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OSCILLATION AND SPECTRAL THEORY FOR SYMPLECTIC
DIFFERENCE SYSTEMS WITH SEPARATED BOUNDARY

CONDITIONS

ONDŘEJ DOŠLÝ AND WERNER KRATZ

Abstract. We consider symplectic difference systems involving a spectral parame-
ter together with general separated boundary conditions. We establish the so-called
oscillation theorem which relates the number of finite eigenvalues less than or equal
to a given number to the number of focal points of a certain conjoined basis of
the symplectic system. Then we prove Rayleigh’s principle for the variational de-
scription of finite eigenvalues and we describe the space of admissible sequences
by means of the (orthonormal) system of finite eigenvectors. The principle rôle in
our treatment is played by the construction where the original system with general
separated boundary conditions is extended to a system on a larger interval with
Dirichlet boundary conditions.

1. Introduction

We consider the (discrete) symplectic eigenvalue problem

(S) xk+1 = Akxk + Bkuk, uk+1 = Ckxk +Dkuk − λWkxk+1, 0 ≤ k ≤ N,

together with the general separated boundary conditions

(B) R∗
0x0 + R0u0 = 0, R∗

N+1xN+1 + RN+1uN+1.

We assume that Ak,Bk, Ck,Dk are real n × n matrices for 0 ≤ k ≤ N such that the
matrices

Sk :=
(Ak Bk

Ck Dk

)
are symplectic, i.e., ST

k JSk = J , J =
(

0 I
−I 0

)
, I being the n× n identity matrix.

The n × n matrices Wk are supposed to be symmetric and nonnegative definite for
0 ≤ k ≤ N . Then the difference system (S) is symplectic for all eigenvalue parameters
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λ ∈ R and we can write it in the form

zk+1 = (Sk − λŜk)zk, Ŝk :=
(

0 0
WkAk WkBk

)
.

Concerning the matrices in the boundary conditions (B), we suppose that

(1) rank
(
R∗

0 R0
)

= rank
(
R∗

N+1 RN+1
)

= n

and that

(2) R∗
0R

T
0 and R∗

N+1R
T
N+1 are symmetric.

Note that conditions (1) and (2) imply that the eigenvalue problem (S), (B) is self-
adjoint, we will return to this point later in our paper.

The results given in this paper can be regarded as a continuation of the research
initiated in [4, 5, 6]. In [4] we have established an oscillation theorem for (S) together
with various boundary conditions. However, when that paper was written, the crucial
concept of multiplicity of a focal point did not exist (it was established only later
in [12]), so the results of [4] are formulated under relatively restrictive assumptions
and for parameters λ outside of a certain exceptional set (witch cannot be decribed
explicitly). A substantial part of the results of our paper relies on the concepts of finite
eigenvalue and finite eigenvector of (S) which were introduced in [6]. In that paper,
the special case of Dirichlet boundary conditions x0 = 0 = xN+1 is considered and an
oscillation theorem for this eigenvalue problem is proved. As will be seen in the next
sections, to extend this statement to general boundary conditions requires a nontrivial
construction of a so-called extended system. Finally, in [5] we proved, among others,
that finite eigenvalues of (S) with Dirichlet boundary conditions can be described via
Rayleigh’s variational principle, and we proved that the system of finite eigenvectors
forms a complete orthonormal basis in the space of the so-called admissible functions.
Here we extend these results to general boundary conditions (B), and an important
rôle is played again by the construction of the extended eigenvale problem.

Let us finish this introductory section with a brief discussion of our problem in
a broader context. Symplectic difference systems are the discrete counterpart of lin-
ear Hamiltonian differential systems whose oscillation and spectral theory is deeply
developed, and a summary of the results of this theory can be found in [11, 13].
Linear Hamiltonian difference systems are a particular case of symplectic difference
systems as pointed out in [1], where one can also find the basic theory of these
systems. The importance of symplectic difference systems in numerical methods of
solving Hamiltonian systems is emphasized in [8]. Symplectic difference systems ap-
pear also in discrete calculus of variations and optimal control, and various aspects
of this application of symplectic systems, as well as related topics, can be found in
[7, 9, 10, 14, 15].
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2. Extended system

Throughout the paper, Ker, ind, Im, †, and > 0 denote the kernel, index (i.e.,
the number of negative eigenvalues including their multiplicities), the image, the
Moore-Penrose generalized inverse, and positive definiteness of a matrix indicated.
Recall that if Q,X are n × n matrices with Q orthogonal (i.e., Q−1 = QT ), then
(QX)† = X†Q−1, see [2] for the definition and properties of generalized inverses.

First we look at the boundary conditions (B). According to [11, Corollary 3.1.3],
there exist matrices S0, Ŝ0, SN+1, ŜN+1 such that

R∗
0 = R0S0 + Ŝ0, Ŝ0R

T
0 = 0, S0 symmetric,

Ker R0 = Im ŜT
0 , rank

(
R0 Ŝ0

)
= n

and similarly
R∗

N+1 = RN+1SN+1 + ŜN+1, ŜN+1R
T
N+1 = 0, SN+1 symmetric,

Ker RN+1 = Im ŜT
N+1, rank

(
RN+1 ŜN+1

)
= n.

We may take

(3) S0 := R†
0R

∗
0R

T
0 R†

0
T
, SN+1 := R†

N+1R
∗
N+1R

T
N+1R

†T
N+1,

and Ŝ0 = R∗
0 − R0S0 = R∗

0(I − R†
0R0), ŜN+1 = R∗

N+1(I − R†
N+1RN+1). By [11,

Proposition 2.1.2], the conditions (B) are equivalent to

(B̂)
{

x0 ∈ Im RT
0 , R0(u0 + S0x0) = 0,

xN+1 ∈ Im RT
N+1, RN+1(uN+1 + SN+1xN+1) = 0.

Now we construct the extended system where we extend the original eigenvalue
problem (S), (B) considered for 0 ≤ k ≤ N to a system for −1 ≤ k ≤ N + 1, where
we transform general separated boundary conditions (B) at k = 0 and k = N + 1
to Dirichlet boundary condition at k = −1 and k = N + 2. While this construction
at the left endpoint follows the ideas from [4], the construction at the right endpoint
is new and substantially simplifies some technical computations with respect to that
paper. We define

(4) S−1 =
(A−1 B−1
C−1 D−1

)
:=

(
R∗

0
T K −RT

0
RT

0 K R∗
0
T

)
, W−1 = 0,

where K := (R∗
0R

∗
0
T + R0R

T
0 )−1 is nonsingular in view of (1). Then by a direct

computation we see that

ST
−1JS−1 =

(
KR∗

0 KR0
−R0 R∗

0

)(
RT

0 K R∗
0
T

−R∗
0
T K RT

0

)
= J

and S−1
(0

I

)
=

(−RT
0

R∗0
T

)
. Hence, the extended system starting at k = −1 is also symplec-

tic. Moreover, the so-called principal solution at k = −1 of the extended system, i.e.,
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the solution given by X−1 = 0, U−1 = I, corresponds to the solution of the original
system (S) satisfying

(5) X0 = −RT
0 , U0 = R∗

0
T .

Observe that a substantial rôle palyed the fact that we defined W−1 = 0.
Returning to vector solutions of the original and the extended system, x−1 = 0

implies that x0 = A−1x−1+B−1u−1 = −RT
0 u−1 ∈ Im RT

0 . If, in addition, u0 = C−1x−1+
D−1u−1−λW−1x0 = R∗

0
T u−1, then R0(u0+S0x0) = (R0R

∗
0
T−R0S0R

T
0 )u−1 = 0. Hence

R∗
0x0 +R0u0 = 0 by (B̂), so the boundary conditions (B) at the left endpoint k = 0 is

satisfied. Conversely, if x0 ∈ Im RT
0 , i.e., x0 = RT

0 R†
0
T
x0, then x0 = A−1x−1 + B−1u−1

for x−1 = 0 and u−1 = −R†
0
T
x0. Moreover, if R∗

0x0 + R0u0 = 0, and if(
x−1

u−1

)
= S−1

−1

(
x0

u0

)
=

( DT
−1 −BT

−1
−CT

−1 AT
−1

) (
x0

u0

)
,

then x−1 = R∗
0x0 + R0u0 = 0 (and u−1 = −KR0x0 + KR∗

0u0).
In the next part of this section we extend the system (S) at the right endpoint

N + 1. Let RN+1 = QD be the polar decomposition of RN+1 with Q orthogonal and
D symmetric (and nonnegative definite). We define WN+1 = 0 and

(6) SN+1 =
(AN+1 BN+1
CN+1 DN+1

)
:=

(
QT R∗

N+1 QT RN+1
−KQT RN+1 KQT R∗

N+1

)
,

K := QT (R∗
N+1R

∗T
N+1 + RN+1R

T
N+1)−1Q. Then (using (2))

SN+1JST
N+1 =

(
QT R∗

N+1 QT RN+1
−KQT RN+1 KQT R∗

N+1

)(
RT

N+1Q R∗T
N+1QK

−R∗T
N+1Q RT

N+1QK

)
= J

which is equivalent with J = (S−1
N+1)TJS−1

N+1 or with J = ST
N+1JSN+1, so that SN+1

is symplectic. Moreover (compare [4, formula (14)]), we have that
XN+2 := AN+1XN+1 + BN+1UN+1 = QT Λ,

where Λ := R∗
N+1XN+1 + RN+1UN+1, and

XN+1X
†
N+2BN+1 = XN+1Λ†RN+1,

because X†
N+2 = Λ†Q (Q is orthogonal) and BN+1 = QT RN+1.

Next, if xN+1 ∈ Im RT
N+1, i.e., xN+1 = RT

N+1R
†T
N+1xN+1, then

(7) xN+2 = QT (R∗
N+1xN+1 + RN+1uN+1) = 0

for uN+1 := −R∗T
N+1R

†T
N+1xN+1. Conversely, if (7) holds, then

R∗
N+1xN+1 + RN+1uN+1 = 0,

in particular, xN+1 ∈ Im RT
N+1 by (B̂).

The previous computations are summarized in the next statement.



SYMPLECTIC DIFFERENCE SYSTEMS 5

Proposition 1. A vector z =
(
zk

)N+1
k=0 satisfies (S) and (B) if and only if z =

(
zk

)N+2
k=−1

satisfies the extended boundary value problem
(8) zk+1 = (Sk + λS̃k)zk, −1 ≤ k ≤ N + 1, x−1 = 0 = xN+2

with W−1 = 0 = WN+1 and the matrices S−1,SN+1 given by (4) and (6).

Finally, let Z =
(

Xk

Uk

)N+1
k=0

denote the solution of (S) satisfying (5). Then the extended
solution Zk =

(
Xk

Uk

)N+2
k=−1

(with Z−1 = S−1
−1Z0) is the principal solution at k = −1 of

the extended system with
XN+2 = QT Λ and XN+1X

†
N+2BN+1 = XN+1Λ†RN+1.

Observe also that if z =
(
zk

)N+2
k=−1 =

(
xk

uk

)N+2
k=−1

solves the extended problem (8) with(Wkxk+1
)N+1

k=−1 6= 0, then also
(Wkxk+1

)N

k=0 6= 0 because W−1 = 0 and xN+2 = 0.

3. Quadratic functionals

We say that a sequence z =
(

xk

uk

)N+1
k=0

is admissible, if

(9) xk+1 = Akxk + Bkuk, 0 ≤ k ≤ N, x0 ∈ Im RT
0 , xN+1 ∈ Im RT

N+1,

and we say that z =
(

xk

uk

)N+2
k=−1

is admissible for the extended system, if

(10) xk+1 = Akxk + Bkuk, −1 ≤ k ≤ N + 1, x−1 = 0 = xN+2,

where A−1,B−1,AN+1,BN+1 are given by (4) and (6).
In the previous section we have shown that, with the corresponding setting, z is

admissible if and only if it is admissible for the extended problem. Moreover, the
bilinear forms

(11) 〈z, z̃〉 :=
N∑

k=0
xT

k+1Wkx̃k+1, 〈z, z̃〉e :=
N+1∑
k=−1

xT
k+1Wkx̃k+1

are the same because W−1 = 0 = WN+1.

Symplectic difference systems are closely related to quadratic functionals which we
consider in the remaining part of this section. Associated with the extended problem
is the bilinear form (and the quadratic functional Fe(z) := Fe(z, z))

Fe(z, z̃) :=
N+1∑
k=−1

{xT
kAT

k Ckx̃k + xT
k CT

k Bkũk + uT
kBT

k Ckx̃k + uT
kBT

kDkũk}(12)

= F0(z, z̃) + ∆−1 + ∆N+1,

where

(13) F0(z, z̃) :=
N∑

k=0
{xT

kAT
k Ckx̃k + xT

k CT
k Bkũk + uT

kBT
k Ckx̃k + uT

kBT
kDkũk}
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and ∆−1, ∆N+1 are given by

∆−1 =xT
−1AT

−1C−1x̃−1 + xT
−1CT

−1B−1ũ−1 + uT
−1BT

−1C−1x̃−1 + uT
−1BT

−1D−1ũ−1

= uT
−1BT

−1D−1ũ−1 = −uT
−1R0R

∗
0
T ũ−1 = −uT

−1BT
−1S0B−1ũ−1 = −xT

0 S0x̃0,

(here we have used that x−1 = 0 = x̃−1 and that B−1 = −RT
0 , D−1 = R∗

0
T ), and

∆N+1 := xT
N+1AT

N+1CN+1x̃N+1 + xT
N+1CT

N+1BN+1ũN+1

+ uT
N+1BT

N+1CN+1x̃N+1 + uT
N+1BT

N+1DN+1ũN+1.

In computing ∆N+1 we proceed as follows. Denote K :=
(

0 0
I 0

)
. Then using the

block structure of S we have

∆N+1 = zT
N+1{ST

N+1KSN+1 −K}z̃N+1 = −zT
N+1KzN+1 = −xT

N+1ũN+1,

where we have used the fact that zT
N+1SN+1KS z̃N+1 = 0 since KSN+1zN+1 = 0 =

KSN+1z̃N+1 because of admissimility of z, z̃ and xN+2 = 0 = x̃N+2. Further,

0 = xN+2 = QT (R∗
N+1xN+1 + RN+1uN+1),

and we have the same equation for x̃N+2, x̃N+1, ũN+1. By (B̂) there exist c, c̃ ∈ Rn

such that xN+1 = RT
N+1c, x̃N+1 = RT

N+1c̃. Substituting this into ∆N+1, we obtain

∆N+1 =− xT
N+1ũN+1 = −cT RN+1ũN+1 = cT R∗

N+1x̃N+1 = cT R∗
N+1R

T
N+1c̃

= cT RN+1SN+1R
T
N+1c̃ = xT

N+1SN+1x̃N+1.

Therefore
Fe(z, z̃) = F0(z, z̃)− xT

0 S0x̃0 + xT
N+1SN+1x̃N+1.

In the remaining part of this section we look for conditions which guarantee that

Fe(z, z)− λ〈z, z〉 > 0

for any nontrivial admissible z if λ is sufficiently negative. Directly one may verify that
the matrix Ek := BkB†kDkB†k is symmetric and BT

k EkBk = BT
kDk. Then the particular

summands in F0 (with z = z̃) can be expressed as follows:

∆k := xT
kAT

k Ckxk + 2xT
k CT

k Bkuk + uT
kBT

kDkuk

= xT
kAT

k Ckxk + 2xT
k CT

k (xk+1 −Akxk) + (xk+1 −Akxk)TEk(xk+1 −Akxk).

Hence, there exists a constant c > 0 such that

|∆k|2 ≤ c(|xk|2 + |xk+1|2), 1 ≤ k ≤ N,
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where | · | is any norm in Rn. Because x0 does not appear in the product 〈z, z〉, we
treat ∆−1 and ∆0 separately. We have (again with z̃ = z)

∆−1 + ∆0 =− xT
0 S0x0 + xT

0 (AT
0 C0 − 2AT

0 C0 +AT
0 E0A0)x0

+ 2xT
0 (CT

0 −AT
0 E0)x1 + xT

1 E0x1

= xT
0 E0x0 + 2xT

0 E1x1 + xT
1 E0x1,

where
E0 := −S0 −AT

0 C0 +AT
0 E0A0 and E1 := CT

0 −AT
0 E0.

Now assume that xT
0 E0x0 > 0 on Im RT

0 \{0}, i.e., cT R0E0R
T
0 c > 0 for every c ∈ Rn

such that RT
0 c 6= 0. Hence, there exists ε > 0 such that

xT
0 E0x0 ≥ ε|x0|2 for all x0 ∈ Im RT

0 \ {0}.
Note that this assumption is “empty” if R0 = 0, i.e., for the Dirichlet boundary
conditions. Since ||E1|| ≤ δ0 for some δ0 (||·|| denotes the matric norm in Rn associated
with | · |), we obtain for x0 ∈ Im RT

0 and some δ1 > 0:

∆−1 + ∆0 ≥ ε|x0|2 − 2δ0|x0||x1| − δ1|x1|2

= ε|x0|2 +
(√

ε|x0| − δ0√
ε
|x1|

)2

−
(

δ1 + δ2
0
ε

)
|x1|2

≥ ε|x0|2 −
(

δ1 + δ2
0
ε

)
|x1|2.

The previous considerations are summarized in the next statement.

Proposition 2. Suppose that

(14) Wk > 0 for 0 ≤ k ≤ N

and that

(15) E0 := −S0 −AT
0 C0 +AT

0 B0B†0D0B†0A0 is positive definite on Im RT
0

hold. Then

(16)


there exists λ0 < 0 such that
F0(z, z)− xT

0 S0x0 + xT
N+1SN+1xN+1 − λ

∑N
k=0 xT

k+1Wkxk+1 > 0
for λ ≤ λ0 and all admissible z =

(
xk

uk

)N

k=0
with

(Wkxk+1
)N

k=0 6= 0.

4. Oscillation and spectral theory

In this section we formulate the main results of our paper: oscillation and spectral
theorems for the symplectic eigenvalue problem (S) with general separated boundary
conditions (B). Recall first some necessary concepts and results.
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A 2n× n matrix solution
(

Xk(λ)
Uk(λ)

)
is said to be a conjoined basis of (S) if{

XT
k (λ)Uk(λ) = UT

k (λ)Xk(λ) and rank(XT
k (λ) UT

k (λ)) = n

for all 0 ≤ k ≤ N and λ ∈ R.

According to [12], we define the focal points including their multiplicities of Z :=(
Xk(λ)
Uk(λ)

)
, using the notation

(17)


Mk(λ) := (I −Xk+1(λ)X†

k+1(λ))Bk,

Tk(λ) := I −M †
k(λ)Mk(λ),

Dk(λ) := Tk(λ)Xk(λ)X†
k+1(λ)BkTk(λ).

The number of focal points of Z in the interval (k, k + 1] is defined by
(18) m(k, λ) := m1(k, λ) + m2(k, λ),
where m1(k, λ) = rank Mk(λ) is the multiplicity in the point k + 1 and m2(k, λ) =
ind Dk(λ) is the number of focal points in the open interval (k, k + 1).

The central rôle in our treatment is played by the concepts of a finite eigenvalue
and a finite eigenvector. These concepts are introduced in [6] for symplectic eigenvalue
problems with Dirichlet boundary conditions. We modify their definition as follows.
Definition 1. A number λ is called a finite eigenvalue of (S), (B) if

rank Λ(λ) < r := max
µ∈R

rank Λ(µ),

and this is equivalent with the existence of a corresponding finite eigenvector z, i.e.
z =

(
xk

uk

)N+1
k=0

satisfies (S) and (B) such that
(Wkxk+1

)N

k=0 6= 0.

Note that the concepts of finite eigenvalue and finite eigenvector of the symplectic
eigenvalue problem (S) with Dirichlet boundary conditions (i.e., R∗

N+1 = I, RN+1 = 0
in (B)) were introduced in [6] and reflected the fact that, in contrast to [4], the
eigenvalue problem may be singular, i.e., det XN+1(λ) = 0 for all λ ∈ R. Also here
we admit the singular case, i.e., we do not exclude the case that det Λ(λ) = 0 for
every λ ∈ R. Let us also point out that the assumptions (1) and (2) imply that the
boundary conditions (B) are self-adjoint (see [11, Definition 2.1.2]). It means that
F(z, z̃) = F(z̃, z) for every admissible z =

(
x
u

)
, z̃ =

(
x̃
ũ

)
, where

F(z, z̃) := F0(z, z̃) + xT
0 S0x̃0 + xT

N+1SN+1x̃N+1

with F0 given by (13). It also implies that finite eigenvalues of (S), (B) are real and
finite eigenvectors corresponding to different finite eigenvalues are orthogonal, see [4,
Remark 2(iii)] and [6, Proposition 2].

We will use in our proofs the main results of [6] which we now briefly recall.

Proposition 3. Let Z =
(

Xk(λ)
Uk(λ)

)
be the principal solution of (S) at k = 0, i.e.,

X0 = 0, U0(0) = I, and denote by n1(λ) the number of its focal points in the interval
(0, N + 1]. Further, denote by n2(λ) the number of finite eigenvalues of (S) together
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with Dirichlet boundary conditions, (i.e., R∗
0 = I = R∗

N+1, R0 = 0 = RN+1 in (S))
which are less than or equal to λ. Then there exists ` ∈ N ∪ {0}, such that
(19) n1(λ) = ` + n2(λ) for all λ ∈ R.

Based on this statement, we can now formulate the oscillation theorem for symplec-
tic eigenvalue problems with general separated boundary conditions. In its formulation
we use the following notation. Let Z =

(
Xk(λ)
Uk(λ)

)
be the solution of (S) given by the

initial condition (5) (sometimes, such a solution is called natural conjoined basis with
respect to (B)). We denote by

n1(λ) :=
N∑

k=0
m(k, λ)

the number of its focal points in the interval (−1, N + 1], where m(k, λ) is given by
(18). Further, let

Λ(λ) := R∗
N+1XN+1(λ) + RN+1UN+1(λ), M(λ) := [I − Λ(λ)Λ†(λ)]RN+1,(20)

T (λ) := I −M †(λ)M(λ), D(λ) := T (λ)XN+1(λ)Λ†(λ)RN+1T (λ),
and
(21) m(λ) := rank M(λ) + ind D(λ).
Finally, we denote by n2(λ) the number of finite eigenvalues of (S), (B) which are less
that or equal to λ.

Theorem 1 (Oscillation Theorem). Suppose that (16) holds. Then
n1(λ) + m(λ) = n2(λ) for all λ ∈ R.

Proof. We transfrom the original eigenvalue problem (S), (B) to the extended eigen-
value problem with Dirichlet boundary conditions (8), where the extended matrices
S−1, SN+1 are given by (4), (6), respectively, and W−1 = 0 = WN+1. Then the solu-
tion Z =

(
X
U

)
given by (5) is the principal solution of the extended system at k = −1.

Since
M−1 = (I −X0X

†
0)B−1 = 0, D−1 = T−1X−1X

†
0B−1T−1 = 0,

no additional focal point appears in (−1, 0] in the extension at −1. Hence the number
of focal points of

(
X
U

)
as a solution of the original system in (0, N + 1] and as a

solution of the extended system in (−1, N + 1] is the same. Concerning the interval
(N + 1, N + 2] for the extended system,

XN+2(λ) = QT Λ(λ),
MN+1(λ) = (I −XN+2(λ)X†

N+2(λ))BN+1(λ) = (I −QT Λ(λ)Λ†(λ)Q)QT RN+1

= QT (I − Λ(λ)Λ†(λ))RN+1 = QM(λ),
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where M(λ) and Λ(λ) are given by (20). So
(

X
U

)
has m(λ) focal points in (N+1, N+2],

including multiplicities, where m(λ) is given by (21). By (16), Fe(z, z)− λ〈z, z〉 > 0
for every admissible z =

(
x
u

)
with 〈z, z〉 > 0 for λ < λ0, which means (see, e.g. [3,

Theorem 1]) that the principal solution at k = −1 of the extended system has no
focal point in (−1, N +2] if λ < λ0. Moreover, since n2(λ) = 0 for λ sufficiently small,
(see [6, Proposition 2]), we have ` = 0 in (19). Now, Proposition 1 applied to the
extended system yields the required result. ¤

Next we recall the main results of [5], which concern the variational description of
finite eigenvalues and completeness of the system of finite eigenvectors in the space
of admissible sequences.

Consider again the eigenvalue problem (S) for 0 ≤ k ≤ N with Dirichlet boundary
conditions x0 = 0 = xN+1. Note that in [5] we supposedWk = I, 0 ≤ k ≤ N . However,
all results of that paper extend literally to nonnegative definite weight matrices Wk

and admissible sequences z =
(

x
u

)
with

(Wkxk+1
)N−1

k=0 6= 0, i.e. 〈z, z〉 > 0.

Denote by r the number of its finite eigenvalues (r ≤ nN by [6, Proposition 2])
of (S) with the Dirichlet boundary conditions and suppose that the finite eigenvalues
are ordered by their size λ1 ≤ λ2 ≤ · · · ≤ λr. The finite eigenvectors corresponding to
different finite eigenvalues are orthogonal, so we may assume that they are orthonor-

mal, and we denote them by z(µ) =
(x

(µ)
k

u
(µ)
k

)N+1

k=0
, 1 ≤ µ ≤ r. Moreover, finite eigenvectors

form a complete orthonormal system in the space of admissible sequences, i.e., in the
space of z =

(
xk

uk

)N+1
k=0

satisfying

xk+1 = Akxk + Bkuk, 0 ≤ k ≤ N, x0 = 0 = xN+1.

This means that the first component of any admissible z =
(

x
u

)
can be expressed in

the form

(22) ‖ x−
r∑

µ=1
cµx

(µ) ‖W= 0 with cµ = 〈z(µ), z〉, where ‖ · ‖W :=
√
〈·, ·〉.

Finite eigenvalues λµ also admit the variational description via Rayleigh’s principle

(23)
λm+1 = min

{
F0(z)
〈z,z〉 : z = (x, u) is admissible with x0 = xN+1 = 0,

z ⊥ z(µ) for all 1 ≤ µ ≤ m, and
(Wkxk+1

)N−1
k=1 6= 0

}
.

Finally, if the minimum in (23) is attained by some ẑ =
(

x̂
û

)
, i.e.,

(24) F0(ẑ) = λm+1 〈ẑ, ẑ〉 for some admissible ẑ with x̂0 = x̂N+1 = 0
and ẑ ⊥ z(µ) for all 1 ≤ µ ≤ m,
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then ẑ satisfies not only the admissibility equation x̂k+1 = Akx̂k + Bkûk but also the
second equation in (S), the so called Euler equation:

(25)
{

ũk+1 = Ckx̂k +Dkũk − λm+1Wkx̂k+1 for suitable vectors ũk with
Bkũk = Bkûk for 0 ≤ k ≤ N.

Using constructions from Sections 2 and 3 we may now extend these results to
the symplectic eigenvalue problem (S), (B). Recall that due to the fact that W−1 =
0 = WN+1, the inner products for the original and extended problems defined by the
bilinear forms (11) coincide, so we do not need to distinguish between the products
〈, 〉, and 〈, 〉e. Moreover, the functional corresponding to the extended problem (12)
and the functional
(26)

F(z) := −xT
0 S0x0 + xT

N+1SN+1xN+1 +
N∑

k=0
{xT

kAT
k Ckxk + 2xT

k CT
k Bkuk + uT

kBT
kDkuk}.

are the same, hence the statements of the next theorems follow directly from (22),
(23), (24), and (25) applied to the extended system on [−1, N +2]. Note that W−1 = 0
and use [6, Proposition 2] to see that r ≤ n(N + 1) below.
Theorem 2 (Rayleigh’s principle). Suppose that (16) holds. Then the eigenvalue
problem (S), (B) has at most n(N + 1) finite eigenvalues, including multiplicities. Let

λ1 ≤ · · · ≤ λr, r ≤ n(N + 1),
be these eigenvalues ordered by their size, with corresponding orthonormal finite eigen-
vectors z(1), . . . , z(r). Then for 0 ≤ m ≤ r − 1

λm+1 = min
{
F(z)
〈z,z〉 : z =

(
xk

uk

)N+1
k=0

is admissible, z ⊥ z(µ) for all 1 ≤ µ ≤ m,

and
(Wkxk+1

)N

k=0 6= 0
}

,

where the quadratic functional F is given by (26).
Theorem 3 (Euler Equation). Suppose that (16) holds and that λµ, z(µ), µ = 1, . . . , r,
are the same as in the previous theorem. If

F(ẑ) = λm+1 〈ẑ, ẑ〉
for some admissible ẑ =

(
x̂
û

) ⊥ z(µ), µ = 1, . . . , m, then (25) holds.
Theorem 4 (Expansion Theorem). Suppose that (16) holds and that λµ, z(µ), µ =
1, . . . , r, are the same as in the previous two theorems. Then the finite eigenvectors
z(µ) =

(
x(µ)

u(µ)

)
, 1 ≤ µ ≤ r, form an orthonormal basis in the space of admissible

sequences given by (9) with respect to the norm on ImW induced by W, i.e., the first
component x of any admissible z =

(
x
u

)
satisfies

‖ x−
r∑

µ=1
cµx

(µ) ‖W= 0 with cµ = 〈z(µ), z〉, where ‖ · ‖W :=
√
〈·, ·〉.
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[5] M. Bohner, O. Došlý, W. Kratz, Sturmian and spectral theory for discrete sympectic sys-

tems, to appear in Trans Amer. Math. Soc.
[6] O. Došlý, W. Kratz, Oscillation theorems for symplectic difference systems. J. Difference

Equ. Appl., 13 (2007), 585–605.
[7] J. Elyseeva, A transformation for symplectic systems and the definition of a focal point, Com-

put. Math. Appl., 47 (2004), 123–134.
[8] K. Feng, The Hamiltonian way for computing Hamiltonian dynamics, In Applied and indus-

trial mathematics (Venice, 1989), volume 56 of Math. Appl., pages 17–35. Kluwer Acad. Publ.,
Dordrecht, 1991.
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