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Abstract

We present a structural jump-diffusion credit-portfolio model which models the loss dis-
tribution and dependence structure of the portfolio dynamically. We are able to obtain the
log-asset correlation analytically and precise estimates of the term-structure of default cor-
relations within the model. The models allows the simultaneous pricing of bonds, CDS and
portfolio derivatives across all maturities. We present an efficient algorithm for the calibra-
tion of our model, which makes the model suitable for practical applications. As an example
we calibrate our model to iTraxx quotes of Collateral Debt Obligations (CDOs).

1 Introduction

Dynamic credit-portfolio models are needed for an appropriate risk management by financial in-
stitutions and for the pricing of (exotic) portfolio-credit derivatives. Triggered in particular by the
need for realistic pricing models, several models based on a top-down approach within the reduced-
form framework have been proposed, compare Schönbucher (2006), Albrecher, Ladoucette, and
Schoutens (2007), Sidenius, Piterbag, and Andersen (2005). However, these models are mainly
suited for a portfolio pricing approach, since they model the overall portfolio-loss process and then
try to consistently include the individual risk. Specifics of the individual risk contributions can
therefore hardly be taken into account. More traditional bottom-up models on the other hand
have to balance computational tractability with simplifying assumptions such as a homogeneous
portfolio structure or a static model in terms of loss distribution and dependence structure, exam-
ples are Laurent and Gregory (2003), Vasicek (1987).

In this paper we present a bottom-up credit portfolio model which is in the spirit of so-called
structural (Merton) models. A default event is triggered by insufficient asset values of the respec-
tive firm in the portfolio. The asset value process is driven by idiosyncratic and common factors
which are subject to diffusion and jump risk. This allows to explain the loss distribution and de-
pendence structure of the portfolio at any point in time. Additionally, it allows the simultaneous
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pricing of bonds, CDS and portfolio derivatives across all maturities. Such a consistent arbitrage-
free framework is especially important for risk management. We present an efficient algorithm for
the calibration of our model, which makes the model suitable for practical applications. As an
example we calibrate and price Collateral Debt Obligations (CDOs) within our framework.

Introducing our model more detailed, individually for each firm the model is a generalization
of Zhou (2001b)’s jump-diffusion model. Compared to pure diffusion models in the tradition of
Merton (1974), the advantage of supporting jumps (on a univariate level) is that the induced term
structure of bond and CDS spreads has a positive limit at the short end and allows for a much
better fit to observed spread curves. The first argument is made precise in Theorems 2.2 and 2.3,
the impressive improvement in fitting capability is shown in Table 3. Additionally, we can use
common jumps to introduce dependence to the modeled companies. This approach is combined
with the popular concept of using correlated Brownian motions or common Brownian factors. In
this sense, our model generalizes the models of Willemann (2007) and Hull, Pedrescu, and White
(2006). Within our framework we are then able to analyse the dependence structure of the model.
We are able to analytically calculate asset correlations for companies within the portfolio. Fur-
thermore, we obtain the default correlation by simulation very precisely, thus extending results
by Zhou (2001a). We compare the default correlation of our model to the default correlation in a
pure diffusion setting and observe that short term correlations are almost entirely a result of the
jump component.

To demonstrate the practical relevance of our model we apply our model to the pricing of CDOs,
for which we need an efficient Monte Carlo procedure. We run a calibration exercise on iTraxx data
to demonstrate the fitting capability of our model to individual CDS as well as the CDO structure.

Our article is organized as follows. The second Chapter introduces the jump-diffusion model
on a univariate level, where we show stylized properties as a positive limit of spreads and explain
two pricing algorithms for single-firm products. In Chapter 3 we show two approaches on how
dependence may be introduced to the individual firms, both allow for an intuitive economic inter-
pretation. The consequences of this construction on the term structure of firm-value and default
correlation are derived in Chapter 4. A pricing algorithm for CDOs is given in Chapter 5, this
algorithm is used in Chapter 6 for a calibration of the model. Finally, we summarize our findings
in Chapter 7.

2 Our structural default model

2.1 Univariate case

We assume the value of the modeled company to start at some initial level v0 > 0 and to evolve
stochastically on the filtered probability space (Ω,F , F, IP). We want to incorporate small and
unsystematic changes of the value process, resulting from daily business activities, as well as
sudden jumps due to unexpected events. Moreover, we assume the total value of all assets to
remain positive. A model for the firm-value process V = {Vt}t≥0 fulfilling these requirements is
given by

Vt = v0 exp(Xt), v0 > 0, ∀t ≥ 0,

2



where the process X = {Xt}t≥0 is a jump-diffusion process with canonical decomposition

Xt = γt + σWt +
Nt
∑

i=1

Yi. (1)

Throughout this article, we assume as given the pricing measure IP. The filtration F = {Ft}t≥0

denotes the natural filtration of the firm-value process, i.e. with N the collection of all IP-null sets

Ft = σ(Vs : 0 ≤ s ≤ t) ∨ N = σ(Xs : 0 ≤ s ≤ t) ∨N ,

augmented to satisfy the usual conditions of completeness and right continuity. To exclude degen-
erated cases, we impose the constraints σ > 0, λ > 0 and for the jump measure IPY 6= δ0, where
δx denotes the Dirac measure concentrated at x. Following Black and Cox (1976), we define τ as
the first passage of the firm-value process below the debt level of the company, which we denote
by d. Formally, the time of default is defined by

τ = inf{t > 0 : Vt ≤ d}.

All model parameters are summarized in the table below.

Parameter Interpretation

γ ∈ R The linear growth rate of V .
σ ∈ R

+ The volatility of the diffusion component.
λ ∈ R

+
0 The jump intensity of the driving Poisson process.

IPY The jump-size distribution.
v0 ∈ R

+ The initial value of the company.
d ∈ R

+ The default threshold, satisfying d < v0.

Table 1: The parameters of our univariate default model.

2.2 Bond and CDS prices in a jump-diffusion framework

Allowing jumps is a natural generalization of pure diffusion models. However, this generalization
significantly complicates the computation of bond and CDS prices, as closed-form expressions of
the distribution of first-passage times are not known in a general jump-diffusion scenario. To
overcome this problem, different approaches are possible and introduced below.

The probabilistic approach

The probabilistic approach is to perform a Monte Carlo simulation to estimating survival probabil-
ities and to price financial contracts. A näıve implementation requires one to sample the firm-value
process on a discrete grid and test for default on this grid. Not only is this computationally ex-
pensive, it also implies a systematic discretisation bias, as a possible default in between two grid
points is not considered. This is a shortcoming of the algorithm proposed by Zhou (2001b). A sub-
stantial improved algorithm is obtained if the nature of a jump-diffusion process is systematically
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exploited. Conditioned on the number NT and location 0 < τ1 < . . . < τNT
of the jumps in the

firm-value process, it is possible to compute default probabilities and prices of financial contracts
in closed form. These jump times have a well known distribution which is efficient to simulate.
Based on this observation it is possible to formulate an extremely fast and unbiased Monte Carlo
algorithm, a detailed description of such an implementation is given by Scherer (2007). In the
context of pricing barrier options, a similar idea is presented by Metwally and Atiya (2002). In the
multidimensional implementation of the model, such an efficient implementation is indispensable
to obtain prices of portfolio derivatives in acceptable time.

The numerical approximation

Monte Carlo simulations are fast enough for the pricing of bonds and CDS given a set of parame-
ters. However, the calibration of the model, which essentially corresponds to a minimization over
the multidimensional parameter space, requires faster pricing routines. Such a numerical pricing
routine is constructed and tested in Scherer (2007). The mathematical ingredients are results on
the Laplace transform of first-passage times in a jump-diffusion model with two-sided exponen-
tially distributed jumps. This result was found by Kou and Wang (2003). It is then possible to
recover the required default probabilities by inverting the Laplace transform numerically. Using
these approximated default probabilities, pricing formulas of bond and CDS contracts are easily
evaluated in fractions of a second.

2.3 The local default rate in a jump-diffusion scenario

In this section we present an elementary derivation of the local default rate in a jump-diffusion
framework. This result is important from an economic perspective as it allows us to derive the
exact limit of bond and CDS spreads at the short end of the term structure. It is well known that
the local default rate in a pure diffusion model, as well as the limit of spreads in such a framework,
are zero. This result is generalized below and used in Section 2.4 to shown that a positive limit of
spreads is the result of supporting negative jumps.

Theorem 2.1 (The local default rate of τ)
We assume a continuous jump-size distribution with FY denoting its cumulative distribution func-
tion. At time zero, the distance to default for X is given by x0 = − log (d/v0). We then obtain

LDRτ = lim
hց0

1

h
IP(τ ≤ h) = λFY (−x0) = ν((−∞,−x0]),

where ν denotes the Lévy measure of X. This shows that the local default rate is determined by
the Lévy measure of the logarithm of the firm-value process and the distance to default.

This result can be interpreted as follows. If a negative jump exceeds the distance to default with
positive probability, that is FY (−x0) > 0, then the local default rate is positive. The jump inten-
sity, which specifies how many jumps are expected per unit time interval, is the second factor of the
local default rate. Economically, a positive local-default rate means that defaults can occur within
an infinitesimal amount of time, which is not possible in a continuous model. This agrees with
the observation that the parameters of the diffusion component are not present in this formula.
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Considering this, Theorem 2.1 is a natural extension of the pure diffusion result, as λ = 0 puts
us back into a continuous setting. Summarized, the local default rate agrees with our intuition in
the sense that it factors into the independent probabilities for a jump to occur and the probability
that such a jump causes the firm-value process to fall below the default threshold.

Proof : We condition on the number Nh of jumps which occurred up to time h and denote the
first jump time by τ(h). We obtain

lim
hց0

1

h
IP(τ ≤ h)

= lim
hց0

1

h

∞
∑

n=0

IP(Nh = n)IP
(

inf
0≤s≤h

{Xs} ≤ −x0

∣

∣Nh = n
)

(2)

= lim
hց0

e−λh

h
IP

(

inf
0≤s≤h

{γs + σWs} ≤ −x0

)

+

lim
hց0

λe−λhIP
(

inf
0≤s≤h

{

γs + σWs + 1{s≥τ(h)}Y1

}

≤ −x0

)

+

lim
hց0

1

h

∞
∑

n=2

e−λh(λh)n

n!
IP

(

inf
0≤s≤h

{

γs + σWs +

Ns
∑

j=1

Yj

}

≤ −x0

∣

∣Nh = n
)

.

The first limit, representing a pure diffusion setup, is zero by l’Hospital’s rule1. Considering the
last limit, a dominated convergence argument allows us to interchange limit and summation, es-
tablishing that this limit also equals zero.

We now examine the second limit, the case of exactly one jump, where we additionally condi-
tion on whether this jump is negative or not. Obviously, only the case of a negative jump is of
interest. We let Bt = γt + σWt and find

IP
(

Bh + Y1 ≤ −x0|Y1 < 0
)

≤ IP
(

inf
0≤s≤h

{

Bs + 1{s≥τ1}Y1

}

≤ −x0

∣

∣Nh = 1, Y1 < 0
)

≤ IP
(

inf
0≤s≤h

{

Bs + Y1

}

≤ −x0

∣

∣Y1 < 0
)

.

The sequence of events Ah = {ω ∈ Ω : inf0≤s≤h

{

Bs + Y1

}

≤ −x0, Y1 < 0} is decreasing in h.
Therefore, by the continuity of the probability measure, we obtain the following result for the limit
of upper bounds

lim
hց0

IP(Ah) = IP(A0). (3)

From Equation (3), it follows that

lim
hց0

IP
(

inf
0≤s≤h

{

Bs + Y1

}

≤ −x0

∣

∣Y1 < 0
)

= IP(Y1 ≤ −x0|Y1 < 0).

Showing that this limit agrees with the limit of lower bounds is straightforward if Bh + Y1 condi-
tioned on Y1 < 0 has a closed-form expression, which holds for instance if the jump size distribution
IPY is a two-sided exponential distribution. In general, this result is shown as follows. For arbitrary

1In this continuous setup, the default probability is a well known continuously differentiable function of t.
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c > 0, we have

lim inf
hց0

IP
(

Bh + Y1 ≤ −x0|Y1 < 0
)

≥ lim inf
hց0

IP
(

Bh + Y1 ≤ −x0, Bh ≤ γh + c
√

hσ2
∣

∣Y1 < 0
)

≥ lim inf
hց0

IP
(

Y1 ≤ −x0 − γh− c
√

hσ2
∣

∣Y1 < 0
)

IP
(

Bh ≤ γh + c
√

hσ2
)

= IP(Y1 ≤ −x0|Y1 < 0)Φ(c),

where Φ(x) denotes the cdf of the standard normal distribution. Since c > 0 was chosen arbitrarily,
we are allowed to let c tend to infinity and obtain the result. ♦

2.4 The limit of bond and CDS spreads

Pricing formulas for bonds and CDS contracts

We assume as given the pricing measure IP and a constant (continuously compounding) interest
rate r > 0. For the price of a risky zero-coupon bond with recovery rate R and a CDS contract
written on this bond, we obtain the following formulas.

Lemma 2.1 (Price of a zero-coupon bond)
We denote by φ(0, T ) the fair price at time zero of a defaultable zero-coupon bond with maturity
T , unit face value and recovery rate R. This price satisfies

φ(0, T ) = e−rT IP(τ > T ) + R

∫ T

0

e−rtdIP(τ ≤ t). (4)

The credit spread corresponding to φ(0, T ) is denoted as ηT , it is the real number solving

φ(0, T ) = exp (−(r + ηT )T ) . (5)

For a CDS written on this bond, we assume the insurance buyer to continuously pay the spread
c as long as the reference entity is solvent, whereas the insurance seller indemnifies the insurance
buyer by paying the difference of face value minus recovery in the event of credit default. We again
discount all future payments and obtain the following expression for the price of a contract with
notional one, continuous premium payments c and maturity T .

CDS(0, T ) = IE

[

e−rτ (1− R)1{τ≤T} −
∫ T

0

ce−rt1{τ>t}dt

]

= (1− R)

∫ T

0

e−rtdIP(τ ≤ t)− c

∫ T

0

e−rtIP(τ > t)dt. (6)

Formula (6) reflects the view of the insurance buyer, the insurance seller uses the same formula
with opposite signs. Market prices for CDS contracts are typically quoted in terms of the spread
which allows both parties to enter the contract at zero cost. This par spread is obtained from
solving Equation (6) for c and therefore given by

cT =
(1− R)

∫ T

0
e−rtdIP(τ ≤ t)

∫ T

0
e−rtIP(τ > t)dt

. (7)
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The limit of credit spreads

Zhou (2001b) presents an intuitive argument why the limit of credit spreads in a jump-diffusion
model should remain positive. He argues: ”Because a diffusion process is almost unlikely to cause
a default in a short period of time, the defaults of short-term bonds are usually caused by the jump
component of the firm value.” 2 He derives this argument by comparing the vanishing probability
of a default by diffusion with the probability of a default caused by a single jump. We make
this argument precise in Theorem 2.2, where we show that the local default rate of τ , which does
not depend on the diffusion component of X, is the crucial component for the limit of spreads.
Moreover, we also present the exact limit of CDS spreads in Theorem 2.3.

Theorem 2.2 (Credit spreads at time zero)
The limit of credit spreads at time zero is given by

lim
hց0

ηh = (1−R)LDRτ .

Proof : At first, we find an upper and lower bound for the bond price φ(0, h). With

φlow(0, h) = e−rhIP(τ > h) + Re−rhIP(τ ≤ h),

φup(0, h) = e−rhIP(τ > h) + RIP(τ ≤ h),

we observe φlow(0, h) ≤ φ(0, h) ≤ φup(0, h)3. Clearly, the opposite relation then holds for the
corresponding credit spreads, i.e.

ηlow
h ≥ ηh ≥ ηup

h .

Using the credit spread’s definition and elementary inequalities, we obtain

ηup

h = −1

h
log (φup(0, h))− r

≥ −1

h
(φup(0, h)− 1)− r

= −1

h
IP(τ ≤ h)(R− 1)− 1

h

(

e−rh − 1
)

IP(τ > h)− r

→ −LDRτ (R− 1) + r − r, (h ց 0).

A similar bound is obtained from

ηlow
h = −1

h
log

(

φlow(0, h)
)

− r

= −1

h
log

(

e−rh (1− IP(τ ≤ h) + RIP(τ ≤ h))
)

− r

= −1

h
(−rh)− 1

h
log (IP(τ ≤ h)(R− 1) + 1)− r

≤ −1

h

IP(τ ≤ h)(R− 1)

IP(τ ≤ h)(R− 1) + 1

→ LDRτ (1− R), (h ց 0).

2Zhou (2001b), Journal of Banking and Finance 25, page 2027.
3Let us remark that φlow and φup can both be interpreted as bonds with alternative recovery scheme.
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Obviously, the same limit must then hold for ηh. ♦

We found that the limit of credit spreads at the short end of the term structure is the product of
the local default rate of τ and the fractional loss given default. This is economically reasonable, as
the potential loss at default is decreasing in the recovery rate, which implies smaller credit spreads.
Moreover, the local default rate of τ approximates the probability of default within small intervals
of time. Therefore, credit spreads of bonds with small maturities merely depend on the probability
of a sudden default. In other words, their credit spreads are increasing in the local default rate.

The limit of CDS spreads

In a jump-diffusion model for the firm-vaule process, the limit of CDS spreads at the short end of
the term structure is also positive and can be found using the local default rate of τ . Moreover,
this limit agrees with the limit of bond spreads computed above.

Theorem 2.3 (The limit of CDS spreads with jumps)
Within the setup of our jump-diffusion model, the limit of CDS spreads at the short end of the
term structure agrees with the limit of bond spreads. Hence, it is given by

lim
Tց0

cT = (1− R)LDRτ .

Proof : Using integrations by part, we rewrite ch as

ch =

1
h
(1−R)

(

e−rhIP(τ ≤ h) + 1− e−rh + r
∫ h

0
IP(τ > s)e−rsds

)

1
h

∫ h

0
e−rsIP(τ > s)ds

.

As IP(τ > s) is continuous in 0 with IP(τ > 0) = 1, it follows that

1

h

∫ h

0

e−rsIP(τ > s)ds → 1, (h ց 0).

Using this, it is easily deduced that

lim
hց0

ch = (1− R)(r + 1 · LDRτ − r) = (1− R)LDRτ .

♦

3 The multivariate default model

We consider a portfolio consisting of I credit-risky assets, indexed by i ∈ {1, . . . , I}, whose payment
streams depend on the default status of I different firms. To specify the default times τ 1, . . . , τ I

we again model each individual firm-value process as the exponential of a jump-diffusion process.
Undisputedly, default events are not independent in reality. In what follows, we introduce different
sources of dependence to the firm-value processes to account for this empirical observation. Also,
we show how CDOs are priced within our multivariate framework to demonstrate that our model
is analytically tractable.
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3.1 Dependence via a market factor and joint jumps

At first, we introduce dependence through a common market factor and via jumps that are trig-
gered by a joint Poisson process. The common market factor accounts for the observation that
most companies are sensitive to business cycles. The current macroeconomic situation is modeled
using a Brownian motion of the market, denoted by W M

t . The individual Brownian motion driv-
ing the firm value process of company i in the univariate case is replaced by the weighted sum
aiW

M
t +

√

1− a2
i W

i
t . The factor ai ∈ (−1, 1) assesses the degree of systematic dependence of

company i to the market and W i
t models the idiosyncratic risk of company i. Note that there is

no restriction to a single credit-risk factor, our model is easily generalized to multiple risk factors
such as macroeconomic variables, commodity prices, interest rates, etc.

Our mechanism of triggering joint jumps is motivated by the following economic interpretation. In-
tuitively, jumps of the firm-value process of some company are triggered if unexpected information
or events are revealed. Mathematically, this may be translated into a Poisson process Nt whose
jumps are interpreted as the arrival of new information. Since not all information is relevant for
company i, we introduce the factor bi ∈ (0, 1] to represent the probability of company i to respond
with a jump in its firm-value process to a jump of the ticker process Nt. In mathematical terms,
this construction corresponds to a thinned-out Poisson process with intensity λ and thinning prob-
ability (1− bi). In what follows, this process is denoted by Nt(bi). Finally, we obtain the following
model for the firm-value process of company i:

V i
t = vi

0 exp
(

X i
t

)

, X i
t = γit + σi

(

aiW
M
t +

√

1− a2
i W

i
t

)

+

Nt(bi)
∑

j=1

Y i
j . (8)

All Brownian motions W M
t and W i

t , as well as all random variables defining the jump components,
are assumed to be mutually independent in Equation (8). The first consequence of this construction
is the following lemma.

Lemma 3.1 (Original jump-diffusion model for all margins)
In distribution, the firm-value process of company i agrees with vi

0 times the exponential of a jump-
diffusion process with diffusion volatility σi, jump intensity biλ and jump-size distribution IPY i.

Lemma 3.1 results from the fact that W M
t and W i

t being independent, their weighted sum aiW
M
t +

√

1− a2
i W

i
t agrees in distribution with a Brownian motion at time t. Moreover, it is deduced from

the definition that the thinned-out Poisson process N(bi) agrees in distribution with a regular
Poisson process with intensity biλ.

A common market factor and dependent jumps

So far, we assumed jumps of all firm-value processes to be mutually independent. However, it
seems reasonable that most news affect different firms in a similar manner. Therefore, we propose
to classify new information as being good or bad for the economy. Based on the observation that
markets are highly correlated in extreme events we may give up the assumption of independent
jumps, assuming jumps of all companies at the same jump time to have a common sign, instead.
However, we do not impose identical jump sizes. The sign of all jumps at some jump time τl is
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determined by an initial Bernoulli experiment with success probability p = 50%. The outcome of
this experiment specifies whether an information is considered to be good or bad. In order to not
changing the individual default probabilities, we have to restrict the set of jump-size distributions
of each individual firm-value process by the condition

IPY i

(

Y i
l > 0

)

= IPY i

(

Y i
l < 0

)

= 0.5, ∀i ∈ {1, . . . , I}, ∀l ∈ N.

Let us remark that neither does the choice p = 50% imply symmetric jump-size distributions nor
are we restricted to identical probabilities for up- and downward jumps, as we can assign positive
probability to up- or downward jumps of neglectable size. Still, implementing this variant of the
model is simplified considerably if a jump-size distribution is chosen where up and downward jumps
are easy to distinguish. Examples are two-sided exponentially distributed jumps and normally
distributed jumps with zero mean.

3.2 Consequences of dependent jumps

Our numerical investigations in Section 4.2 show that jumps in the same direction significantly
increase the default correlation among the firms. This implies that tail events such as multiple
defaults become more likely. Thus we need a higher risk capital to cover for potential losses and,
for CDOs, larger spreads in the senior tranches are implied, as it becomes more likely for such a
tranche to suffer from a loss. A sample plot of three dependent firm-value processes is given in
Figure 1.

t

V
60

80
10

0
12

0
14

0

0 1 2 3 4 5

Figure 1: The sample paths of three dependent firm-value processes.

In the example of Figure 1, the first jump at τ1 = 0.53 only affects one firm. In contrast, the second
jump at τ2 = 2.17 affects the other two firms. Jumps are forced in the same direction but have
different sizes. The diffusion components are coupled to the market using ai = 0.5 for i = 1, 2, 3.
Following each negative jump it is likely that several firms default simultaneously. This matches
the empirical observation of default clusters.
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3.3 Segmentation by industry sector

This approach on coupling the individual firm-value processes is inspired by mapping each company
to a specific branche. For instance, each company of the European iTraxx portfolio is assigned to
one of the six branches Auto, Consumer, Energy, Financial, Industrial and TMT. More abstractly,
we may assume S different industry sectors, indexed by s ∈ {1, . . . , S}. We can now introduce
a factor for the market W M

t and a factor for each industry sector W s
t . The Brownian motion of

each company is replaced by a weighted sum consisting of its individual Brownian motion W i
t , the

Brownian motion of the respective industry sector W s
t and the Brownian motion of the market

W M
t . As abbreviation, we introduce

W̃ i
t (ai, ci) = aiW

M
t + ciW

s
t +

√

1− a2
i − c2

i W
i
t , ai, ci ∈ (−1, 1), a2

i + c2
i ≤ 1.

Incorporating dependence via jumps in this framework combines the idea of using common fac-
tors with the idea of supporting joint jumps from Section 3.1. More precisely, we assume some
information to be relevant to all companies and other to affect only a specific industry sector.
Finally, some news are only relevant to an individual company. The ticker processes reporting
these pieces of information are independent Poisson processes denoted by NM

t , N s
t and N i

t , respec-
tively, their intensities are denoted by λM , λs and λi. For company i, relevant news are therefore
reported by the superposition of market, sector and individual Poisson process. This superposition
is abbreviated as

Ñ i
t = NM

t + N s
t + N i

t .

The model of the firm-value process of company i is then given as

V i
t = vi

0 exp
(

X i
t

)

, X i
t = γit + σiW̃

i
t (ai, ci) +

Ñ i
t

∑

j=1

Y i
j . (9)

Again, we find that the univariate margins agree with the single-firm model of Chapter 2.

Lemma 3.2 (Original jump-diffusion model for all margins)
The firm-value process of company i, belonging to sector s, agrees in distribution with vi

0 times the
exponential of a jump-diffusion process with diffusion volatility σi, jump intensity λi = λM +λs+λi

and jump-size distribution IPY i.

Using basic properties of the normal distribution and independence of the Brownian motions W M
t ,

W s
t and W i

t , it is easily seen that the weighted sum W̃ i
t (ai, ci) agrees in distribution with a Brow-

nian motion at time t. Moreover, the superposition of independent Poisson processes is again a
Poisson process and the intensity of the superposition is the sum of the intensities of its summands.

In Section 5 we introduce an algorithm for the pricing of CDOs within the model of Section
3.1. Altering this algorithm for an implementation of our model with different industry sectors
only requires minor changes. However, we focus on the first version of the model as we do not
have sufficient market data to fit this latter variant.

3.4 Properties and applications of the model

One important feature of our model is the possibility of modeling different firms with different
sets of firm-value parameters. This distinguishes our approach from models which accept the
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simplification of a homogeneous portfolio, e.g. Vasicek (1987). Moreover, we do not rely on the
popular conditional independence assumption, compare Hull and White (2004), Laurent and Gre-
gory (2003) and others, as dependence is introduced via jumps and via diffusion in our model.
Also, we explicitly model the evolution of each firm-value process over time, which allows the si-
multaneous pricing across all maturities. Finally, we continuously test for default which generalizes
structural models such as Willemann (2007). In this section, we briefly comment on consequences
and possible applications of these properties.

1. Creating sub-portfolios: Given identical companies, the loss distribution of each sub-
portfolio only depends on its size. In contrast, sub-portfolios in our model are automatically
equipped with a realistic default structure, if the individual firms are calibrated appropriately.
An application of this property is the simultaneous pricing of CDS sector indices, that are
sub-portfolios consisting only of companies of one industry sector.

2. Sensitivity to defaults: If a company defaults, it is likely that this company was rated
below the average rating of the portfolio. In a model with identical companies, CDO spreads
of the remaining portfolio remain unchanged. In our model, the average default probability
of the remaining portfolio decreases, if one of the substandard companies defaults. The
result is that spreads of a newly issued CDO contract, based on the remaining companies,
are decreasing. We interpret this as the relief of the market that one of the substantial risk
factors is removed from the portfolio. The opposite holds, if a company defaults which was
considered to be a safe investment. Then, the average default probability of the remaining
portfolio increases, and so do spreads of a new CDO contract on the remaining portfolio.

3. Changes in the portfolio’s constitution: For instance, the composition of the iTraxx
portfolio changes twice per year. Several companies are delisted from the portfolio and
replaced by new firms. The default structure of the updated portfolio obviously depends on
the relative creditworthiness of the new companies compared to the old firms. Capturing
this feature also requires heterogeneous companies.

4. Simultaneously describing single and multi-name derivatives: Our model is able
to describe the term structure of default probabilities of each company in the portfolio, as
implied by individual CDS spreads for different maturities. This property is presumably the
major improvement to pure dependence models for practical applications. When it comes to
a calibration of the model, this feature is a burden (as a large number of parameters have to
be adjusted) and an advantage (as it allows the use of a vast quantity of market information
as input for the calibration) at the same time. We demonstrate this in detail in Section 6.

5. A time consistent framework: Another important aspect is the consistency of our model
with respect to time, as we explicitly model the evolution of each firm-value process. There-
fore, the model specifies the complete term structure of portfolio loss distributions, which
allows to price portfolio derivatives with different maturities within a consistent framework.
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4 Dependence among the companies in our model

4.1 Asset value correlation

In this section we present a closed-form expression of the correlation of X i
t and Xj

t , the exponents
of the respective firm-value processes V i

t and V j
t . If both processes are continuous, that is

X l
t = γlt + σl

(

alW
M
t +

√

1− a2
l W

l
t

)

, l ∈ {i, j},

then Cov
(

X i
t , X

j
t

)

= σiσjaiajt is deduced from independence of all Brownian motions and prop-

erties of the covariance. Therefore, the correlation of X i
t and Xj

t is given by

Corr
(

X i
t , X

j
t

)

= aiaj . (10)

As the continuous model is a special case of our jump-diffusion framework, a general result nec-
essarily reduces to Equation (10) if we set λ = 0, bi = bj = 0 or IPi

Y = IPj

Y = δ0. This necessary
property is easily verified in Theorems 4.1 and 4.2 presented below.

Theorem 4.1 (Asset-value correlation, independent jumps)
Given the model of Section 3.1 with independent jumps and square integrable jump-size distributions
IPi

Y and IPj

Y , the correlation of X i and Xj satisfies

ρX = Corr
(

X i
t , X

j
t

)

=
σiσjaiaj + λbibjIE[Y i]IE[Y j]

√

σ2
i + λbiIE

[

(Y i)2]
√

σ2
j + λbjIE

[

(Y j)2]
.

Proof : By independence of both diffusion and jump components and by repeating the arguments
of the pure diffusion case above, we obtain

Cov
(

X i
t , X

j
t

)

= σiσjCov
(

aiW
M
t , ajW

M
t

)

+ Cov
(

CP i
t , CP j

t

)

= σiσjaiajt + λtbibjIE[Y i]IE[Y j ], (11)

where the abbreviation CP l
t =

∑Nt(bl)
k=1 Y l

k for l ∈ {i, j} is used. To justify Equation (11) we
have to derive the covariance of the jump components. This is achieved by first conditioning on
the number of information Nt = k, then on the number of jumps Nt(bi) = li and Nt(bj) = lj,
respectively. Given the Poisson distributed random variable Nt ∼ Poi(λt), the number of jumps of
the thinned-out Poisson processes Nt(bi) and Nt(bj) follow binomial distributions with respective
parameters. We identify the sums involved in the following computation as the expectation of a
binomial distribution and the second moment of a Poisson distribution. Therefore, we find

IE
[

CP i
t CP j

t

]

= IE [IE[CPiCPj|σ(Nt, Nt(bi), Nt(bj))]]

= IE

[ ∞
∑

k=0

( k
∑

li=0

k
∑

lj=0

( li
∑

l=1

Y i
l

)( lj
∑

l=1

Y j

l

)

·
(

k
li

)

bli

i (1− bi)
k−li

(

k
lj

)

blj

j (1− bj)
k−lj

)

(λt)ke−λt

k!

]

= bibjIE[Y i]IE[Y j]

∞
∑

k=0

k2 (λt)ke−λt

k!

= bibjIE[Y i]IE[Y j]
(

(λt)2 + λt
)

.
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The claim follows since IE[CP l
t ] = tλblIE[Y l] for l ∈ {i, j}, and the variances of the jump-diffusion

processes X l
t are given by Var(X l

t) = t
(

σ2
l + λblIE[(Y l)2]

)

, for l ∈ {i, j} respectively. ♦

The assumption of independent jumps considerably simplified the main computation of this proof.
If jumps in the same direction are imposed instead, then one has to additionally condition on
the number of jumps of both companies in either direction. Under some mild conditions on the
symmetry of the jump-size distributions, we are able to obtain the corresponding result in the
context of Section 3.1 with jumps in the same direction.

Theorem 4.2 (Asset-value correlation, dependent jumps)
We consider the model of Section 3.1 with jumps in the same direction. We define Y l

⊕ and Y l
⊖, for

l ∈ {i, j}, to be the size of a positive and negative jump, respectively, given the sign of the jump
Y l. More precisely, the distributions of Y l

⊕ and Y l
⊖ are given for x > 0 by IP(Y l

⊕ ≤ x) = IP(Y l ≤
x|Y l > 0) and IP(Y l

⊖ ≤ x) = IP(−Y l ≤ x|Y l < 0), respectively. Again we assume square integrable
jump-size distributions IPY l for l ∈ {i, j}. Further, we impose the following assumptions on the
symmetry of the jump-size distributions

IPY l

(

Y l > 0
)

= IPY l

(

Y l < 0
)

= 0.5, l ∈ {i, j},

and
IE

[

Y i
⊕

]

= IE
[

Y i
⊖

]

= IE
[

|Y i|
]

, IE
[

Y j
⊕

]

= IE
[

Y j
⊖

]

= IE
[

|Y j |
]

.

Then, the processes X i and Xj satisfy

ρX = Corr
(

X i
t , X

j
t

)

=
σiσjaiaj + λbibjIE[|Y i|]IE[|Y j|]

√

σ2
i + λbiIE

[

(Y i)2]
√

σ2
j + λbjIE

[

(Y j)2]
.

Proof : Large parts of this proof are similar to the proof of Theorem 4.1. The main difference is
the more complicated computation of the expectation of the product of the jump components, i.e.
IE[CP i

t CP j
t ], as jumps at common jump times are forced to have the same direction. We again

start by conditioning on the amount of information up to time t. By construction, this is an upper
bound for the number of jumps of the processes X i and Xj up to time t. Following a Poi(λt)
distribution, we have IP(Nt = k) = (λt)ke−λt/k!. Given Nt = k, we additionally condition on how
much of this news is positive. This yields

IP(l|k) = IP( l positive news |Nt = k) =

(

k
l

)

0.5l(1− 0.5)k−l, 0 ≤ l ≤ k.

Given k news from which l are classified as good, the number of bad news is given by k − l. The
conditional probabilities of X i to have exactly li⊕ upward and li⊖ downward jumps are therefore
given and abbreviated as

IP(li⊕|l) =

(

l
li⊕

)

b
li
⊕

i (1− bi)
l−li

⊕, 0 ≤ li⊕ ≤ l,

IP(li⊖|l) =

(

k − l
li⊖

)

b
li
⊖

i (1− bi)
k−l−li

⊖, 0 ≤ li⊖ ≤ k − l.

14



The probabilities IP(lj⊕|l) and IP(lj⊖|l) are defined similarly for Xj. Using these abbreviations we
rewrite IE

[

CP i
t CP j

t

]

as

IE

[ ∞
∑

k=0

(

k
∑

l=0

ISi(l, k) · ISj(l, k)IP(l|k)
)

IP(Nt = k)

]

, (12)

where the inner sums ISi(l, k) and ISj(l, k) are defined as

ISi(l, k) =
l

∑

li
⊕

=0

k−l
∑

li
⊖

=0

( li
⊕

∑

h=1

Y i
⊕h
−

li
⊖

∑

h=1

Y i
⊖h

)

IP(li⊕|l)IP(li⊖|l),

ISj(l, k) =
l

∑

l
j
⊕

=0

k−l
∑

l
j
⊖

=0

( l
j
⊕

∑

h=1

Y j
⊕h
−

l
j
⊖

∑

h=1

Y j
⊖h

)

IP(lj⊕|l)IP(lj⊖|l).

We take the expectation inside in Equation (12) and use that IE [|Y i|] = IE
[

Y i
⊕

]

= IE
[

Y i
⊖

]

. Using
the expectation of a binomial distribution with l, respectively k − l, experiments and success
probability bi, we find

IE
[

ISi(l, k)
]

=
l

∑

li
⊕

=0

k−l
∑

li
⊖

=0

(

li⊕IE[|Y i|]− li⊖IE[|Y i|]
)

IP(li⊕|l)IP(li⊖|l)

= (2l − k)biIE
[

|Y i|
]

.

Similarly, it holds that IE
[

ISj(l, k)
]

= (2l − k)bjIE [|Y j|]. We further observe that

k
∑

l=0

(2l − k)2bibjIE[|Y j |]IE[|Y i|]IP(l|k) = bibjIE[|Y j|]IE[|Y i|]k.

This holds, since the sum allows the interpretation of being 4bibjIE[|Y j|]IE[|Y i|] times the variance
of a binomial distribution with k experiments and success probability 50%. Finally, the outer sum
is bibjIE[|Y j|]IE[|Y i|] times the expectation of a Poi(λt) distribution. Therefore, we find

IE[CP i
t CP j

t ] = λtbibjIE[|Y j |]IE[|Y i|].

At the same time, this is the covariance of the jump components, since IE[CP i
t ] = IE[CP j

t ] = 0,
by the initial assumptions on the symmetry of IPY i and IPY j . ♦

Let us finish this section with a brief remark on the results of Theorems 4.1 and 4.2. First of
all, the postulated correlations are within the required range of [−1, 1], due to the Cauchy-Schwarz
inequality. Moreover, both results contain the pure diffusion model as a special case. The fact that
allowing common jumps does not necessarily increase the asset correlation of two firms is remark-
able. For instance, if the expectation values of the jump-size distributions of two companies have
opposite signs, then it is even possible to model a negative correlation of X i and Xj . However,
modeling jumps using common signs always implies a positive correlation of the respective jump
components, which agrees with our intuition.
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4.2 Default correlation in our model

In the context of credit-risk modeling, the default correlation of two companies is defined below.

Definition 4.1 (Default correlation)
Let the default status of company i ∈ {1, . . . , I} at time t be explained by the indicator variable
Di = {Di

t}t≥0, where Di
t = 1{τ i≤t}. The default correlation of two companies i 6= j up to time

t > 0 is then defined as

ρD
t = Corr

(

Di
t, D

j
t

)

=
IE

[

Di
tD

j
t

]

− IE[Di
t]IE[Dj

t ]
√

Var (Di
t)Var (Dj

t )
.

Being Bernoulli distributed random variables, the expectation and variance of Di
t can easily be

expressed in terms of default probabilities. Without jumps, these default probabilities are even
known in closed-form. In the presence of jumps, these default probabilities have to be estimated
by means of a Monte Carlo simulation or can be approximated via their Laplace transform if two-
sided exponentially distributed jumps are assumed. More delicate is the calculation of IE[Di

tD
j
t ],

which is the probability of a joint default of company i and j up to time t. This expectation is
difficult to obtain, as for non-degenerated choices of model parameters, the firm-value processes
of both companies are dependent random variables and so are their running minimums. However,
in a purely continuous model it is possible to express the default correlation of two companies
in terms of a double integral of Bessel functions. This result was derived by Zhou (2001a) using
several results of Rebholz (1994). In the presence of jumps, we have to rely on a Monte Carlo
simulation to estimate these quantities. Before we present our findings, let us remark that such a
Monte Carlo simulation requires a large number of runs to produce reliable results, since multiple
defaults are rare events. Our Monte Carlo simulation is a simple modification of the first part
of Algorithm 5.1, we omit the details of this modification. We controlled the accuracy of our
algorithm by reproducing some of the tables of Zhou (2001a) in a pure diffusion case.

Figure 2 exhibits simulated default correlations of two identical companies with parameters γ = 0,
σ = 0.05, two-sided exponentially distributed jumps with symmetric jumps-size distribution and
λ⊕ = λ⊖ = 20 as parameter for the exponential distribution, i.e. IPY = 2-Exp (20, 20, 50%), and a
debt-to-value ratio of d/v0 = 85%. This experiment is performed in the framework of Section 3.1
with dependent jumps. On the left-hand side, we fix a = 0.5 and vary b. To keep the individual
default probabilities constant, we fix the individual jump intensity, which is the product bλ. The
figure on the right-hand side is calculated based on a fixed level of b = 0.5, λ = 4 and different
levels of a, where we recall that changes in a do not affect individual default probabilities.

An obvious but nevertheless important observation is that our model has two parameters to ad-
just the default correlation, giving more flexibility compared to pure diffusion models with a single
common factor. Moreover, supporting common jumps produces simultaneous defaults already for
small maturities. This differs significantly from the situation in a continuous model, where mul-
tiple defaults within the first year are extremely rare events. The fact that a continuous model
requires much more time to generate a relevant default correlation becomes even more evident in
Figure 3. This observation has a massive consequence for the pricing of portfolio-credit deriva-
tives with small maturity, as a continuous model handles the companies almost as if they where
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Figure 2: Implied default correlations for fixed a and b, respectively.

independent. Figure 3 is produced using the same setup as before, the parameters are γ = 0,
σ = 0.05, IPY = 2-Exp (20, 20, 50%), d/v0 = 85%, a = 0.4, and b = 0.5, the three scenarios differ
by the influence of jumps. This experiment shows that the largest default correlation was implied
across all maturities by the model of Section 3.1 with dependent jumps. Recalling Theorem 4.1, we
compute that adding independent jumps with zero expectation to a continuous model actually de-
creases the asset-value correlation. Still, the model of Section 3.1 with independent jumps implies
a larger default correlation than a continuous model for small maturities. For longer maturities,
the opposite holds, showing that the asset correlation should not be used alone to measure the
dependence among two companies. The phenomenon that continuous models require much more
time to produce a relevant default correlation should be kept in mind if portfolio derivatives with
short maturities are priced.
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Figure 3: Default correlations with independent, dependent and no jumps.
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5 Pricing CDOs via Monte Carlo

CDOs are portfolio derivatives whose payment streams depend on a pool of defaultable assets. The
general idea is to pool credit-risky assets and to resell the resulting portfolio in several tranches
with different risk profile. Mathematically, the tranches of a CDO can be seen as options on the
overall loss distribution of the portfolio. We assume the reader to be familiar with the mechanics
of CDOs, a capacious introduction to legal issues, taxation and accounting questions has been
published by JP Morgan, compare Lukas (2001).

In order to mathematically describe the payment streams we introduce the following abbrevia-
tions. Let J be the number of tranches, indexed by j, and the overall portfolio loss process at
time t be denoted by Lt. Each tranche j ∈ {1, . . . , J} is specified by its upper uj and lower lj

attachment point. For instance, the first tranche usually covers [0%, 3%] of the portfolio. Using
these attachment points we can express the loss Lj

t in tranche j up to time t as a function of the
portfolio loss Lt via

Lj
t = min

(

max
(

0, Lt − lj
)

, uj − lj
)

.

Todays market standard is defined by the European iTraxx portfolio and its American equivalent
DJ CDX. Table 2 lists their respective segmentation.

I = 125 companies iTraxx DJ CDX
j Tranche lj uj lj uj

1 Equity 0% 3% 0% 3%
2 Junior mezzanine 3% 6% 3% 7%
3 Senior mezzanine 6% 9% 7% 10%
4 Senior 9% 12% 10% 15%
5 Super senior 12% 22% 15% 30%

Table 2: The iTraxx and DJ CDX segmentation with relative attachment points.

The premium and default legs of a CDO

Specifying a CDO begins with fixing a payment schedule 0 < t1 < . . . < tn = T , where quarter-
yearly payments are a typical convention and assumed in what follows. The protection buyer
is committed to pay the product of remaining nominal and spread (relative to the length of the
preceding period) of the respective tranche. Hence, the expected discounted premium leg of tranche
j is given by (with attachment points as absolute values)

EDPLj =
n

∑

k=1

sj∆tke
−rtk

(

uj − lj − IE[Lj
tk

]
)

, (13)

where a flat interest rate r > 0 is assumed and sj is the annualized spread of this tranche. In
practice, the default (or protection) leg of tranche j allows payments at any time up to maturity. A
default payment occurs if some company defaults and the resulting loss affects the specific tranche.
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To simplify the computation we defer default payments to the next premium payment date. This
assumption allows to conveniently express the expected discounted default leg of tranche j as

EDDLj =

n
∑

k=1

e−rtk
(

IE[Lj
tk

]− IE[Lj
tk−1

]
)

. (14)

As for most swap products, CDO tranches (with maturity T ) are typically quoted in terms of
their annualized spread sj

T . This spread is chosen such that the expected discounted default leg
agrees with the expected discounted premium leg of the same tranche. Let us remark that it has
become market practice to modify the premium stream of the equity tranche using a fixed spread
of 500 bp, which is usually below the fair spread of this tranche. Therefore, an additional upfront
payment is needed which is paid upon settlement. The amount of upfront payment is quoted in
percent of the nominal of the equity tranche. The fair upfront payment therefore satisfies

(upfront in %) ·
(

u1 − l1
)

+

n
∑

k=1

0.05 ∆tke
−rtk

(

u1 − l1 − IE[L1
tk

]
)

= EDDL1.

An efficient pricing algorithm based on a Monte Carlo simulation is given below, further required
notations are the recovery rate Ri and nominal N i of company i.

Algorithm 5.1 (Monte Carlo estimation of CDO tranche spreads)
Within each simulation run, perform the following steps.

I) Simulate the required random variables

1. Simulate the number of information arriving until T , i.e. NT ∼ Poi(λT ).

2. Simulate the location of 0 < τ1 < . . . < τNT
< T . Conditioned on NT , these random times

are distributed as order statistics of Uni(0, T ) distributed random variables on [0, T ], which
allows an efficient implementation.

3. Define an equidistant grid on [0, T ] with mesh κ which contains all premium payment dates.
We propose to choose a monthly grid, that is κ = 1/12.

4. Combine this equidistant grid with τ1 < . . . < τNT
to a refined partition of [0, T ]. Denote the

points of this partition by 0 = t0 < t1 < . . . < tn < tn+1 = T . This partition is not equidistant
but contains the jump times of all companies and the times of all premium payments. Note
that in between two points of this partition each firm-value process is continuous.

5. Simulate a realization of the Brownian motion of the market W M on the partition above.
More precisely, generate a series of independent random variables x1, . . . , xn+1, where xj ∼
N (0, ∆tl). Then, inductively compute W M

tl
via

W M
t0

= 0, W M
tl

= W M
tl−1

+ xl, ∀l ∈ {1, . . . , n + 1}.

6. Simulate the exponent of each firm-value process at the points of the partition. First, de-
termine the jumps of each firm-value process. Simulate I times a series of NT independent
Bernoulli experiments, where the success probabilities in the ith series are given by bi. The
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outcomes of these experiments are denoted by Bi
l and specify the jump times of each firm-

value process. More precisely, a success in experiment l of series i, i.e. Bi
l = 1, corresponds

to a jump of V i at position τl.

The next step depends on whether we assume independent jump sizes, that corresponds to
the model of Section 3.1 with independent jumps, or jumps in the same direction.

(a) If jumps are assumed to be independent, simulate I times NT independent random num-
bers, denoted by yi

l , where

yi
l ∼

{

IPY i : Bi
l = 1,

δ0 : Bi
l = 0.

(b) If dependent jumps are used, perform NT independent Bernoulli experiment with success
probability p = 50% to determine the common sign at each τl. Then, simulate each yi

l

as above, conditioned on the respective sign.

Finally, simulate the increments of the diffusion components in between the points of the
grid. This corresponds to simulating I times n + 1 independent random numbers xi

l, where
xi

l ∼ N (0, ∆tl), and the construction below.

For each company, inductively compute X i
t0
, X i

t1−
, X i

t1
, . . . , X i

tn+1
by X i

t0
= 0 and

X i
tl−

= X i
tl−1

+ γi∆tl + σi

(

ai∆W M
tl

+
√

1− a2
i x

i
l

)

, ∀ l ∈ {1, . . . , n + 1},

X i
tl

=

{

X i
tl−

+ yi
l : ∃ j ∈ {1, . . . , NT} : tl = τj ,

X i
tl−

: tl 6= τj , ∀ j ∈ {1, . . . , NT},
∀ l ∈ {1, . . . , n + 1}.

7. Define F∗ as the information of all firm-value processes on the grid, i.e.

F∗ = σ
{

X i
tl−

, X i
tl
, tl : l ∈ {0, . . . , n + 1}, i ∈ {1, . . . , I}

}

.

8. Calculate survival probabilities of each company up to each point of the grid, conditional on
F∗. These are found using the distribution of the running minimum of a Brownian bridge,
compare Borodin and Salminen (1996), page 61, or Karatzas and Shreve (1997), page 265.
Let

IPIPi
l = IP

(

τ i ≥ tl|F∗
)

= IP

(

inf
0≤s<tl

{

X i
s

}

> log
(

di/vi
0

)

∣

∣

∣

∣

F∗
)

.

Moreover, denote the conditional probability of each firm not to default within [tl−1, tl) by

IPi
l = IP

(

τ i /∈ [tl−1, tl)|F∗
)

= IP

(

inf
tl−1≤s<tl

{

X i
s

}

> log
(

di/vi
0

)

)
∣

∣

∣

∣

F∗
)

,

which is found using the distribution of the minimum of a Brownian motion.

II) Estimate the expected loss at each tl

1. Initialize
(

Lt0 , . . . , Ltn+1

)

by (0, . . . , 0).

2. For each company i ∈ {1, . . . , I} let l ∈ {0, . . . , n} loop through each point of the grid and
consider the following cases.
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(a) X i
tl+1−

> log (di/vi
0) and X i

tl+1
> log (di/vi

0).

These conditions prevent company i from defaulting by jump at tl+1. Nevertheless, even
if the firm-value process at time tl+1 is above di, the probability of its running minimum
to touch this level is given by 1− IPi

l+1. We consider this probability of overseeing such
a default by increasing Ltl+1

by

IPIPi
l

(

1− IPi
l+1

)

N i(1− Ri).

The factor IPIPi
l

(

1− IPi
l+1

)

is the conditional probability given F∗ of company i to sur-
vive up to tl− and to default in [tl, tl+1).

(b) X i
tl+1−

≤ log (di/vi
0) or X i

tl+1
≤ log (di/vi

0).

In this case, company i defaults within (tl, tl+1]. We increase Ltl+1
by

IPIPi
lN

i(1− Ri).

3. So far, we calculated the losses which occurred in each interval of the partition. These losses
are now aggregated to obtain the cumulative loss at each tl. For l = 0, . . . , n − 1, increase
Ltl+1

by Ltl .

III) Estimate the expected discounted premium leg of each tranche

1. Initialize the estimate EDPLj by zero for all tranches j ∈ {1, . . . , J}.

2. For each tranche j ∈ {1, . . . , J} loop through all premium payment dates {tp1, . . . , tpn}. At
each payment date, increase EDPLj by the estimated expected discounted premium payment
given F∗, which is given by

e−rt
p

l ·∆tpl ·
(

uj − lj −min
{

max
{

0, Lt
p

l
− lj

}

, uj − lj
})

, tpl ∈ {tp1, . . . , tpn}.

3. If accrued interest has to be considered, we proceed as follows. Given the payment dates
tpl−1 and tpl and the corresponding losses, we have to assess where these losses occurred. To
approximate this, let tk loop from the point after tpl−1 to tpl . For each tk, increase EDPLj by

e−rt
p

l

(

(tk + tk−1)/2− tpl−1

) (

Lj
tk
− Lj

tk−1

)

.

This product is the discount factor of the payment date tpl , the distance between the midpoint
of tk−1 and tk to the previous payment date tpl−1 and the loss of tranche j in (tk−1, tk].

IV) Estimate the expected discounted default leg of each tranche

1. Initialize the estimate EDDLj by zero for all tranches j ∈ {1, . . . , J}.

2. For each tranche j ∈ {1, . . . , J} loop through all premium payment dates {tp1, . . . , tpn}. At each
payment date, increase EDDLj by the expected discounted loss within the preceding period
given F∗, which is given by

e−rt
p

l ·
(

Lj

t
p

l

− Lj

t
p

l−1

)

, tpl ∈ {tp1, . . . , tpn},

where Lj

t
p

l

= min
{

max
{

0, Lt
p

l
− lj

}

, uj − lj
}

.
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V) Summarizing each Monte Carlo run

1. After each Monte Carlo run, store the expected discounted premium and default leg of all
tranches j ∈ {1, . . . , J}, indexed by the number of the current run.

2. Reinitialize all variables and proceed with the next run.

3. After the final run, calculate the average of all expected discounted premium and default
legs of each tranche, as simulated in the different runs. These quantities are then used to
estimate the expected fair spread of the corresponding tranche or to assess the market value
of the contract, whichever is of interest.

5.1 Discussion of the pricing algorithm

It is typical for numerical routines to face a tradeoff between speed and accuracy. In what follows,
we explain how the algorithm is efficiently implemented. Also, we address some numerical pitfalls
which have to be considered. A common configuration of CDO portfolios (iTraxx convention) sets
the number of companies to I = 125, which emphasizes the importance of a fast implementation
of this high-dimensional problem.

1. To begin with, let us discuss on how many random numbers the algorithm requires in each
Monte Carlo run. In total, we have to simulate I firm-value processes on a grid. On average,
this grid consists of IE[NT ] = λT random times and Tκ−1 + 1 systematic points. For each
increment ∆tl, a realization of a normally distributed random variable is required for each
company and the Brownian motion of the market. At each τl it is further required to check
for jumps via a Bernoulli experiment and to simulate a jump size if the respective experiment
succeeds. In total, about O(T (3λ + κ−1)I) simulations of random numbers are required4. In
our implementation, we use the random-number generators of the NAG-software library.

2. For each company, it is further required to compute the conditional survival probabilities
IPIPi

l and IPi
l. To do so, the iteration IPIPi

l+1 = IPIPi
l · IPi

l+1 is useful. Moreover, as soon as
IPIPi

l = 0 for some l, this iteration is stopped and all following IPIPi
k are set to zero. The

remaining IPi
k are not required any more.

3. An important concern is the mesh κ of the systematic grid of [0, T ], as our algorithm implies
a small discretization bias with respect to the common factor W M . In between two points of
the grid, we take into account the individual probability of a company to default unobserved.
What we do not control is the evolution of the common factor W M , which is possibly re-
sponsible for multiple defaults. Therefore, we slightly underestimate the default correlation
of the model. However, several numerical experiments (with a pure-diffusion model as worst
case scenario for the discretisation bias) have shown that a monthly grid is fine enough for
pricing CDOs. In our experiments, a finer grid did not change spreads below the noise of
the Monte Carlo simulation.

4. If a CDO contract is already on the run, the time until the first premium payment does not
agree with the time between every other two premium payments. In this case, an equidistant

4For a typical 5-year contract in an iTraxx framework, this number is around 20,000.
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grid typically does not contain all premium payment dates. Therefore, one needs to insert
one additional small interval, for instance, ∆t1 < κ can be chosen appropriately.

6 Calibration

A calibration of our model is ambitious, since the model contains a large number of parameters.
However, we designed the model to simultaneously explain single and multi-name derivatives,
which allows the use of a vast quantity of market quotes as input variables. The key observation
for fitting the model is Lemma 3.1. This result shows that the parameter ai does not affect the
distribution of τ i. Also, as long as the product biλ is kept constant, one can adjust bi without
altering the term structure of default probabilities of company i. Summarized, this suggests to
initially fit the individual firm-value parameters, followed by a calibration of the parameters of the
dependence structure in which the marginal default probabilities remain unchanged.

6.1 Calibration of each firm to individual CDS quotes

We used CDS quotes of the seventh European iTraxx series to fit the individual firm-value pro-
cesses. The iTraxx portfolio contains 125 companies from six business sectors with a large spec-
trum of ratings, emphasizing the inadequacy of a homogeneous portfolio assumption. Spreads are
quoted for contracts maturing in one, three, five, seven and ten years, respectively. All contracts
are computed based on a recovery rate of 40%. Missing values where extrapolated or interpolated
using the average slope of all available companies, attached to the listed CDS contract with the
closest maturity of the same company. Additionally, iTraxx provides portfolio CDS spreads and
spreads for the different tranches of the CDO. Matching these prices was our criteria for a fit of
the dependence structure. The term structure of default-free interest rates in the Eurozone was
obtained from Bloomberg. These deterministic interest rates were used to replace the flat interest
rate r > 0 in all pricing formulas.

The calibration algorithm

We assume two-sided exponentially distributed jumps, which allows the use of our numerical
routine for evaluating CDS spreads. To decrease the dimension of the parameter space we fix
pi = 50% (the probability for upward jumps) and λi

⊕ = λi
⊖ (the parameter of the exponential

distribution). This simplification significantly accelerates the convergence of the minimization and
accounts for the fact that our set of data only contains five data points per company, which makes
a calibration with more parameters too unstable. The objective function that is minimized is the
sum of relative differences

(

γ̂i, σ̂i, λ̂i, λ̂i
⊕ = λ̂i

⊖

)

= argmin
∑

t∈{1,3,5,7,10}

∣

∣

∣

∣

cR,i
t − cM,i

t

cR,i
t

∣

∣

∣

∣

, (15)

where cM,i
t is the model spread of company i, depending on the set of parameters, and cR,i

t is the
market quote for the respective firm and maturity. This construction guarantees that all maturities
are considered to equal parts in the minimization. The initial leverage ratio was obtained from the
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last available balance sheet of each company, as reported by Bloomberg. The level d was chosen as
the sum of all short term liabilities and 50% of all long term debt.

Our implementation starts with a search for parameters on a coarse grid over the parameter
space. Then, the minimization routine nag opt bounds no deriv is started at the best grid point
of the previous step. It turned out that this minimization routine converged extremely fast from
this initial position. For the multidimensional model, the additional constraint λ ≥ maxi∈{1,...,I} λ̂i

is required, as jumps are triggered by the common ticker process N with intensity λ. Therefore, we
restrict each parameter λi by some artificial upper bound λmax in Equation (15). In our set of data,
all companies had an implied jump intensity of less than two, so λmax = 2 was a condition which
did not decrease the fitting capability of the model. For the latter calibration of the dependence
parameters, the initial value for bi is set to bi = λ̂i/λmax, the initial intensity λ of the ticker process
N is set to λmax.

The calibration to CDO spreads

At first, we have to specify the measure of distance of model to market quotes. Choosing such a
measure is not obvious, as the first tranche is quoted in terms of an upfront payment, while the other
tranches are quoted in basis points. In what follows, we choose the parameters of the dependence
structure such that the quoted equity tranche is matched by the model, i.e. the deviation of model
to market upfront is below bid-ask spreads (for which we assumed 0.08%). Then, the sum of
absolute distances of model to market spreads over all remaining tranches is used as a measure of
the fitting capability of the model. Our CDO pricing algorithm is a Monte Carlo simulation, which
complicates the use of sophisticated search routines. Therefore, we implement a näıve search on a
grid over the dependence parameter of the model. To make this approach numerically tractable,
we have to reduce the dimension of the problem. To do so, we assume a homogeneous correlation
of all firms to the market factor, i.e. a = ai for all i ∈ {1, . . . , I}. Adjusting the parameters bi is
done conditional on the constraint λ̂i = biλ for all i ∈ {1, . . . , I}, which is required for preserving
the previously calibrated individual default probabilities. Therefore, we gradually increase λ and
adjust each bi appropriately. The implied dependence is obviously decreasing in λ. More precisely,
with λmax as described above, we define

λ(x) = λmax/x, bi(x) = λ̂ix/λmax, x ∈ (0, 1]. (16)

This construction guarantees a constant jump intensity of bi(x)λ(x) ≡ λ̂i for each firm and all
x ∈ (0, 1]. Given this construction, we proceed as follows.

1. Define a grid on [0, 1)× (0, 1]. We used 30× 30 equidistant points, where more points would
obviously improve the fitting capability of the model for the costs of more computations.

2. Derive CDO spreads using Algorithm 5.1 for each point of the grid.

3. Compute the required measure of distance for each point of the grid.

4. Find the minimal distance of model to market prices on the grid.

5. Use Equation (16) to retrieve b̂i from x̂, λmax and λ̂i.
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Adjusting d/v0 to match index CDS spreads

Up to this point, we only used individual CDS and CDO tranche quotes to fit the model. Ad-
ditionally, iTraxx provides index CDS (or portfolio CDS) quotes of the respective portfolio. One
can use index spreads to check whether the combined individual default probabilities agree with
the market’s expectation for the portfolio, which typically differs due to liquidity effects. In our
calibration, we observed that these prices are matched relatively well. Typically, a deviation of less
than two basis points was observed for the five year spread. To also incorporate these spreads, it is
possible to adjust the individual default probabilities of all companies until a better fit to observed
portfolio CDS spreads is achieved. To do so, we suggest multiplying each leverage ratio di/vi

0 by
an appropriate correction term, which is determined prior to the calibration to CDO quotes. In
our calibration of the jump-diffusion model, a correction of less than 1.5% was usually sufficient,
while for the pure diffusion model a factor of about 16% was required. Of course, adjusting the
individual default probabilities goes along with sacrificing precision in matching individual CDS
contracts. Therefore, this adjustment should not be used if individual and portfolio derivatives are
priced simultaneously.

6.2 Results of the individual calibration to CDS spreads

We calibrate each of the 125 firms to CDS data of five days - giving 625 individual calibrations. The
same calibrations are performed within a pure diffusion setup (PD) - corresponding to the model
of Black and Cox (1976). Reported are pricing errors in bp, averaged over all 125 companies, for
each day and maturity in Table 3. We observe that the pure diffusion model has massive problems
in matching one- and ten-year spreads. This mispricing is the result of the unrealistic hump-size
structure of spreads, with zero limit at the short end. Therefore, one- and ten-year spreads are
typically underestimated, while three-, five- and seven-year spreads are overestimated, instead. In
contrast, the jump-diffusion model (JD) turns out to be flexible enough to fit every term-structure
of CDS spreads of the iTraxx portfolio with high precision.

Maturity 1 year 3 years 5 years 7 years 10 years

Day JD PD JD PD JD PD JD PD JD PD
6.12 1.01 4.85 0.40 0.74 0.66 2.52 0.61 1.56 1.97 9.98
6.14 1.10 5.08 0.55 0.59 0.62 2.55 0.23 1.46 2.10 10.05
6.19 0.95 4.86 0.57 0.75 0.62 2.55 0.29 1.57 2.11 10.51
6.21 1.26 5.54 0.60 0.75 0.70 2.60 0.60 1.78 2.36 10.37
6.26 0.96 5.62 0.61 0.98 0.94 2.97 0.52 2.15 2.54 11.37

Table 3: Average absolute pricing error in bp.

6.3 Results of the calibration to CDO spreads

The results of our CDO calibration are computed with 250,000 Monte Carlo runs and presented in
Table 4. If we use the firm-value parameters as obtained from the CDS calibration (to simultane-
ously describe CDS and CDO spreads), we observe that index CDS quotes are matched relatively
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well by the jump-diffusion model but not at all by the pure diffusion model, whose results are so
far from market quotes that we did not report them. Reasons for not perfectly matching the index
CDS are mispricings in the individual calibration (especially for the pure diffusion case) and also
a liquidity premium which raises individual spreads. Still, we obtained realistic quotes for CDO
tranches with this setup. The fitting quality of the individual tranches is further improved if an
adjustment, as described in Section 6.1, is used. For the pure diffusion case (aPD), an adjustment
of about 16% was required, the required adjustment in the jump-diffusion framework (aJD) was
about 1.5%. Focusing on the fitting capability of the jump-diffusion model, we notice that the fit
of the second and fifth tranche is not satisfying, the other tranches are priced very accuracy. As
long as a perfect fit to the equity tranche is required (which comprises by far the most spread), the
second tranche is overpriced by the model, the fifth tranche is underpriced. This phenomenon5 is
reduced, but not completely eliminated by presence of jumps.

Day Mod. up s2 s3 s4 s5 iCDS a x d1 d2−5

6.12 real 7.40 45.12 11.84 5.18 2.14 21.48 - - - -
aJD 7.46 76.21 14.90 3.60 0.38 21.37 0.93 0.53 0.06 37.49
JD 7.48 105.02 26.79 7.97 0.94 22.75 0.77 0.87 0.08 78.84

aPD 7.92 72.19 11.69 2.25 0.14 21.65 0.40 - 0.52 32.14
6.14 real 7.36 45.75 12.00 5.11 2.19 21.10 - - - -

aJD 7.35 65.76 11.02 2.36 0.24 20.84 0.90 0.47 0.01 25.69
JD 7.39 106.39 27.91 9.01 1.50 22.85 0.97 0.77 0.03 81.14

aPD 7.44 69.77 11.17 2.12 0.13 21.27 0.40 0.08 29.91
6.19 real 7.13 47.28 12.344 5.77 2.12 21.01 - - - -

aJD 7.11 70.53 12.55 2.78 0.25 20.88 0.93 0.50 0.01 28.32
JD 7.20 108.12 28.92 8.90 1.35 22.79 0.87 0.87 0.08 81.32

aPD 7.34 69.03 11.00 2.07 0.13 21.18 0.40 - 0.21 28.79
6.21 real 8.48 50.47 13.28 6.11 2.43 22.78 - - - -

aJD 8.51 89.59 18.74 5.01 0.58 22.58 0.97 0.57 0.01 47.52
JD 8.48 122.69 34.43 10.80 1.70 24.26 0.80 0.93 0.00 98.79

aPD 7.98 88.81 18.68 4.73 0.50 22.47 0.43 - 0.50 47.04
6.26 real 11.87 63.70 16.26 7.35 3.18 24.12 - - - -

aJD 11.84 77.69 11.78 2.41 0.25 23.99 0.90 0.37 0.03 26.34
JD 11.87 130.57 33.05 9.53 1.34 26.45 0.90 0.70 0.00 87.68

aPD 11.43 75.26 9.75 1.52 0.09 23.83 0.37 - 0.47 27.00

Table 4: CDO prices (5 years): JD model with dependent jumps, w/w.o adjusted d/v0.

7 Conclusion

In this paper we presented a tractable structural model for analysing the term structure of port-
folio loss distributions. Starting from the single firm-value processes we are able to couple these
univariate processes to a multidimensional model based on a firm economic interpretation. An

5This phenomenon is well known for pure diffusion models and also present in Willemann’s model.
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important feature of our approach is that the distribution of the individual firm-value processes
remains unchanged. Hence, the term structure of marginal default probabilities is also retained
and can therefore be fitted individually. In addition, we are able to accurately model the depen-
dence among the companies. This is possible by tacking account for dependent jumps in the firm
value processes. To demonstrate the applicability of our approach we present a Monte Carlo simu-
lation for the pricing of CDOs which takes advantage of the specific structure of our jump-diffusion
model.
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