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Skewness in Hedge Funds Returns: Classical Skewness 

Coefficients vs. Azzalini’s Skewness Parameter 

 

Abstract: Recent literature discusses the persistence of skewness and tail risk in hedge fund 

returns. The aim of this paper is to suggest an alternative skewness measure   which is 

derived as the normalized shape parameter from the skew-normal distribution. First, we 

illustrate that the skew-normal distribution is better able to catch the characteristics of hedge 

fund returns than the normal distribution. And second, we show that using the skewness 

parameter   has a number of advantages compared to common measures of skewness, e.g., it 

has a limpid financial interpretation as a skewness shock on normally distributed returns and 

tail-risk measures such as Value-at-Risk and Conditional Value-at-Risk are decreasing 

functions of  . 
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Skewness in Hedge Funds Returns: Classical Skewness 

Coefficients vs. Azzalini’s Skewness Parameter 
 

1. Introduction 
 

A number of studies have empirically shown that hedge fund returns are far from being 

Gaussian and show persistent skewness (see, e.g., Fung and Hsieh, 1997; Lo, 2001; Darius et 

al., 2002; Cvitanic et al., 2003; Agarwal and Naik, 2004). In the literature, many indices are 

used to measure skewness. The most common is the third standardized moment, which 

provides comparative information on the tail divergence from the normal distribution (see, 

e.g., Kim and White, 2004). Additionally, there are several other easy-to-use and easy-to-

communicate coefficients, such as the Bowley and Pearson coefficients, which provide 

standardized divergence between the mean and the mode, or the median, respectively (see, 

e.g., Groeneveld and Meeden, 1984). One important disadvantage of all these measures is that 

they can be strongly influenced by outliers (see Kim and White, 2004) and therefore may 

provide contrary information; for example, not even the same sign is guaranteed among the 

different measures. 

 

In this paper, we suggest an alternative, clear-cut skewness measure  , called Azzalini’s 

skewness parameter, defined as the normalized shape parameter of the skew-normal 

distribution (see Azzalini, 1985). This parametric distribution shares the convenient properties 

of the normal distribution with the flexibility of having an asymmetric shape. Therefore, it is 

better able to capture the distributional characteristics of hedge fund returns and is thus 

especially helpful in describing the nature of these funds. 

 

The contribution of this paper is twofold. First, we show that using the skew-normal 

distribution to estimate hedge fund returns leads to a better goodness of fit than the normal 

distribution. Second, we illustrate that using   as a skewness measure has many advantages 

compared to the classical skewness coefficients, including: 

(1)   has a limpid financial interpretation as a skewness shock on normally distributed 

returns; 

(2)   is an increasing transformation of the third standardized moment, but due to its 

boundness between –1 and +1, it better captures the magnitude of skewness; 

(3)   permits easily grasping of the impact of the skewness shock on the tail risk in hedge 

fund returns; and 
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(4) tail-risk measures such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are 

decreasing functions of  . 

 

The remainder of this paper is organized as follows. Section 2 provides an overview of the 

skew-normal distribution. Goodness-of-fit tests for the skew-normal distribution are presented 

in Section 3. In Section 4, the advantages of using   with respect to the classical skewness 

coefficients are discussed. In Section 5 we illustrate how   can be used as an indicator of tail 

risk. 

 

2. Skew-normal distribution: A review 

 

Although the origins of the skew-normal distribution can be traced back to Del Helguero 

(1908), only the work of Azzalini (1985, 2005) has raised attention to these non-Gaussian 

distributions. Given the limitations of the normal distribution to describe financial time series, 

some applications of the skew-normal distribution have been carried out recently. Liseo and 

Loperfido (2006) build a skew-in-mean GARCH model using the skew-normal distribution 

and apply their model to the U.K. FTSE index. Adcock (2005) incorporates the skew-normal 

distribution into the capital asset pricing model, and Adcock (2007) extends Stein’s lemma to 

multivariate skew-normal returns. In order to make the paper self-contained we recall the 

original Azzalini definition. We consider a continuous random variable X having a probability 

density function of the following form: 

 

     2f x x x    , (1) 

 

where   is a fixed arbitrary number,   denotes the standard normal density function, and   

is its distribution function. The class of distributions describe by Equation (1) is called skew-

normal distributions with shape parameter  , or  X SN  . For practical numerical work, 

we need to add location and scale parameters. The linear transformation Y X    is said to 

have a skew-normal distribution with parameters  , ,   , i.e.,  2, ,Y SN    . We refer 

to  ,   (with 0  ), and   as the location, the scale, and the shape parameters, 

respectively. 
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Skew-normal distributions are an extension of the normal distribution. They reduce to the 

standard normal distribution for  =0 and to the Half-Gaussian when   . If the sign of 

  changes, the density is reflected on the opposite side of the vertical axis. This property is 

highlighted by a characterization of Y ~SN(ξ, ω2, α), given in Pourahmadi (2007), stating that 

Y ~SN(ξ, ω2, α) can be written as a special weighted average of a standard Gaussian and a 

Half-Gaussian. This suggests an alternative definition of skew normality better suited to 

financial modeling. A random variable Y ~SN(ξ, ω2, α) is skew normal if and only if it has the 

representation: 

 

 2
1 21Y X Z Z           , (2) 

 

with  2/ 1 1,1      . 1Z  and 2Z  are independent N(0;1) random variables;  stands 

for Half-Gaussian. Formula (2) spotlights the drivers governing the return Y: 

 a colored noise 1Z  shaped as a Half-Gaussian and modulated by  and 

 a Gaussian noise 2Z  modulated by 21  . 

 

The parameter  , called the Azzalini skewness parameter, is then a measure of the weight of 

the Half–Gaussian 1Z  on the return Y. Y collapses into Y ~N(ξ, ω) if  =0. The more   

moves toward the extrema 1 , the higher the relevance of the Half-Gaussian driver, and thus 

the higher the left or right skewness in Y. Moreover,   is measure of asymmetry around the 

location parameter   and its sign signals the skewness direction. The formula: 

 

  2E Y      (3) 

 

points out the impact caused by the presence of a half-Gaussian component on the mean. The 

greater  , the greater is the mean E(Y) because the probability spread over the Half-Gaussian 

moves on the right. On the contrary, the variance: 

 

   2 2var 1 2Y      (4) 
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shrinks as   moves toward the extremes and has a maximum for  =0, which is what one 

would expect, because as   moves toward the extremes, distribution tends toward being 

Half-Gaussian, fading the dispersion on the left or the right side of the location parameter. 

The third standardized moment, also called the skewness coefficient, for a skew-normal can 

be expressed in terms of  : 

 

 
 

3

3 22

24

2 1 2

 
 





 (5) 

 

where   is a strictly increasing and odd function of  . The two skewness measures have the 

same sign. 

 

3. Goodness-of-fit tests: Normal vs. skew-normal 

 

As we show in this section, the skew-normal distribution better fits empirical hedge fund data 

than does the normal distribution. We consider data provided by the Center for International 

Securities and Derivatives Markets (CISDM), a database widely used in hedge fund research 

(see, e.g., Ding and Shawky, 2007). It contains 4,048 hedge funds reporting monthly net of 

fees returns for the period from January 1996 to December 2005. 

 

Table 1 contains descriptive statistics for the return distributions of 30 hedge funds randomly 

selected out of the database. The table gives mean, standard deviation, and three classical 

skewness coefficients (third standardized moment, Pearson coefficient, and Bowley 

coefficient). Furthermore, it shows the moments of the skew-normal distribution along with 

the resulting theoretical values for the first three moments (calculated using Formulas (3)–

(5)). To ensure that the 30 selected funds are not fundamentally different from the full sample 

of 4,048 hedge funds, we calculate the average over the 30 (second last row of Table 1) and 

compare these with the average of the full 4,048 hedge funds (last row of Table 1; the full 

statistics on all 4,048 funds are available upon request). The values in the penultimate and last 

row are nearly identical, so the selected funds should be a good indicator for the full sample. 
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Fund No. Empirical  Skew Normal  Goodness of Fit 

Mean 

(%) 

St. Dev. 

(%) 

Classical

  

Pearson Bowley  Location

 %  

Scale 

 %

Shape 

  

Delta 

  

Mean 

(%) 

St. Dev. 

(%) 

Classical

  

 Normal Skewed 

Normal 

1 1.46 3.62 -0.68 -0.02 -0.04  4.16 4.50 -1.16 -0.76 1.44 3.59 -0.19  217.13 220.07 
2 1.91 5.47 -1.04 -0.09 -0.06  7.52 7.71 -2.34 -0.92 1.87 5.24 -0.54  143.72 146.23 

3 0.79 0.97 0.03 0.14 0.23  0.44 1.02 0.48 0.43 0.79 0.96 0.02  71.47 73.73 

4 1.17 4.24 0.65 0.04 -0.16  -3.40 6.21 2.39 0.92 1.17 4.21 0.55  89.61 92.03 

5 0.87 2.53 -0.04 -0.07 -0.09  2.30 2.88 -0.79 -0.62 0.87 2.50 -0.08  131.04 144.26 

6 0.88 0.48 0.81 0.32 0.34  0.51 0.56 1.39 0.81 0.87 0.43 0.27  277.26 292.79 

7 0.80 2.83 0.23 -0.10 -0.23  -0.99 3.32 0.93 0.68 0.81 2.79 0.12  80.84 107.64 

8 1.69 8.33 0.75 0.18 0.28  -7.78 12.51 3.11 0.95 1.73 8.14 0.68  271.57 275.46 

9 0.66 3.16 1.19 0.09 -0.09  -2.17 4.07 1.90 0.88 0.70 2.88 0.43  350.33 350.64 

10 0.07 4.49 -0.21 0.01 -0.12  3.19 5.41 -1.05 -0.72 0.06 4.42 -0.15  113.96 114.02 

11 0.14 2.95 -0.91 -0.11 -0.12  2.74 3.91 -1.61 -0.85 0.09 2.88 -0.34  118.85 118.70 

12 0.52 0.83 -0.57 -0.21 -0.31  1.38 1.19 -2.11 -0.90 0.52 0.83 -0.48  251.68 250.50 

13 -0.21 20.33 -0.85 -0.17 -0.03  21.16 29.07 -2.49 -0.93 -0.36 19.55 -0.57  291.44 296.95 

14 1.71 3.47 0.62 0.08 -0.03  -1.81 4.91 2.08 0.90 1.72 3.41 0.48  188.37 188.35 

15 0.89 3.41 0.02 -0.04 -0.20  -0.35 3.61 0.48 0.43 0.89 3.39 0.02  79.89 80.04 

16 0.35 7.04 0.05 0.06 0.10  -1.01 7.10 0.25 0.24 0.35 6.97 0.00  271.54 275.37 

17 2.12 4.06 0.82 0.27 0.39  -2.02 5.72 2.33 0.92 2.17 3.89 0.54  190.17 191.32 

18 -0.37 7.77 1.23 0.03 -0.18  -8.25 10.93 2.38 0.92 -0.21 7.41 0.55  195.62 206.23 

19 2.44 15.94 0.34 0.07 0.04  -9.58 19.80 1.18 0.76 2.49 15.70 0.20  252.40 260.77 

20 1.42 2.49 0.87 0.14 0.16  -1.09 3.52 2.10 0.90 1.45 2.44 0.48  223.06 222.33 

21 0.68 5.59 -0.70 -0.08 0.23  6.74 8.15 -2.63 -0.93 0.66 5.43 -0.60  135.75 138.46 

22 5.37 11.62 -0.59 -0.07 0.10  14.84 14.17 -1.50 -0.83 5.45 10.60 -0.30  105.24 110.02 

23 2.48 8.26 -0.40 -0.03 -0.08  8.87 10.35 -1.23 -0.78 2.46 8.12 -0.21  239.21 261.98 

24 1.78 2.15 0.54 0.36 0.61  -0.50 3.05 2.47 0.93 1.75 2.05 0.57  549.51 555.26 

25 1.13 2.80 -2.05 -0.03 0.07  3.74 3.81 -1.90 -0.89 1.05 2.70 -0.43  344.26 346.14 

26 1.43 5.67 0.48 0.10 0.17  -3.48 7.48 1.47 0.83 1.46 5.62 0.29  138.74 139.59 

27 0.37 0.68 0.23 0.00 -0.01  -0.15 0.85 1.20 0.77 0.37 0.67 0.20  66.99 65.22 

28 1.44 3.37 1.15 0.10 0.07  -1.93 4.75 2.16 0.91 1.51 3.28 0.50  251.08 251.73 

29 0.91 4.44 -0.66 0.09 0.20  4.76 5.85 -1.50 -0.83 0.88 4.38 -0.30  91.64 93.54 

30 0.68 1.76 -0.33 -0.16 -0.26  2.00 2.19 -1.16 -0.76 0.67 1.74 -0.19  151.42 156.20 

Mean 0.97 4.67 0.05 0.03 0.03  0.77 6.15 0.26 0.09 0.97 4.54 0.06  196.13 200.85 

Mean for 

the 4,048 

0.97 4.37 0.01 0.01 0.03  0.58 5.63 1.52 0.00 0.97 4.17 0.01  192.53 196.58 

Table 1: Descriptive statistics and goodness of fit for 4,048 hedge funds 

 

Comparing the three classical skewness coefficients illustrates how classical skewness 

coefficients can provide ambiguous results. For example, for Fund 4, the third standardized 

moment is positive, indicating positive skewness; however the Pearson coefficient for this 

same fund is close to zero (no skewness), and the Bowley coefficient is negative, indicating 

negative skewness. 

 

To investigate parameter fit, we compare the empirical mean, standard deviation, and 

skewness coefficient with the corresponding skew-normal values. The correlation between the 

empirical mean, standard deviation, and skewness coefficient with the corresponding skew-

normal values for the 30 selected hedge funds are 1.00, 1.00, and 0.90. It thus seems that the 

skew-normal fits the empirical parameters quite well. 
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Table 1 also presents the log likelihood value of the normal and the skew-normal to compare 

the goodness of fit of different distributions. For 25 of the 30 hedge funds, the goodness of fit 

is higher for the skew normal. The log likelihood value of the skew normal is on average 

200.85, which is higher than the goodness of fit for the normal distribution (196.13 on 

average). The skew normal thus better fits the distributional characteristics of hedge fund 

returns than does the normal distribution (additional tests, available upon request, show that 

the goodness of fit of the skew normal is also good compared to other distributions used to 

model hedge fund returns, e.g., the logistic or the normal inverse Gaussian; see Kassberger 

and Kiesel, 2006). 

 

4. Ability of skewness parameter   to spotlight asymmetry 
 

As known from the literature and empirically shown in Section 2, the Bowley and Pearson 

coefficients can provide contradictory information on the direction of skewness with respect 

to the classical standardized third moment  . Azzalini’s   has the advantage of being a 

strictly increasing function in   and of having the same sign as  . In addition   is bound 

between –1 and +1, whereas   may be arbitrarily large. Figure 1 shows the distribution of the 

skewness parameter   for the 4,048 hedge funds. The plots show a clear-cut bang-bang 

behavior:   is bimodal, with a mean and median of zero. The values of   are mostly 

gathered at the extremes, e.g., 96% (81%) of all hedge funds have an absolute value of   

larger than 0.5 (0.75), and it is almost always nonzero, thus confirming the strong influence of 

the Half-Gaussian factor and the nonnormality of hedge funds. 

 

Distribution of δ  for 4048 hedge funds
(mean = 0.00, median = 0.00)
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Figure 1: Skewness parameter   for 4,048 hedge funds 
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The fact that the median coincides with the mean shows that 50% of the time, Y is negatively 

skewed, so the hedge fund return is more inclined to undergo Azzalini’s location parameter 

 . In this context, the location parameter   can be interpreted as a benchmark for the hedge 

fund under consideration. For the other 50% of the time, the hedge fund return Y is more 

inclined to outperform its benchmark   because Y is positively skewed. However, the 

location   and the scale   parameters may vary greatly from one fund to another (see Table 

1) and thus it would be wrong to evaluate performance only on the basis of  . Such a 

performance ranking would be appropriate only in the special case that the location   and the 

scale   parameters are equal for all candidates under comparison; therefore, only skewness 

would be the tradeoff. 

 

In conclusion, although   and   provide exactly the same information, in the case of skew 

normality, the use of   is more advisable because it guarantees short-cut information on the 

fatter tail and how close to Half-Gaussian it is. 

 

5. Skewness parameter   illustrates hedge fund tail risk 
 

The literature points out that hedge funds exhibit significant tail risk and that their returns can 

be explained by option strategies (see Fung and Hsieh, 1997; Darius et al., 2002). For 

example, a large number of hedge funds exhibit payoffs resembling a short position in an out-

of-the-money put option on the market index (see Mitchell and Pulvino, 2001; Agarwal and 

Naik, 2004). The returns of these hedge funds are positive most of the time until a tail event 

makes the option pay out and the fund experiences a large loss. These funds thus bear 

significant tail risk. 

 

The skewness parameter   is an easy-to-use indicator of tail risk. In fact, for general 

distributions, an increase in skewness does not guarantee a decrease in tail risk, due to the 

possible presence of extreme events with low probability of occurrence. We now show that 

for skew-normal distributions, the two most commonly used risk measures, namely, Value-at-

Risk (VaR) and expected shortfall (ES; also called Conditional Value-at-Risk, CVaR), are 

decreasing functions of  . The higher  , the lower the influence of Half-Gaussianity on the 

left tail and, consequently, the lower the tail risk measured by VaR and ES. 

 

Let L be the random loss of Y, i.e., L Y  . Then the VaR at level 0 1c   (typically, 0.95 or 

0.99) denoted by  cVaR L  is the loss level that will be exceeded only with probability c , i.e., 
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  cP L VaR L c  , then in 100(1 – c)% of the cases the loss is smaller or equal to 

 cVaR L . The skew normal is an absolutely continuous distribution; thus, 

   1
c Y cVaR L F c y    , where YF  is the cumulative distribution function of Y, and cy  its 

c-th quantile. Note that c cy x   , where cx  is the c-th quantile of  X SN  . 

 

The cumulative function XF  is defined through a parametric integral, then after 

differentiating: 

             2 ' ' 2 '
cx

X c
c c

F x
t t t t dt x x        

 


        , 

where 
21







 and ' 0  . Since 0.5c   and, consequently, 0cx   and ' 0  , it follows 

that 
 

0X cF x







. So we get 
 1

0XF c







 as well. In conclusion, c cy x    is an 

increasing function of  , and VaR is a decreasing function of  . Thus, the greater  , the 

smaller the tail risk measured by the VaR. 

 

We now consider the expected shortfall (ES) (see Acerbi and Tasche, 2002). ES at level c  is 

defined as: 

 1

0

1
ES ( )

c

c YY F p dp
c

   . 

Again after differentiating, we get: 

1

0

ES ( ) ( )1 c
c YY F p

dp
c 

 
 

  . 

Since 
 1

0XF c







, 

 1

0YF c







 as well, then 

ES ( )
0c Y







. So, ESc  is a decreasing function 

of  . In conclusion, the greater  , the smaller the tail risk of a skew normal, if the tail-risk is 

measured by the VaR or the expected shortfall. The values of cVaR  and ESc  for  =0, 

collapsing to the case of  ,Y N   , may be used as reference points. In such a Gaussian 

case, ( )c cVaR L x     and  
2

2

cx

c

e
ES Y

c






    (see Panjer, 2002), where cx  is the c-th 

quantile of  0,1N . 
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