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1. Introduction

In this paper we study the differentiablity properties of solutions of dynamic equations on the
so-called time scales T, which is defined to be any nonempty and closed subset of R. This allows
to unify the traditional results for the differential equations (what we call the continuous case)
and the difference equations (what we call the discrete case), explain the differences between
the continuous and discrete theories, and extend such results to arbitrary time scales.

In this paper we consider the nonlinear time scale dynamic system
x∆ = f(t, x, λ), t ∈ [a, ρ(b)]T, (1.1)

x(a) = x0(λ), (1.2)

where the nonlinearity f and the initial value x0 may depend on a parameter λ ∈ Rr. The
data and the solutions are considered to be real valued, however, the results of this paper easily
extend to the complex setting.

Assuming that there exists a solution x(t, 0) on [a, b]T of the problem (1.1), (1.2) with λ = 0,
the first and third authors proved a time scale embedding theorem in [16, Theorem 3.2] saying
that the solution x(t, λ) of (1.1), (1.2) exists on [a, b]T and is continuous in

(
t, x0(λ), λ). In

particular, the function x(t, ·) is continuous in λ. Note that the embedding theorem in [16,
Theorem 3.2] was proved for the case when λ ∈ R, but the same proof remains valid when
λ ∈ Rr.

In the present work we continue in this direction and show that, under suitable assumptions,
the solutions x(t, λ) of (1.1), (1.2) are differentiable in λ, and the partial derivative xλ(t, λ) :=
∂
∂λ
x(t, λ), satisfies at λ = 0 the linearized dynamic equation

Z∆ = A(t)Z + P (t), t ∈ [a, ρ(b)]T, (1.3)
Z(a) = Dx0(0), (1.4)

where Dx0(·) denotes the Jacobian of the function x0(·), A(t) is the n× n matrix and P (t) is
the n× r matrix defined on [a, ρ(b)]T by

A(t) := fx

(
t, x(t, 0), 0

)
, P (t) := fλ

(
t, x(t, 0), 0

)
. (1.5)

The proof is based on the Gronwall inequality on time scales (see Lemma 2.3 below).
An expected consequence of this is that the time scale differentiation of x(t, λ) with respect

to t and the usual (partial) differentiation of x(t, λ) with respect to λ can be interchanged, i.e.,
the function x∆(t, ·) is differentiable in λ and

∂

∂λ

[
x∆(t, λ)

]
λ=0 =

[
xλ(t, 0)

]∆ for all t ∈ [a, ρ(b)]T. (1.6)

Of course, such result is very desirable, for instance, this issue arises for r = 1 when studying
eigenvalue problems on time scales, see e.g. [2, Lemma 4] or [7, formula (3)], although in [2] it
is not explicitly stated that such a property should be satisfied. This problem can be viewed
from the perspective of partial dynamic equations, where the solution x is defined on T × Rr,
the product of r + 1 time scales, or on its subset [a, b]T × B̄γ, where B̄γ is the closed ball in
Rr of radius γ. Then formula (1.6) represents the equality of the mixed second order partial
derivatives of x(t, λ). As in the continuous time case, this result is indeed guaranteed once
these mixed second order partial derivatives are continuous in the topology of the given time
scale, see [6, Theorem 6.1]. However, as we shall see, in our case the functions ∂

∂λ
[x∆(t, λ)]λ=0

and [xλ(t, 0)]∆ are not continuous in t but merely (piecewise) rd-continuous, which makes the
conclusion of [6, Theorem 6.1] in our case inaccessible. On the other hand, we will prove that
formula (1.6) nicely follows from the theory of time scale dynamic equations.
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The idea of interchanging the ∆-derivative and the usual derivative ∂
∂λ

for a function x(t, λ)
on T × Rr is not completely new. In [14, Lemma 2] we encounter a one-parameter family
x(t, λ) of functions defined on [a, b]T × (−γ, γ) for which formula (1.6) is satisfied. In this
reference as well as in [17, Theorem 5.1] the question is to show that for any given solution η(·)
of the linearized equation, there exists a family x(t, λ) solving the original nonlinear equation
and satisfying the given boundary conditions such that x(t, ·), x∆(t, ·) ∈ C1 (or even C2) and
xλ(t, 0) = η(t) for all t ∈ [a, b]T, and that (1.6) holds. In [14, Lemma 2] this family is explicitly
constructed to have readily the differentiability requirements including identity (1.6). While
in [17, Theorem 5.1] this construction is done through the application of the natural extension
of the embedding theorem [16, Theorem 3.2] to vector parameters. In this case, the needed
differentiability of this family with respect to the vector-parameter λ is a consequence of the
results of this paper. Therefore, in the present paper we start with the nonlinear equation (1.1)
and the initial condition (1.2), both may depend on the vector-parameter λ, and then show
that the solution x(t, ·), x∆(t, ·) ∈ C1 and that (1.6) holds.

The question of the differentiability of solutions of nonlinear equations on time scales has
been studied in the literature in [19, Theorem 2.7.1]. In this reference we can find conditions
which guarantee that the solution x(t, λ) is differentiable in λ, but only under a rather restrictive
assumption that the Lipschitz constant K of the nonlinearlity f satisfies K (b − a) < 1. Our
result below (Theorem 3.1) does not require this.

Our result extends to time scales the corresponding continuous time result, i.e., for the
classical differential equation x′ = f(t, x, λ), see e.g. [12, Theorem 7.1, Appendix] when λ ∈ Rr,
or [20, Theorem 1.10.1] for the one-parameter case. Finally, let us mention that the methods we
employed in [16, Section 3] to prove the time scale embedding theorem as well as the methods
in this paper extend directly to the time scale dynamic equations

x∆ = f(t, xσ, λ), t ∈ [a, ρ(b)]T, (1.7)
x∆ = f(t, x, xσ, λ), t ∈ [a, ρ(b)]T, (1.8)

or even to time scale dynamic equations of all stated forms with complex-valued data and
solutions (see Remark 3.8).

For the special case when r = 1 and the right-hand side f is linear in x and λ we obtain in
Theorem 4.3 a better result, namely that the solution x(t, ·) is an entire function in λ. This is
proven along the hints provided in [20, pg. 79] for the continuous time case. Such result is again
important especially in the theory of eigenvalue problems for time scale symplectic systems.

In this paper we use a common time scale notation and terminology as in [9], with which the
reader can also get acquainted in [16, Section 2].

The paper is divided as follows. In the next section we recall the assumptions and the
statement of the time scale embedding theorem from [16]. In Section 3 we establish our main
result (Theorem 3.1) regarding the differentiability of solutions of problem (1.1), (1.2) with
respect to parameter λ. Finally, in Section 4 we treat the linear case and prove that the
solutions are entire functions in λ.

2. Elementary time scale notation

Let T be a bounded time scale. Then T can be identified with the time scale interval [a, b]T,
where a := min T and b := max T both exist and belong to T. The forward and backward
jump operators are denoted by σ(t) and ρ(t), respectively, and the graininess function by
µ(t) := σ(t) − t. A point t ∈ [a, ρ(b)]T is right-scattered, if σ(t) > t, while t ∈ [σ(a), b]T is
left-scattered, if ρ(t) < t. Similarly, a point t ∈ [a, b)T is right-dense, if σ(t) = t, while t ∈ (a, b]T

is left-dense, if ρ(t) = t.
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A function f on T (with values in a Banach space) is regulated if the right-hand limit f(t+)
exists (finite) at all right-dense points t ∈ [a, b)T and the left-hand limit f(t−) exists (finite)
at all left-dense points t ∈ (a, b]T. A function f is rd-continuous (we write f ∈ Crd) if it is
regulated and if it is continuous at all right-dense points t ∈ [a, b)T. A function f is piecewise
rd-continuous (we write f ∈ Cprd) if it is regulated and if it is rd-continuous at all, except
possibly at finitely many, right-dense points t ∈ [a, b)T. At the right-dense points {t1, · · · , tk}
where a given Cprd-function f is not continuous, the statements and conditions involving the
values f(ti), i ∈ {1, . . . , k}, simply mean that these statements and conditions hold when the
value f(ti) is replaced by f(t+i ). This convention will be assumed throughout the paper without
further recall. A matrix-function f is regressive if I +µ(t) f(t) is invertible for all t ∈ [a, ρ(b)]T.

A function f is rd-continuously ∆-differentiable (we write f ∈ C1
rd) if f∆(t) exists for all t ∈

[a, ρ(b)]T and f∆ ∈ Crd. A continuous function f is piecewise rd-continuously ∆-differentiable
(we write f ∈ C1

prd) if f is continuous and f∆ exists at all, except possibly at finitely many,
t ∈ [a, ρ(b)]T and f∆ ∈ Cprd.

The compositions of a function f with the jump operators are denoted by fσ(t) := f
(
σ(t)

)
and f ρ(t) := f

(
ρ(t)

)
.

Let us fix n ∈ N, ε ∈ (0, b − a), and γ0 > 0, and let x̄ : [a, b]T → Rn be a given C1
prd vector

function. Similarly to [22, Section 2], assume that we are given open sets X ⊆ Rn and Λ ⊆ Rr

such that T2ε(x̄)× B̄γ0 ⊆ [a, ρ(b)]T ×X × Λ, where
T2ε(x̄) :=

{
(t, x) ∈ [a, ρ(b)]T × Rn such that

∣∣x− x̄(t)
∣∣ < 2ε

}
is the 2ε-tube about the function x̄(·), T2ε(x̄) is its closure, B̄γ0 is the closed ball in Rr of radius
γ0, and where | · | is the Euclidean norm. For a continuous function x(·) on [a, b]T the notation
x ∈ T2ε(x̄) means that

(
t, x(t)

) ∈ T2ε(x̄) for all t ∈ [a, ρ(b)]T.
Let be given functions

f : [a, ρ(b)]T ×X × Λ → Rn, x0 : Λ → Rn.

In this paper we will assume that

(H0) system (1.1), (1.2) with λ = 0 has a solution x̄(·) on [a, b]T,

and that the data in problem (1.1), (1.2) satisfy the following hypotheses:

(H1) f is Cprd × C× C-continuous on its domain, see [14, Definition 3],
(H2) f is Lipschitz continuous in x uniformly in (t, λ), that is, there exists a constant K > 0

such that for all (t, x), (t, y) ∈ T2ε(x̄) and λ ∈ Bγ0 we have∣∣f(t, x, λ)− f(t, y, λ)
∣∣ ≤ K |x− y|,

(H3) x0 is continuously differentiable in λ,
(H4) fx and fλ exist and are Cprd × C× C-continuous on their domain.

The following time scale embedding theorem is a straightforward extension of the one proven
in [16, Theorem 3.2], in which proof the uniqueness is implicit and λ being in Rr is admitted.

Theorem 2.1 (Embedding theorem). Assume that (H0)–(H2) hold. Then there exist constants
α > 0 and γ > 0 such that for any parameter λ and initial value x0(λ) such that |λ| < γ
and |x0(λ) − x̄(0)| < γ there is a unique solution x(·, λ) on [a, b]T of (1.1), (1.2) satisfying
x(t, 0) = x̄(t) for all t ∈ [a, b]T, x(·, ·) is continuous in (t, λ), and∣∣x(t, λ)− x̄(t)

∣∣ ≤ α

{∣∣x0(λ)− x̄(0)
∣∣ +

∫ b

a

∣∣ f(
t, x̄(t), λ

)− f
(
t, x̄(t), 0

)∣∣ ∆t
}
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for all t ∈ [a, b]T.

Remark 2.2. Consider a linear system on [a, ρ(b)]T

x∆ = S(t) x, t ∈ [a, ρ(b)]T, x(t0) = x0, (2.1)
where t0 ∈ [a, b]T, and S(t) is an s× s matrix with Cprd-entries.

(i) When t0 = a, Theorem 2.1 yields that for any x0 ∈ Rs the system (2.1) has a unique
solution on [a, b]T. To see this, just notice that x ≡ 0 solves the system (2.1) on [a, ρ(b)]T for
x0 = 0. Thus, by Theorem 2.1, there exists γ > 0 such that for |x0| < γ, system (2.1) has a
unique solution. Using the linearity of the system, it follows that for any x0 the system has a
unique solution.

(ii) If t0 ∈ (a, b]T, then for any x0 ∈ Rs the system (2.1) has a unique solution on [a, b]T

whenever on [a, t0)T the matrix S(t) is regressive, that is, I + µ(t)S(t) is invertible.
(iii) Consider the linear system

x∆ = S(t) xσ, t ∈ [a, ρ(b)]T, x(t0) = x0. (2.2)
Then for any x0 ∈ Rs the system (2.2) has a unique solution on [a, b]T whenever I − µ(t)S(t)
is invertible on [t0, ρ(b)]T. This follows from [16, Remark 3.9], the version of Theorem 2.1
corresponding to (2.2) and that x ≡ 0 solves the system (2.2) on [a, ρ(b)]T for x0 = 0.

(iv) Consider the linear system
x∆ = S(t) x+ T (t) xσ, t ∈ [a, ρ(b)]T, x(t0) = x0, (2.3)

where S(t) and T (t) are s× s matrices with Cprd-entries. Combining parts (ii) and (iii) above
yields that the system (2.3) has a unique solution on [a, ρ(b)]T whenever I+µ(t)S(t) is invertible
on [a, t0)T and I − µ(t)T (t) is invertible on [t0, ρ(b)]T.

The following Gronwall inequality on time scales will be used in the proof of the main result
of this paper. Here ep(t, s) is the time scale exponential function, i.e., the function ep(·, s) is
the unique solution of the initial value problem x∆ = p(t) x, x(s) = 1, see [9, Section 2.2].

Lemma 2.3. Let y, g, p ∈ Cprd be real-valued scalar functions on [a, ρ(b)]T such that p(·) ≥ 0
and

y(t) ≤ g(t) +
∫ t

a

y(τ) p(τ) ∆τ for all t ∈ [a, b]T.

Then
y(t) ≤ g(t) +

∫ t

a

ep

(
t, σ(τ)

)
g(τ) p(τ) ∆τ for all t ∈ [a, b]T.

Proof. See [1, Theorem 5.6] or [9, Theorem 6.4]. �

3. Main results and proofs

In this section we state and prove the following main result of this paper.

Theorem 3.1. Suppose that (H0)–(H4) hold. Then there exists δ > 0 such that for |λ| < δ
there exists a unique solution x(t, λ) of problem (1.1), (1.2) such that the function x(·, ·) is
continuous in (t, λ) on [a, b]T ×Bδ, and x(t, ·) is continuously differentiable at λ = 0 uniformly
in t, and the derivative xλ(t, λ) := ∂

∂λ
x(t, λ) satisfies at λ = 0 the linearized system (1.3)–(1.5).

Furthermore, x∆(t, ·) is continuously differentiable at λ = 0 uniformly in t and formula (1.6)
holds.
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Remark 3.2. (i) Although we stated the above differentiability property of x(t, ·) at λ = 0, it
is clear that one may replace the point λ = 0 by any λ ∈ Bγ0 .

(ii) From the proof of Theorem 3.1 it will follow that if we replace the assumptions (H1),
(H3), and (H4) by the hypothesis

(H5) f and its partial derivatives with respect to x and λ up to order m are Cprd × C × C-
continuous on their domain, and x0 ∈ Cm on its domain,

then the solution x(t, ·) of (1.1), (1.2) and x∆(t, ·) will be of the class Cm, i.e., the partial
derivatives of x(t, ·) and x∆(t, ·) with respect to the λi’s up to order m are continuous.

Before proving Theorem 3.1 we shall discuss some implications of the hypotheses (H1)–(H4)
made on the data f and x0.

(C1) Assumption (H4) yields that The function f(t, x̄(t), ·) is differentiable at λ = 0 uniformly
in t, see [14, Definition 2 and Proposition 2]. That is, for any given ε > 0 there exists δ1 > 0
such that 0 < |λ| < δ1 implies∣∣ f(t, x̄(t), λ

)− f(t, x̄(t), 0
)− fλ(t, x̄(t), 0

)
λ
∣∣

|λ| < ε for all t ∈ [a, ρ(b)]T. (3.1)

(C2) Assumption (H4) implies that the function f(t, ·, λ) is differentiable at x̄(t) uniformly
in (t, λ). That is, for given ε > 0 there exists δ2 ∈ (0, δ1) such that for all t ∈ [a, ρ(b)]T and
0 < |x− x̄(t)| < δ2 we have∣∣ f(t, x, λ

)− f
(
t, x̄(t), λ

)− fx(t, x̄(t), λ
)

[x− x̄(t)]
∣∣∣∣x− x̄(t)

∣∣ < ε.

And since, by Theorem 2.1 , x(t, ·) is continuous at λ = 0 uniformly in t, then for the specified
δ2 > 0 there exists δ3 ∈ (0, δ2) such that |λ| < δ3 imples

∣∣x(t, λ) − x̄(t)
∣∣ < δ2 for all t ∈ [a, b]T.

Hence, for such |λ| < δ3 we have that∣∣ f(
t, x(t, λ), λ

)− f
(
t, x̄(t), λ

)− fx(t, x̄(t), λ
)

[x(t, λ) − x̄(t)]
∣∣∣∣x(t, λ)− x̄(t)

∣∣ < ε (3.2)

for all t ∈ [a, ρ(b)]T.
(C3) Assumption (H4) implies that the functions fx(t, ·, ·) and fλ(t, ·, ·) are continuous at

λ = 0 uniformly in t. Thus, for any ε > 0 there is δ4 ∈ (0, δ3) such that for all t ∈ [a, ρ(b)]T and
0 < |x− x̄(t)| < δ4 we have∥∥fx(t, x, λ

)− fx(t, x̄(t), 0
)∥∥ < ε and

∥∥fλ(t, x, λ
)− fλ(t, x̄(t), 0

)∥∥ < ε,

where ‖ · ‖ is any matrix norm compatible with the vector norm | · |, see [4, Sections 9.3–9.4].
The t-uniform continuity of x(t, ·) at λ = 0 implies the existence of there exists δ5 ∈ (0, δ4)
such that |λ| < δ5 imples

∣∣x(t, λ) − x̄(t)
∣∣ < δ4 for all t ∈ [a, b]T. Hence, for all t ∈ [a, ρ(b)]T and

for all |λ| < δ5 we have that∥∥fx(t, x(t, λ), λ
)− fx(t, x̄(t), 0

)∥∥ < ε,
∥∥fλ(t, x(t, λ), λ

)− fλ(t, x̄(t), 0
)∥∥ < ε, (3.3)

and ∥∥fx(t, x̄(t), λ
)− fx(t, x̄(t), 0

)∥∥ < ε. (3.4)

(C4) The function fx(·, x̄(·), 0)
is bounded by M1 > 0. Thus, using (3.3)(i), it follows that

for |λ| < δ5 and for t ∈ [a, ρ(b)]T we have∥∥fx(t, x̄(t), 0
)∥∥ ≤M1 and

∥∥fx(t, x(t, λ), λ
)∥∥ < ε+M1. (3.5)
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(C5) By hypothesis (H3), the function x0(·) is continuously differentiable at λ = 0. Further-
more, by (1.2) we have x(a, ·) = x0(·). Thus, for a given ε > 0 there exists δ0 ∈ (0, δ5) such
that 0 < |λ| < δ0 implies

∣∣x(a, λ) − x(a, 0)−Dx0(0)λ
∣∣

|λ| < ε and
∣∣∣∣Dx0(λ)−Dx0(0)

∣∣∣∣ < ε. (3.6)

Therefore, we just proved the following assertion.

Lemma 3.3. Suppose that (H0)–(H4) hold. Then for every ε > 0 there exists δ0 > 0 such that
0 < |λ| < δ0 implies that conditions (3.1)–(3.6) hold true.

Proof. We take δ0 from the above conclusion (C5). Then, by construction of δ0 through
(C1)–(C5) above it follows that all the inequalities in (3.1)–(3.6) are satisfied for |λ| < δ0. �

Lemma 3.4. Assume that for some ε > 0 there exists δ0 > 0 such that for 0 < |λ| < δ0 and
t ∈ [a, ρ(b)]T, conditions (3.1), (3.2), (3.4), and (3.5)(i) hold. Then for any continuous function
Z : [a, b]T → Rn×r and for any t ∈ [a, ρ(b)]T we have

∣∣ f(t, x(t, λ), λ
)− f(t, x(t, 0), 0

)− fx(t, x(t, 0), 0
)
Z(t)λ− fλ(t, x(t, 0), 0

)
λ

∣∣
|λ|

≤ (2ε+M1)
∣∣ x(t, λ)− x(t, 0)− Z(t)λ

∣∣
|λ| + 2ε ‖Z(t)‖+ ε. (3.7)

If for 0 < |λ| < δ0 and t ∈ [a, ρ(b)]T, we have (3.3) and (3.5)(ii) hold, then for any pair of
continuous matrix functions Z,Z1 : [a, b]T → Rn×r we have

∥∥ fx(t, x(t, λ), λ
)
Z1(t)− fx(t, x(t, 0), 0

)
Z(t) + fλ(t, x(t, λ), λ

)− fλ(t, x(t, 0), 0
)∥∥

≤ (ε+M1)
∥∥Z1(t)− Z(t)

∥∥ + ε ‖Z(t)‖+ ε. (3.8)

Proof. Denote the left-hand side of (3.7) as ψ(t, λ), and put

ξ(t, λ) := x(t, λ) − x(t, 0)− Z(t)λ
|λ| . (3.9)
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Then we get

ψ(t, λ) ≤
∣∣ f(t, x(t, λ), λ

)− f(t, x(t, 0), λ
)− fx(t, x(t, 0), λ

)
[x(t, λ)− x(t, 0)]

|λ|

+
fx(t, x(t, 0), λ

)
[x(t, λ)− x(t, 0)]− fx(t, x(t, 0), 0

)
Z(t)λ

∣∣
|λ|

+
∣∣ f(t, x(t, 0), λ

)− f(t, x(t, 0), 0
)− fλ(t, x(t, 0), 0

)
λ

∣∣
|λ|

(3.1)
≤

∣∣ f(t, x(t, λ), λ
)− f(t, x(t, 0), λ

)− fx(t, x(t, 0), λ
)

[x(t, λ) − x(t, 0)]
∣∣∣∣x(t, λ) − x(t, 0)

∣∣ ×

×
∣∣x(t, λ)− x(t, 0)

∣∣
|λ| +

∣∣[fx(t, x(t, 0), λ
)− fx(t, x(t, 0), 0

)]
[x(t, λ) − x(t, 0)]

∣∣
|λ|

+
∣∣ fx(t, x(t, 0), 0

)
ξ(t, λ)

∣∣ + ε

(3.2)
≤ ε

∣∣ξ(t, λ)
∣∣ + ε

|Z(t)λ|
|λ| +

∥∥ fx(t, x(t, 0), λ
)− fx(t, x(t, 0), 0

) ∥∥ · ∣∣ x(t, λ)− x(t, 0)
∣∣

|λ|
+

∥∥ fx(t, x(t, 0), 0
) ∥∥ · ∣∣ξ(t, λ)

∣∣ + ε

(3.4), (3.5)(i)
≤ (2ε+M1)

∣∣ξ(t, λ)
∣∣ + 2ε ‖Z(t)‖+ ε.

Therefore, estimate (3.7) is established.
Denote the left-hand side of (3.8) as φ(t, λ). Then we get

φ(t, λ) ≤ ∥∥ fx(t, x(t, λ), λ
)

[Z1(t)− Z(t)] + [fx(t, x(t, λ), λ
)− fx(t, x(t, 0), 0

)
]Z(t)‖

+ ‖fλ(t, x(t, λ), λ
) − fλ(t, x(t, 0), 0

)∥∥
(3.3), (3.5)(ii)

≤ (ε+M1)
∥∥Z1(t)− Z(t)

∥∥ + ε ‖Z(t)‖+ ε,

whence, estimate (3.8) holds. �

Now we have all preparatory material in order to prove Theorem 3.1.

Proof of Theorem 3.1. First note that, by [14, Proposition 1], the assumption (H1) implies that
for any function x ∈ T2ε(x̄) the composition f

(·, x(·), λ) ∈ Cprd, and hence it is ∆-integrable.
Let x(t, λ) be the solution of (1.1), (1.2), which exists for t ∈ [a, b]T and |λ| < γ by the em-

bedding theorem (Theorem 2.1). Let Z(·) be the solution of the linear equation (1.3) satisfying
(1.4). By Remark 2.2(i), [15, Remark 2.1(ii)] or [13, Theorem 5.7], the solution Z(·) indeed
exists and is continuous on [a, b]T. Hence, there exists M2 > 0 such that

‖Z(t)‖ ≤M2 for all t ∈ [a, b]T. (3.10)

Let ε > 0 be arbitrary and take δ := min{γ, δ0}, where δ0 > 0 is from Lemma 3.3. Then
for 0 < |λ| < δ all the inequalities in (3.1)–(3.8) are satisfied. Consequently, with the notation
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from (1.5) and (3.9) we have

∣∣ξ(t, λ)
∣∣ ≤ ∣∣ξ(a, λ)

∣∣ +
∫ t

a

∣∣ f(τ, x(τ, λ), λ
)− f(τ, x(τ, 0), 0

)−A(τ)Z(τ)λ− P (τ)λ
∣∣

|λ| ∆τ

(3.6)(i), (3.7)
≤ ε+

∫ t

a

{
(2ε+M1)

∣∣ξ(τ, λ)
∣∣ + 2ε ‖Z(τ)‖+ ε

}
∆τ

(3.10)
≤ g0 +

∫ t

a

p0
∣∣ξ(τ, λ)

∣∣ ∆τ,

where the positive constants p0 and g0 are given by

p0 := 2ε+M1, g0 := ε [1 + (2M2 + 1) (b− a)].

Since p0 > 0, it follows that 1+µ(t) p0 > 0, i.e., p0 is positively regressive. Then the correspond-
ing time scale exponential function ep0(t, s) > 0 for all t, s ∈ [a, b]T, by [9, Theorem 2.44(i)].
Therefore, by the Gronwall inequality on time scales (Lemma 2.3),

∣∣ξ(t, λ)
∣∣ ≤ g0 +

∫ t

a

ep0

(
t, σ(τ)

)
g0 p0 ∆τ for all t ∈ [a, b]T. (3.11)

Since ep0(·, ·) is continuous in its arguments, it is bounded, i.e., there exists M3 > 0 such that

ep0

(
t, σ(τ)

) ≤M3 for t ∈ [a, b]T, τ ∈ [a, ρ(t)]T.

Then, from (3.11) we get for any t ∈ [a, b]T∣∣ξ(t, λ)
∣∣ ≤ g0 +

∫ b

a

M3 g0 p0 ∆τ = ε [1 + (2M2 + 1) (b− a)] [1 +M3 (2ε+M1) (b− a)]

→ 0 as ε→ 0+.

Therefore, the function x(t, ·) is differentiable at λ = 0 uniformly in t and xλ(t, 0) = Z(t) for
all t ∈ [a, b]T.

Since the solution x(t, λ) exists for all λ ∈ Bδ and the assumptions (H0)–(H4) are independent
of the position of the point λ = 0 in the ball Bδ, we can conclude that that at any λ ∈ Bδ, the
function x(t, ·) is differentiable uniformly in t, and that Z(·, λ) := xλ(·, λ) solves

Z∆ = A(t, λ)Z + P (t, λ), t ∈ [a, ρ(b)]T, (3.12)
Z(a) = Dx0(λ), (3.13)

where A(t, λ) is the n× n matrix and P (t, λ) is the n× r matrix defined on [a, ρ(b)]T by

A(t, λ) := fx

(
t, x(t, λ), λ

)
, P (t, λ) := fλ

(
t, x(t, λ), λ

)
. (3.14)

Clearly, Z(t, 0) = Z(t) holds.
We now show that xλ(t, ·) is continuous at λ = 0 uniformly in t. Let ε > 0 be given and

δ := min{γ, δ0}, where δ0 > 0 is from Lemma 3.3. Then for 0 < |λ| < δ all the inequalities
in (3.3), (3.5)(ii), and (3.6)(ii) are satisfied. Hence, by Lemma 3.4, estimate (3.8) holds with
Z1(t) := Z(t, λ). Thus, denote

Γ(t, λ) := fx(t, x(t, λ), λ
)
Z(t, λ)−fx(t, x(t, 0), 0

)
Z(t)+fλ(t, x(t, λ), λ

)−fλ(t, x(t, 0), 0
)
. (3.15)
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Then (3.12) and (3.13) yield

‖Z(t, λ)− Z(t)‖ ≤ ∥∥Dx0(λ)− x0(0)
∥∥ +

∫ t

a

‖Γ(τ, λ) ‖∆τ

(3.6)(ii), (3.8)
≤ ε+

∫ t

a

{
(ε+M1) ‖Z1(t)− Z(t)‖+ ε ‖Z(t)‖+ ε

}
∆τ

(3.10)
≤ g1 +

∫ t

a

p1
∥∥Z(τ, λ)− Z(τ)

∥∥ ∆τ,

where the positive constants p1 and g1 are given by
p1 := ε+M1, g1 := ε [1 + (M2 + 1) (b− a)].

Continue similarly to the argument for ξ(t, λ) above, and after applying the time scale Gronwall
inequality (Lemma 2.3) we conclude that for any t ∈ [a, b]T

‖Z(t, λ)− Z(t)‖ ≤ ε [1 + (M2 + 1) (b− a)] [1 +M4 (ε+M1) (b− a)]
→ 0 as ε→ 0+,

where M4 stands for the bound of ep1(·, ·) on [a, b]T. Therefore, Z(t, ·) = xλ(t, ·) is continuous
at λ = 0 uniformly in t.

Now there are two ways how to prove that x∆(t, ·) is also continuously differentiable in λ at
λ = 0 uniformly in t.

1st method: By using the estimate (3.7) and notation (3.9) we have for any t ∈ [a, ρ(b)]T and
0 < |λ| < δ the estimate∣∣ξ∆(t, λ)

∣∣ =
∣∣ x∆(t, λ)− x∆(t, 0)− Z∆(t)λ

∣∣
|λ| ≤ (2ε+M1)

∣∣ξ(t, λ)
∣∣ + ε (2M2 + 1). (3.16)

Since we have already proven that x(t, 0) is differentiable at λ = 0 uniformly in t and that
xλ(t, 0) = Z(t), there exists δ5 ∈ (0, δ) such that for 0 < |λ| < δ5 we have

∣∣ξ(t, λ)
∣∣ < ε, for all

t ∈ [a, ρ(b)]T. Thus, for such λ we conclude from (3.16) that∣∣ξ∆(t, λ)
∣∣ ≤ (2ε+M1) ε+ ε (2M2 + 1) → 0 as ε→ 0+.

Hence, x∆(t, ·) is differentiable at λ = 0 uniformly in t, and ∂
∂λ

[
x∆(t, λ)

]
λ=0 = Z∆(t) for all

t ∈ [a, ρ(b)]T. The fact that Z(t) = xλ(t, 0) yields that formula (1.6) holds.
Of course, similar arguments show that x∆(t, ·) is differentiable at any λ ∈ Bδ uniformly in

t, and that ∂
∂λ

[
x∆(t, λ)

]
= Z∆(t, λ), where Z(t, λ) is the solution of (3.12) and (3.13). To show

the continuity of ∂
∂λ

[
x∆(t, λ)

]
at λ = 0 uniformly in t, we use the estimates (3.8) and (3.15). It

follows that for t ∈ [a, ρ(b)]T and 0 < |λ| < δ we have∥∥Z∆(t, λ)− Z∆(t)
∥∥ = ‖Γ(t, λ) ‖

(3.8), (3.10)
≤ (ε+M1) ‖Z(t, λ)− Z(t)‖+ εM2 + ε, (3.17)

Since we have already proven that Z(t, ·) = xλ(t, ·) is continuous at λ = 0 uniformly in t,
then there exists δ6 ∈ (0, δ) such that for 0 < |λ| < δ6 we have ‖Z(t, λ) − Z(t)‖ < ε for all
t ∈ [a, ρ(b)]T. Thus, for such λ we conclude from (3.17) that∥∥Z∆(t, λ)− Z∆(t)

∥∥ ≤ (ε+M1) ε+ ε (M2 + 1) → 0 as ε→ 0+,

proving the continuity of ∂
∂λ

[
x∆(t, λ)

]
at λ = 0 uniformly in t.

2nd method: We know that the function x(t, λ) satisfies the equation

x∆(t, λ) = f
(
t, x(t, λ), λ

)
, for all t ∈ [a, ρ(b)]T, |λ| < δ. (3.18)
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Since we have shown that x(t, ·) is differentiable uniformly in t when λ is near 0 and that
xλ(t, λ) is continuous at λ = 0 uniformly in t, then the right-hand side of equation (3.18) is
continuously differentiable in λ at λ = 0 uniformly in t, and thus x∆(t, ·) is also continuously
differentiable at λ = 0 uniformly in t and
∂

∂λ

[
x∆(t, λ)

]
= ∂

∂λ

[
f
(
t, x(t, λ), λ

)]
= A(t, λ) xλ(t, λ) + P (t, λ) = A(t, λ)Z(t, λ) + P (t, λ) = Z∆(t, λ) =

[
xλ(t, λ)

]∆

for all t ∈ [a, ρ(b)]T, where Z(t, λ), A(t, λ), and P (t, λ) are defined in (3.12)–(3.14). Whence,
identity (1.6) holds. The proof of Theorem 3.1 is now complete. �

Remark 3.5. (i) In the proof above we obtained that (1.6) holds not only at λ = 0 but for
all λ near 0. However, since the solution x(t, λ) exists for all λ ∈ Bδ and the assumptions
(H0)–(H4) are independent of the position of the point λ = 0 in the ball Bδ, we can conclude
that the rule for interchanging the derivatives holds for any λ ∈ Bδ, i.e.,

∂

∂λ

[
x∆(t, λ)

]
=

[
xλ(t, λ)

]∆ for all t ∈ [a, ρ(b)]T, λ ∈ Bδ.

(ii) When r = 1, one may think to replace the parameter interval [−λ0, λ0] by some time
scale interval [α, β]T̃, where T̃ is another time scale (possibly different from T). However, the
proof of formula (1.6) uses the chain rule on Rn and it is well known that such a chain rule
does not work on general time scales, see e.g. [9, Section 1.5].

Remark 3.6. In the theory of dynamic equations on time scales one often encounters the
situation when the righ-hand side of the equation depends on xσ instead of x. Thus, we can
consider the problem (1.7), (1.2). Then the corresponding embedding theorem holds under the
additional assumption that the matrix I − µ(t) fx

(
t, x̄σ(t), 0

)
is invertible for all t ∈ [a, ρ(b)]T,

see [16, Remark 3.9]. In this case the conclusion of Theorem 3.2 remains true with the linearized
system

Z∆ = fx

(
t, x̄σ(t), 0

)
Zσ + fλ

(
t, x̄σ(t), 0

)
, t ∈ [a, ρ(b)]T,

instead of equation (1.3). We refer to [17, Section 3] for a general transformation method
between the two types of problems (1.1) and (1.7). Moreover, see [16, Remarks 3.8, 3.9] for
the discussion about the above regressivity-type condition on the matrix fx

(·, x̄σ(·), 0)
and the

position of the given initial condition.

Remark 3.7. A most general form of the problem is then the dynamic equation (1.8), (1.2),
in which both x and xσ is present in f . Then the linearized equation takes the form

Z∆ = fx(t)Z + fy(t)Zσ + fλ(t), t ∈ [a, ρ(b)]T,

where fx and fy denote the partial derivatives of f with respect to second and third variables,
respectively, and the partial derivatives are evaluated at

(
t, x̄(t), x̄σ(t), 0

)
. In this case the result

requires the invertibility of the matrix I − µ(t) fy

(
t, x̄(t), x̄σ(t), 0

)
on [a, ρ(b)]T.

Remark 3.8. Upon replacing the involved norms of real-valued vectors and matrices by the
corresponding norms of complex-valued vectors and matrices, one can easily check that the
methods of proof of the embedding theorem (Theorem 2.1) in [16] and the proof of the differ-
entiability theorem (Theorem 3.1) extend directly to complex-valued data

f : [a, ρ(b)]T ×X × Λ → Cn, x0 : Λ → Cn,
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where now X ⊆ Cn, Λ ⊆ Cr,
T2ε(x̄) :=

{
(t, x) ∈ [a, ρ(b)]T × Cn such that

∣∣x− x̄(t)
∣∣ < 2ε

}
,

and where Bγ0 := {λ ∈ Cr, |λ| < γ0} is the open ball with radius γ0. In this case we
may replace the assumptions (H3) and (H4) by the requirement that f is holomorphic in its
(complex) arguments x and λ and that x0 is holomorphic in λ. Then we can conclude that the
complex-valued solution x(t, λ), which is now defined on [a, b]T × Bδ, is also holomorphic in λ.
Note that in this case the independent variable t ∈ [a, b]T is still real.

4. Linear systems

In this section we deal with linear dynamic systems. In the first part we apply Theorem 3.1,
and in particular formula (1.6), to an eigenvalue problem associated with a special linear system,
called a time scale symplectic system. In the second part of this section we prove for the case
of general linear systems that the solutions are entire functions of the parameter λ.

Consider the eigenvalue problem
X∆ = A(t)X + B(t)U, U∆ = C(t)X +D(t)U − λW (t)Xσ, t ∈ [a, ρ(b)]T, (4.1)

where A,B, C,D,W : [a, ρ(b)]T → Rn×n are given Cprd matrices, W (t) is symmetric, and λ is a
scalar parameter. We assume that the 2n × 2n coefficient matrix S(t) :=

(
A(t) B(t)
C(t) D(t)

)
satisfies

the identity
ST (t)J + JS(t) + µ(t)ST (t)JS(t) = 0 for all t ∈ [a, ρ(b)]T, (4.2)

where J :=
( 0 I
−I 0

)
has n×n block entries. Linear systems whose coefficient matrix satisfies (4.2)

are in the literature called time scale symplectic (or Hamiltonian) systems , see e.g. [3, 10, 15].

Remark 4.1. (i) Observe that one can write the eigenvalue problem (4.1) as a linear matrix
system in which the right hand side has no shift in (X,U). Indeed, by using the identity
Xσ − X = µX∆ in the first equation of (4.1), we obtain that the eigenvalue problem (4.1) is
equivalent to (

X
U

)∆

= S(t, λ)
(
X
U

)
t ∈ [a, ρ(b)]T, (4.3)

where
S(t, λ) :=

( A B
C − λW (I + µA) D − λµWB

)
(t) = S(t) + λQ(t), (4.4)

with
Q(t) :=

(
0 0

−W (I + µA) −µWB
)

(t). (4.5)

(ii) Suppose that an initial point t0 ∈ [a, b]T and initial data X0, U0 ∈ Rn×n are given. Then,
by part (i) above and by Remark 2.2, we can assert that for every λ ∈ R, there exists on [a, b]T

a unique solution
(
X(·, λ), U(·, λ)

)
of (4.1) satisfying

(
X(t0, λ), U(t0, λ)

)
= (X0, U0) as long as

the following conditions hold:
(a) the 2n× 2n matrix I + µ(t)S(t) is invertible for all t ∈ [a, t0)T (void if t0 = a),
(b) the 2n× 2n matrix I − µ(t) T (t) is invertible for all t ∈ [t0, ρ(b)]T (void if t0 = b),

where T (t) :=
( 0 0
−λ W (t) 0

)
. Notice however that condition (b) above is always satisfied. While

condition (a) is known to hold under condition (4.2), because in this case the matrix I+µ(t)S(t)
is symplectic. Note also that if (4.2) holds, i.e., if (4.1) with λ = 0 is a time scale symplectic
system, then (4.1) is a time scale symplectic system for all λ ∈ R, i.e., the matrix S(t, λ) given
in (4.4) satisfies the identity (4.2) as well.
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Remark 4.2. The question whether the solutions
(
X(·, λ), U(·, λ)

)
of (4.1) are differentiable

with respect to λ and whether the equalities
∂

∂λ

[
X∆(t, λ)

]
λ=0 =

[
Xλ(t, 0)

]∆
,

∂

∂λ

[
U∆(t, λ)

]
λ=0 =

[
Uλ(t, 0)

]∆ (4.6)

are satisfied on any time scale was posed e.g., in [7, formula (3)]. Of course, this property holds
for the time scales T = R and T = Z, and it is often used in the oscillation and eigenvalue
theories for continuous time linear Hamiltonian systems and discrete symplectic systems, see
[5,11,18,21]. As a consequence of Theorem 3.1 and Remark 3.7 we can now conclude that the
identities in (4.6) indeed hold on any time scale and that the functions Xλ(·, 0), Uλ(·, 0), and
X(·, 0) satisfy the linearized system

(Xλ)∆ = A(t)Xλ + B(t)Uλ, (Uλ)∆ = C(t)Xλ +D(t)Uλ − λW (t)Xλ
σ −W (t)Xσ,

in which we suppress the argument (t, 0) in the solution.

Since the eigenvalue problem (4.1) is linear in λ, it is expected that its solutions as functions
of the parameter λ enjoy “nicer” properties than continuous differentiability. Let us now turn
our attention to a general linear system

y∆ = [A(t) + λB(t)] y, t ∈ [a, ρ(b)]T,

where A(·) and B(·) are given n × n matrix functions. The following result is motivated
by [20, Problem 1.10.4, pg. 79].

Theorem 4.3. Let A,B : [a, ρ(b)]T → Rn×n are Cprd functions and λ ∈ R a parameter, and
assume that A(·) is regressive on [a, ρ(b)]T. Then the fundamental matrix Φ(t, λ) of the system

Y ∆ = [A(t) + λB(t)]Y, t ∈ [a, ρ(b)]T, Y (a) = I, (4.7)
is an entire function of the parameter λ.

Proof. Let Y0(·) be the unique solution, i.e., the fundamental matrix, of the system
Y ∆ = A(t) Y, t ∈ [a, ρ(b)]T, Y (a) = I.

By induction, if the matrix function Yk−1(t) is defined for some k ∈ N, then we let Yk(·) to be
the unique solution of the system

Y ∆ = A(t) Y +B(t) Yk−1(t), t ∈ [a, ρ(b)]T, Y (a) = 0.
The existence of these solutions is guaranteed e.g. by [15, Remark 2.1(ii)] or by [13, Theo-
rem 5.7]. In addition, by the variation of constants formula, see [9, Theorem 5.24], we have

Yk(t) = Y0(t)
∫ t

a

Y −1
0

(
σ(τ)

)
B(τ) Yk−1(τ) ∆τ, t ∈ [a, b]T, k ∈ N. (4.8)

Let α, β ∈ R be such that ∥∥Y0(t)
∥∥ ≤ α for all t ∈ [a, b]T, (4.9)∥∥Y0(t) [Y σ

0 (τ)]−1B(τ)
∥∥ ≤ β for all t, τ ∈ [a, ρ(b)]T, (4.10)

where ‖ · ‖ is the spectral matrix norm. It follows by induction that∥∥Yk(t)
∥∥ ≤ αβk hk(t, a) for t ∈ [a, b]T, k ∈ N ∪ {0}, (4.11)

where hk(t, a) are the time scale polynomials, i.e., h0(t, a) ≡ 1, h1(t, a) = t− a, and in general
hk+1(t, a) :=

∫ t

a
hk(τ, a) ∆τ , see [9, Section 1.6]. Note that hk(t, a) ≥ 0 for all t ∈ [a, b]T. Indeed,
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for k = 0 inequality (4.11) reduces to (4.9), and if we assume that
∥∥Yk−1(t)

∥∥ ≤ α βk−1 hk−1(t, a),
then identity (4.8) yields∥∥Yk(t)

∥∥ ≤ ∫ t

a

∥∥Y0(t) [Y σ
0 (τ)]−1B(τ)

∥∥ · ∥∥Yk−1(τ)
∥∥ ∆τ

≤ αβk

∫ t

a

hk−1(τ, a) ∆τ = α βk hk(t, a).

Now the result of [8, Theorem 4.1] shows that hk(t, a) ≤ (t−a)k

k! for t ≥ a. Consequently, for any
t ∈ [a, b]T we have ∥∥∥∥ ∞∑

k=0

λk Yk(t)
∥∥∥∥ ≤ ∞∑

k=0

|λ|k∥∥Yk(t)
∥∥ ≤ ∞∑

k=0

|λ|k α βk hk(t, a)

≤ α
∞∑

k=0

|λ|k βk (t− a)k

k! = α e|λ|β (t−a).

Hence, the series
∑∞

k=0 λ
k Yk(t) converges uniformly on [a, b]T to a continuous function Φ(t, λ).

We now multiply equation (4.8) by λk and add up all these equations for k ∈ N ∪ {0} and get

Y0(t) +
∞∑

k=1
λk Yk(t) = Y0(t) + Y0(t)

∫ t

a

Y −1
0

(
σ(τ)

)
B(τ)

∞∑
k=1

λk Yk−1(τ) ∆τ, t ∈ [a, b]T.

Hence, by shifting the summation index in the series on the right-hand side, it follows that the
function Φ(t, λ) :=

∑∞
k=0 λ

k Yk(t) satisfies the equation

Φ(t, λ) = Y0(t) + Y0(t)
∫ t

a

Y −1
0

(
σ(τ)

)
B(τ)λΦ(τ, λ) ∆τ, t ∈ [a, b]T.

Therefore, again by the time scale variations of constants formula,

Φ∆(t, λ) = [A(t) + λB(t)] Φ(t, λ) for all t ∈ [a, ρ(b)]T.

Moreover, Φ(a, λ) = Y0(a) +
∑∞

k=1 Yk(a) = I, i.e., Φ(·, λ) is the fundamental matrix of the
dynamic equation in (4.7). From the series representation of Φ(t, λ) it follows that Φ(t, ·) is an
entire function in λ. �

Remark 4.4. From the proof of Theorem 4.3 and from the estimate

hk(t, s) ≤ (t− s)k

k! for all t, s ∈ [a, b]T, t ≥ s

in [8, Theorem 4.1] one can see that if we replace the initial condition Y (a) = I in Theorem 4.3
by Y (s) = I for some given point s ∈ [a, b]T, then the fundamental matrix (and hence all
the solutions) of the equation Y ∆ = [A(t) + λB(t)]Y is an entire function in λ for all points
t ∈ [s, b]T.

The following consequence of Theorem 4.3 presents the nice property enjoyed by the solutions
of the eigenvalue problem (4.1).

Corollary 4.5. Assume that for λ = 0 the coefficient matrix S(t) = S(t, 0) of system (4.1)
satisfies identity (4.2). Then, the solutions of (4.1) are entire functions of λ.
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Proof. First note that the system being symplectic at λ = 0, yields that I + µ(t)S(t) is
invertible on [a, b]T, and thus for any initial condition at t0 ∈ [a, b]T, and for any λ ∈ R, the
system (4.1) has a unique solution

(
X(t, λ), U(t, λ)

)
on [a, b]T that is differentiable in λ, see

Remarks 4.1(ii) and 4.2. Now write the system (4.1) in the form (4.3)–(4.5). Then, it has
the form of (4.7), where Y := ( X

U ), A := S, and B := Q. Since S is regressive, then by
Theorem 4.3, the fundamental matrix Φ(t, λ) of (4.3)–(4.5) starting at t0 = a is an entire
function in λ. Therefore, every solution of system (4.1) is also an entire function of λ, because
it is of the form (

X(t, λ)
U(t, λ)

)
= Φ(t, λ)

(
M
N

)
on [a, b]T,

where M,N ∈ Rn×n are constant matrices. �
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