1

)s)
.(8.10)

Remark 3. i.) If s is large enough and α sufficiently close to one we get 0 ≤ ρ ≤ c16 < 1.
ii.) Let δ = α − 1 > 0 and s such that [(ξm − ξ1)/(ξm + ξ1)]

s ≤ δ. Then, we get from (8.10)
ρ ≤ δ(1 + δ)(5 + 6τ(1 + δ)).

Proof. Before we give an estimate for the convergence rate of Algorithm 2 we show some
technical estimates first. They will be used in (8.23) later.

The matrix S̃ = A+B>P−1
C B is symmetric and positive definite, since we obtain from (8.8)

(8.11) λ1 ≤
xxx>P−1

C xxx

xxx>C−1xxx
≤ λn and min{1, λ1} ≤

xxx>S̃xxx

xxx>Sxxx
≤ max{1, λn} (xxx ∈ R

n \ {0}).

The second last inequality implies

(8.12) max
xxx∈R\{0}

‖ (I − C1/2P−1
C C1/2)xxx ‖2

2 = max
xxx∈R\{0}

xxx>(I − C1/2P−1
C C1/2)>(I − C1/2P−1

C C1/2)xxx

xxx>xxx

=

(
max

xxx∈R\{0}

xxx>(I − C1/2P−1
C C1/2)xxx

xxx>xxx

)2

≤ max{(1− λ1)
2, (1− λn)

2} =: κ2

and similar

(8.13) max
xxx∈R\{0}

‖ (I − P
1/2
C C−1P

1/2
C )xxx ‖2

2 ≤ max{(1− λ−1
1 )2, (1− λ−1

n )2} =: σ2

Since S and S̃ are symmetric and positive definite, inequality (8.11) implies

(8.14) max
xxx∈R\{0}

‖ (I − S̃1/2S−1S̃1/2)xxx ‖2
2 =

(
max

xxx∈R\{0}

xxx>(I − S̃1/2S−1S̃1/2)xxx

xxx>xxx

)2

≤ max{(1−min{1, λ1})
2, (1−max{1, λn})

2} = max{(1− λ1)
2, (λn − 1)2} = κ2

From inequalities (8.11), (8.8), and (8.12) we get for all xxx ∈ R
n \ {0}

‖ S̃−1/2B>(P−1
C − C−1)x ‖2

≤ max{1, λ
−1/2
1 }‖S−1/2B>C−1/2(C1/2P−1

C C1/2 − I)C−1/2x ‖2(8.15)

≤ max{1, λ
−1/2
1 }τ κ ‖C−1/2x ‖2

From the last inequality we obtain

‖ S̃−1/2B>(P−1
C − C−1)rrrk2 ‖2 ≤ max{1, λ

−1/2
1 }τ κ ‖C−1/2rrrk2 ‖2

≤ max{1, λ
−1/2
1 }τ κ ‖C−1/2(B(xxx1 − xxx

k
1)− C(xxx2 − xxx

k
2)) ‖2(8.16)

≤ max{1, λ
−1/2
1 }τ κ

(
‖S1/2(xxx1 − xxx

k
1) ‖2 + ‖C1/2(xxx2 − xxx

k
2) ‖2

)

Using S(xxx1 − xxx
k
1) = Sdddk1 = rrrk1 +B>C−1rrrk2 in (8.6) and inequality (8.11) we obtain

(8.17) ‖ S̃−1/2(rrrk1 +B>C−1rrrk2) ‖2 = ‖ S̃−1/2S(xxx∗1 − xxx
k
1) ‖2 ≤ max{1, λ

−1/2
1 }‖S1/2(xxx∗1 − xxx

k
1) ‖2 .

For the s-iterate d̃dd
k,s

1 of the preconditioned steepest descent method applied to S̃d̃dd
k

1 = rrrk1 +B>C−1rrrk2
with coefficient matrix S̃ and preconditioner P �

S
and ξ1, ξm from (8.7) there holds the following

convergence result [21]

(8.18) ‖ S̃1/2(d̃dd
k

1 − d̃dd
k,s

1 ) ‖ ≤

(
ξm − ξ1
ξm + ξ1

)s
‖ S̃1/2 d̃dd

k

1 ‖ .

By adding ±S̃−1/2B>C−1rrrk2, (8.6), and the triangle inequality we get

‖ S̃1/2d̃dd
k

1 ‖2 ≤ ‖ S̃−1/2(rrrk1 +B>C−1rrrk2) ‖2 + ‖ S̃−1/2B>(P−1
C − C−1)rrrk2 ‖2 .(8.19)
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By the same technique (adding ±S̃−1/2B>C−1rrrk2) and inequality (8.14) we obtain

‖ S̃1/2(d̃dd
k

1 − ddd
k
1) ‖2 ≤ ‖ S̃1/2(S−1 − S̃−1)(rrrk1 +B>C−1rrrk2) ‖2 + ‖ S̃−1/2B>(C−1 − P−1

C )rrrk2 ‖2

≤ ‖ (S̃1/2S−1S̃1/2 − I)S̃−1/2(rrrk1 +B>C−1rrrk2) ‖2 + ‖ S̃−1/2B>(C−1 − P−1
C )rrrk2 ‖2(8.20)

≤ κ‖ S̃−1/2(rrrk1 +B>C−1rrrk2) ‖2 + ‖ S̃−1/2B>(C−1 − P−1
C )rrrk2 ‖2

From (8.18), (8.19) together with (8.16) and (8.17)

(8.21) ‖ S̃1/2(d̃dd
k,s

1 − dddk1) ‖2 ≤ ‖ S̃1/2(d̃dd
k,s

1 − d̃dd
k

1) ‖2 + ‖ S̃1/2(d̃dd
k

1 − ddd
k
1) ‖2

≤ (κ+

(
ξm − ξ1
ξm + ξ1

)s
)‖ S̃−1/2(rrrk1 +B>C−1rrrk2) ‖2 + (1 +

(
ξm − ξ1
ξm + ξ1

)s
) ‖ S̃−1/2B>(C−1 − P−1

C )rrrk2 ‖2

≤

(
κ(1 + τ) + (1 + τκ)

(
ξm − ξ1
ξm + ξ1

)s)
max{1, λ

−1/2
1 } ‖S1/2(xxx1 − xxx

k
1) ‖2

+ κ τ (1 +

(
ξm − ξ1
ξm + ξ1

)s
) max{1, λ

−1/2
1 }‖C1/2(xxx2 − xxx

k
2) ‖2 .

Using Bdddk1 − rrr
k
2 = C(xxx2 − xxx

k
2), A is assumed to be positive semi-definite, and (8.6), (8.13), (8.11)

we bound the error xxx2 − xxx
k+1
2 as follows

(8.22) ‖P
1/2
C (xxx2 − xxx

k+1
2 ) ‖2 = ‖P

1/2
C (d̃dd

k,s

2 − dddk2) ‖2 = ‖P
1/2
C (d̃dd

k,s

2 − P−1
C Bdddk1 + P−1

C Bdddk1 − ddd
k
2) ‖2

= ‖P
−1/2
C B(d̃dd

k,s

1 − dddk1) ‖2 + ‖P
1/2
C (P−1

C − C−1)(Bdddk1 − rrr
k
2) ‖2

≤ ‖ S̃1/2(d̃dd
k,s

1 − dddk1) ‖2 + ‖ (I − P
1/2
C C−1P

1/2
C )P

−1/2
C (Bdddk1 − rrr

k
2) ‖2

≤ ‖ S̃1/2(d̃dd
k,s

1 − dddk1) ‖2 + σ‖P
−1/2
C (Bdddk1 − rrr

k
2) ‖2 ≤ ‖ S̃1/2(d̃dd

k,s

1 − dddk1) ‖2 + σ λ1/2
n ‖C1/2(xxx2 − xxx

k
2) ‖2.

We are now able to bound the error of the (k + 1)-th iterate by using (8.11), (8.8), (8.22), (8.21),

identities xxxi − xxx
k+1
i = d̃dd

k,s

i − dddki and σ defined by (8.13)

(8.23) ‖S1/2(xxx1 − xxx
k+1
1 ) ‖2 + ‖C1/2(xxx2 − xxx

k+1
2 ) ‖2

≤ max{1, λ
−1/2
1 }‖ S̃1/2(d̃dd

k,s

1 − dddk1) ‖2 + λ1/2
n ‖P

1/2
C (d̃dd

k,s

2 − dddk2) ‖2

≤ (λ1/2
n + max{1, λ

−1/2
1 }) ‖ S̃1/2(d̃dd

k,s

1 − dddk1) ‖2 + σλn‖C
1/2(xxx2 − xxx

(k+1)
2 ) ‖2

≤

(
κ(1 + τ) + (1 + τκ)

(
ξm − ξ1
ξm + ξ1

)s)
(λ1/2
n + max{1, λ

−1/2
1 })(max{1, λ

−1/2
1 } ‖S1/2(xxx1 − xxx

k
1) ‖2

+

(
σλn + κ τ(λ1/2

n + max{1, λ
−1/2
1 })(1 +

(
ξm − ξ1
ξm + ξ1

)s
)(max{1, λ

−1/2
1 })

)
‖C1/2(xxx2 − xxx

k
2) ‖2

Let [λ1, λn] ⊂ [α−1, α], with α > 1. Hence, we get κ, σ ≤ α− 1 and

‖S1/2(xxx1 − xxx
k+1
1 ) ‖2 + ‖C1/2(xxx2 − xxx

k+1
2 ) ‖2

≤

(
(α− 1)(1 + τ) + (1 + τα)

(
ξm − ξ1
ξm + ξ1

)s)
(α1/2 + α1/2)α1/2 ‖S1/2(xxx1 − xxx

k
1) ‖2(8.24)

+

(
(α− 1)α+ (α− 1) τ (α1/2 + α1/2)(1 +

(
ξm − ξ1
ξm + ξ1

)s
α1/2

)
‖C1/2(xxx2 − xxx

k
2) ‖2

≤ ρ
(
‖S1/2(xxx1 − xxx

k
1) ‖+ ‖C1/2(xxx2 − xxx

k
2) ‖2

)

where

ρ := 2α(1 + τ α)

(
α− 1 +

(
ξm − ξ1
ξm + ξ1

)s)
+ (α− 1)α

(
1 + 2τ + 2τ

(
ξm − ξ1
ξm + ξ1

)s)
.

�
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8.2. The Inner-Outer Iteration Applied to the Coupling Matrix A. We consider now the
inner-outer iteration Algorithm 2 applied to the linear system (5.1).

Since P �

Sh
and PVh

are both assumed to be symmetric and positive definite, we can define positive

constants depending on the mesh size h = h(m) (resp. h = h(n)) to bound the extreme eigenvalues
satisfying

(8.25) 0 < ηmin(h) ≤
xxx>(Ah + Th)xxx

xxx> P �

Sh
xxx

≤ ηmax(h) (xxx ∈ R
m \ {0}) .

and

(8.26) 0 < λmin(h) ≤
xxx>Vhxxx

xxx>PVh
xxx
≤ λmax(h) (xxx ∈ R

n \ {0}) .

Therefore by applying Section 5 we obtain the estimates

(8.27) ω ≤
xxx>{Ah +Wh + (K>

h − I>h )V −1
h (Kh − Ih)}xxx

xxx>(Ah + Th)xxx
≤ Ω (xxx ∈ R

m \ {0})

where ω, Ω are positive constants independent of the mesh size h (Let ω = θ2 with θ from (5.8)
and Ω = max{∆,Θ2} with ∆ from (5.8), Θ from (5.9), and notice Subsections 5.1 and 5.2 where
the existence is proven.) and

(8.28) ξmin(h) ≤
xxx>{Ah +Wh + (K>

h − I>h )V −1
h (Kh − Ih)}xxx

xxx>P �

Sh
xxx

≤ ξmax(h) (xxx ∈ R
m \ {0})

which is analogous to (8.7) (Let ξmin(h) = ω ηmin(h) and ξmax(h) = Ω ηmax(h) with ηmin(h), ηmax(h)
from (8.25) and ω, Ω from (8.27).). Then, with

φφφ>(Kh − 1)(Ah + Th)
−1(K>

h − 1)φφφ ≤ c17‖ (K∗ − 1)φ ‖
H−

1
2 (Γ)

≤ c18‖φ ‖
2

H−
1
2 (Γ)

and (8.27) we see that there is a constant τ ∈ R with

(8.29)
xxx>(Kh − Ih)(Ah +Wh + (K>

h − I>h )V −1
h (Kh − Ih))

−1(K>
h − I>h )xxx

xxx>Vhxxx
≤ τ2 (x ∈ R

n \ {0})

which is analogous to (8.8).
If ∆, θ, and Θ are independent from the mesh size h, there exists also a constant τ (8.29)

independent from the mesh size h, and Theorem 3 gives bounds for convergence rate of Algorithm 2

applied to (8.1) depending only on the extreme eigenvalues of P−1
�

Sh
S̃h (8.28) and P−1

Vh
Vh (8.26). With

Lemma 2, we get from Theorem 3 the following result.

Theorem 4. Let P �

Sh
, PVh

be spectral equivalent to Ah + Th and Vh, respectively. Then, for

sufficiently large s and sufficiently small spectrum of P−1
Vh
Vh around one, Algorithm 2 applied to

(8.1) converges and the convergence rate is bounded above independently of the mesh size h.

Remark 4. Notice that there holds

‖S
1

2xxx ‖2
∼= ‖x ‖H1(Ω1), ‖V

1

2φφφ ‖2
∼= ‖φ ‖

H−
1
2 (Γ)

.

Therefore Theorem 4 implies convergence in the energy norm.

9. Numerical Example (Part 2)

We continue our numerical example of Section 7. We choose P−1
�

Sh
and P−1

Vh
to be the same

multigrid V-cycle algorithms as in Example 1, resp. 2 and use ν = 1 pre and post smoothing step
in Example 1 and 2 to compute P−1

Vh
, and ν = 1 pre and post smoothing step in Example 1 resp.

ν = 1, 3, 5 in Example 2 to compute P−1
�

Sh
. The computed eigenvalues and singular values were

computed with Matlab-routines as explained in Section 7. In Tab. 11, there are given computed
bounds for ξ1, ξm, and τ2 for Example 1 and 2. These reslts confirm in both examples our theory,
namely that the lower resp. upper bounds for ξ1, ξm, and τ2 do not dependent on the meshsize h.
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Table 11. Constants ξ1, ξm, and τ2

Example 1 Example 2
ξ1

h/h1 ξ1 ξm τ2 ν = 1 ν = 3 ν = 5 ξm τ2

1/2 0.86070 1 1 0.54705 0.92575 0.98770 1 1
1/4 0.75882 1 1 0.35954 0.84660 0.95849 1 1
1/8 0.68734 1 1 0.27591 0.72817 0.89298 1 1
1/16 0.64411 1 1 0.23706 0.65159 0.83989 1 1
1/32 0.62739 1 1 0.22196 0.61774 0.80658 1 1

In Tab. 12 we present results for solving the linear system Axxx = bbb arising form the geometry
and meshes in Example 1 for 20 randomly choosen right hand sides bbb and s = 1, 3 number of inner
iterations. The average number of iterations and minimimal/maximal number (in brackets) are
given. The computations were done on a Laptop PC (3.2 GHz) using Matlab (Release 14). We
used the stopping criterion

(9.1) ‖ S̃
1

2

h (x1 − xk1) ‖2 ≤ tol‖ S̃
1

2

h (x1 − x0
1) ‖2

with tol = 10−8. Here, ‖ · ‖2 is the Euclidean-norm, (x1, x2) the exact solution of our discretized
problem and (x0

1, x
0
2) = 0 the starting vector.

Table 12. Number of iterations and CPU-time for preconditioned Inner-Outer-
method (with P−1

�

Sh
≈ V-cycle multigrid method applied to Ah+Wh+γId>hD

−1
h Idh)

and different number of inner iterations (s = 1, 3)

# iterations # iterations
h0/h # unknowns average (min/max) CPU-time [s] average (min/max) CPU-time [s]

s = 1 s = 3
1/1 16 13.6 (12/14) 0.0101 5.45 (5/6) 0.0094
1/2 37 14.8 (14/15) 0.0328 14.2 (13/15) 0.0516
1/4 97 15.3 (14/16) 0.0703 14.0 (14/14) 0.1126
1/8 289 17.1 (16/18) 0.1875 13.8 (13/14) 0.2625
1/16 961 17.95 (17/19) 0.6375 13.05 (13/14) 0.8523
1/32 3457 19 (19/19) 2.5250 13 (13/13) 3.2015
1/64 13057 19.45 (19/20) 10.986 13 (13/13) 13.273
1/128 50689 20 (20/20) 47.672 12.95 (12/13) 55.208
1/256 199681 21 (21/21) 199.03 12.05 (12/13) 210.91

Both, the number of iterations and the CPU-time indicate the efficiency of the preconditioned
inner-outer iteration.

For comparision we computed also the number of PCR-iterates (xk1, x
k
2) where we used the

stopping criterion

(9.2) ‖A
1

2

h (x1 − xk1) ‖2 + ‖V
1

2

h (x2 − xk2) ‖2 ≤ tol

(
‖A

1

2

h (x1 − x0
1) ‖2 + ‖V

1

2

h (x2 − x0
2) ‖2

)

with tol = 10−8.
All results presented here underline the efficiency of both preconditioned iterative methods to

solve indefinite linear systems of equations arising from symmetric coupling of finite elements and
boundary elements and confirm our theory. Both methods are optimal in the sense, that the number
of iterations is bounded independently by the meshsize h. The preconditioned conjugate residual
method is in our example twice as fast as the preconditioned inner-outer iteration.
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Table 13. Number of iterations and CPU-time for PCR-method with block-
diagonal preconditioning

# iterations # iterations
h0/h # unknowns average (min/max) CPU-time [s] average (min/max) CPU-time [s]

Th = βMh Th = Wh + γId>hD
−1

h Idh

1/1 16 17 (17/17) 0.0078 16.35 (16/17) 0.0063
1/2 37 33.6 (32/35) 0.0273 23.7 (23/25) 0.0204
1/4 97 41.6 (41/43) 0.0648 26.85 (26/27) 0.0437
1/8 289 46 (46/46) 0.1680 28 (28/28) 0.1156
1/16 961 50 (50/50) 0.5226 28.4 (28/30) 0.3725
1/32 3457 53 (53/53) 1.9141 29.5 (28/30) 1.4222
1/64 13057 55.2 (55/57) 7.7930 30 (30/30) 5.7105
1/128 50689 57.2 (57/59) 32.050 30 (30/30) 23.341
1/256 199681 58.05 (57/59) 133.32 30 (30/30) 101.31
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h
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h
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Figure 5. CPU-time [s] for different solvers.

10. Conclusion

All the preconditioned iteration schemes presented here are optimal in the sense, that the number
of iterations is bounded independently by the meshsize h. The best result with respect to cpu-time
(and matrix-vector multplication) was obtained by using the block-diagonal precondioned conjugate
residual method and Th = Wh + γId>hD

−1
h Idh. (Notice, one complete inner-outer iteration needs

a least twice as much operations as one PCR-iteration.) All smoothers used in the multigrid-
algorithm for the single layer potential provide constant bounds for the spectrum of MgV Vh, which
do not depend on the meshsize h. In all examples is the damping parameter χ∗k less than χk in

(6.3) to get the optimal contraction rate of MgV .
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