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Abstract We consider eigenvalue problems for self-adjoint Sturm-Liouville
difference equations of any even order. It is well-known that such prob-
lems with Dirichlet boundary conditions can be transformed into an algebraic
eigenvalue problem for a banded, real-symmetric matrix, and vice versa. In
this article it is shown that such a transform exists for general separated, self-
adjoint boundary conditions also. But the main result is an explicit procedure
(algorithm) for the numerical computation of this banded, real-symmetric
matrix. This construction can be used for numerical purposes, since in the
recent paper [Linear Algebra Appl. 428(2008), 2482-2500] there is given a
stable and superfast algorithm to compute the eigenvalues of banded, real-
symmetric matrices. Hence, the Sturm-Liouville problems considered here
may now be treated by this algorithm.
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1 Introduction
In [11] it was shown that every discrete Sturm-Liouville eigenvalue problem
(where ∆wk = wk+1 − wk )

L(y)k :=
n∑

µ=0
(−∆)µ {rµ(k)∆µyk+1−µ} = λyk+1 for 0 ≤ k ≤ N (SL)

with Dirichlet boundary conditions y1−n = . . . = y0 = yN+2−n = . . . =
yN+1 = 0 is equivalent with an algebraic eigenvalue problem [15] for a sym-
metric, banded (N + 1− n)× (N + 1− n) -matrix with bandwidth 2n + 1 ,
where N and n are fixed integers with 1 ≤ n ≤ N (see [11, Theo-
rem 1 and Remark 1 (i)]). Note that the equations (SL) are irrelevant for
N − n + 1 ≤ k ≤ N in the case of Dirichlet boundary conditions, so that in
[11] the equations (SL) are considered only for 0 ≤ k ≤ N − n .
In this article we treat the Sturm-Liouville difference equations (SL) with
general separated, self-adjoint boundary conditions. These boundary con-
ditions include the so-called natural boundary conditions, when no or ”not
enough” boundary conditions are imposed [10, p. 51 (2.3.9)]. More precisely,
given (SL) and the (imposed and natural) boundary conditions, then we show
that this eigenvalue problem is equivalent with an algebraic eigenvalue prob-
lem for a real-symmetric, banded matrix with bandwidth 2n + 1 , and we
will construct this matrix explicity. For our general boundary conditions we
must assume that the coefficients rn(k) are unequal to zero at ”the begin-
ning and at the end” (see (16) below). This leads via reference [12] or [14] to
a numerical algorithm to compute the eigenvalues of these Sturm-Liouville
eigenvalue problems.
Therefore the present paper is to some extent a continuation of the articles
[11] and [12]. The paper [12] presents superfast (i.e. with O(N) numer-
ical operations) and stable algorithms for the computation of some of the
eigenvalues for a real-symmetric and banded N × N matrix with band-
width 2n + 1 , where n = 2 or 3 for the most interesting divisionfree
algorithms. These algorithms are based on the bisection method, and they
generalize the well-knowm procedure for real-symmetric and tridiagonal ma-
trices. As is shown in [11] and used in [12] the algebraic eigenvalue problems
for real-symmetric, banded matrices with bandwidth 2n + 1 are equivalent
to eigenvalue problems for self-adjoint Sturm-Liouville difference equations of
order 2n with Dirichlet boundary conditions. Hence, these discrete Sturm-
Liouville eigenvalue problems can be treated by those algorithms.
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Summarizing, the main goal of this article is to provide an algorithm to cal-
culate some of the eigenvalues of eigenvalue problems for self-adjoint Sturm-
Liouville difference equations with general separated, self-adjoint boundary
conditions (and not only for Dirichlet conditions as in [12] and [14]). To be
more precise, we provide a construction to transform these eigenvalue prob-
lems into such eigenvalue problems with Dirichlet boundary conditions. This
construction incorporates ”somehow” the general boundary conditions into
the first and last 2n equations of the Sturm-Liouville difference equations.
These transformations are stable (using essentially orthogonal transforms)
and the required computational work depends on n only (most interesting
n = 2, 3 ) but not on N , so that the overall combined (with [12]) algorithm
remains superfast (i.e. O( N ) numerical operations) and stable. Hence, the
results of this paper are of interest mainly for numerical applications.
Because of our intention above this article, more precisely the Sections 2 to
5 of it, consists essentially of the following central parts:

• deriving the transform to an explicit algebraic algebraic eigenvalue
problem for a symmetric, banded matrix with bandwidth 2n + 1 ,

• providing the required formulas, so that an implementation of the
construction is easily ”accessible” for the reader, and

• proving that the construction is always successful under the conditions
(13) and (16) (which is the contents of Theorem 1).

This means that these Sections 2 to 5 have to be quite technical. Our proceed-
ing in these Sections provides simultaneously the construction, the derivation
and the proof that the construction always works.
As already said the asserted equivalence in Theorem 1 is not the crucial
result of this article. Actually, under the assumptions (13) and (16) this
equivalence may be shown quite easily using Lemma 3 and Proposition 1.
Moreover, assumption (13) is necessary and sufficient for self-adjointness (see
e.g. [10, Prop. 2.1.1] or elsewhere), if (16) holds. The assumption (16) is
also necessary for all considered boundary conditions simultaneously, but for
a particular boundary condition it may be weakened. But this can be seen
during the procedure. The equivalence via Lemma 3 and Proposition 1 di-
rectly leads in general to a banded symmetric matrix with larger bandwidth.
On the other hand the ”minimal bandwidth” tridiagonal (i.e. n = 1 ) can
always be achieved in a stable way by the well-known methods of Givens and
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Householder, but these algorithms require O(N2) numerical operations as
discussed in [12], which would make our whole approach obsolete.
Note that our main goal is equivalence to an ”ordinary” algebraic eigenvalue
problem for a real-symmetric and banded matric rather than to some matrix
pencil or generalized eigenvalue problem of the form EY = λAY . This is so,
because the algorithm via bisection works only for these algebraic eigenvalue
problems, which are well-posed, while those general problems are in genral
not well-posed. Note also that the equivalence to ”some matrix pencil” can be
seen immediately from the equations ((SL) or (10)) and (11). Moreover, the
reduction of separated boundary conditions to Dirichlet boundary conditions
via an extension of the system to a larger interval is also well-known for
discrete Hamiltonian or symplectic systems (see e.g. [4] or [9]). Hence, this
reduction combined with the transformation of the Sturm-Liouville equations
(SL) to a linear Hamiltonian system by Lemma 2 would also lead to a problem
with Dirichlet boundary conditions but for a larger matrix, more precisely,
it would lead to some matrix pencil (possible also with larger bandwidth),
which cannot be treated by the algorithms of [12] and [14].
The discussion of assumption (16) in the Concluding Remarks of Section 6
does not focus on the necessity or sufficiency of it. It is quite ”natural”
to assume that the leading coefficient rn(k) never vanishes, because it is
the case in most applications. But the main point is that the incorporation
of our general boundary conditions into the the difference equations by our
construction leads in general to problems with Dirichlet boundary conditions,
but where the leading coefficint may vanish for some k ’s at the beginning
and the end. Therefore, algorithms via corresponding Hamiltonian or Riccati
equations cannot be used anymore, so that the divisionfree algorithms (i.e.
no divisions by rn(k) ) are needed as remarked in Concluding Remarks (i)
of Section 6.
Let us shortly motivate why to consider the discrete Sturm-Liouville eigen-
value problems of this article, particularly for n = 2 and n = 3 , and for
general boundary conditions.

• The discretization of a second order Sturm-Liouville equation

(ry′)′ + qy = λy

of higher order leads to a banded matrix with bandwidth 2n + 1 with
n > 1 , and then even Dirichlet boundary conditions y(a) = y(b) = 0
lead for the discrete problem to the boundary conditions y0 = yN+1 =
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0 , which have to be complemented by additional ”natural boundary
conditions” in the usual way. Therefore, such problems of second or-
der with Dirichlet boundary conditions cannot be treated (at least for
higher order discretization) directly by the algorithm of [12]. By using
the construction of this article we obtain faster algorithms than the
known ones.

• Linear discretization of 4th and 6th order Sturm-Liouville difference
equations leads to bandwidths 5 and 7 , and the numerical treatment
of not only Dirichlet boundary conditions via [12] requires also the
construction of this article.

Let us shortly discuss the setup of this paper. In the next section we provide
the formulae, which transform the difference equations (SL) into the corre-
sponding matrix equation (see Lemma 1 below) based on [11]. In Section
3 we derive via partial summation the so-called Dirichlet’s formula, which
yields the crucial identities (8). In Section 4 we formulate our discrete Sturm-
Liouville eigenvalue problems. In particular, we introduce (based on [6]) and
discuss shortly the corresponding general separated, self-adjoint boundary
conditions. In Section 5 we carry out our construction of the symmetric,
banded matrix, so that the corresponding algebraic eigenvalue problem is
equivalent with our Sturm-Liouville problem. Hence, our proceeding in the
Sections 2 to 5 provides simultaneously the construction, the derivation and
the proof that the construction always works. This is formulated as our main
result in the last Section 6 by adding some concluding remarks.

2 Discrete Sturm-Liouville difference equa-
tions, banded matrices and Hamiltonian sys-
tems

Let n ∈ N , and let be given reals rµ(k) for µ ∈ {0, 1, . . . .n} and k ∈ Z.
Then, for y = (yk)k∈Z, we consider the Sturm-Liouville difference operator
L(y) defined by

L(y)k :=
n∑

µ=0
(−∆)µ {rµ(k)∆µyk+1−µ} for k ∈ Z, (1)

5



where ∆ is the forward difference operator, i.e., ∆wk := wk+1−wk, which
will always operate with respect to the variable k. Then, by [11, Theorem
1], we have that

L(y)k = (Ay)k+1 for k ∈ Z ,

where A = (aµν) is a symmetric, banded matrix with bandwidth 2n + 1,
given by

ak+1,k+1+t = (−1)t

n∑
µ=t

µ∑
ν=t

(
µ

ν

)(
µ

ν − t

)
rµ(k + ν) , (2)

ak+1,k+1−t = (−1)t

n∑
µ=t

µ−t∑
ν=0

(
µ

ν

)(
µ

ν + t

)
rµ(k + ν) ,

for 0 ≤ t ≤ n and all k ∈ Z.
This formula yields the following

Lemma 1 For k ∈ Z and y = (yν)ν∈Z define vectors

x̃k := (yk+1−n+ν)n−1
ν=0 and vk := (L(y)k+ν)n−1

ν=0 . (3)

Then,
vk = 4T (k)x̃k + M(k)x̃k+n +4(k + n)x̃k+2n, (4)

where M(k) ∈ Rn×n is a symmetric matrix, and where

4(k) =

(−1)nrn(k) · · · 0
...

. . .
...

? · · · (−1)nrn(k + n− 1)

 ∈ Rn×n

is lower triangular, and it is invertible, if rn(ν) 6= 0 for k ≤ ν ≤ k + n− 1.
Moreover, the equation

vk = λx̃k+n

is equivalent with

L(y)k+ν = λyk+1+ν for 0 ≤ ν ≤ n− 1.

Next, we have by [11, Lemma 3] or [3, Remark 2]
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Lemma 2 For k ∈ Z and y = (yν)ν∈Z define vectors

xk := (∆νyk−ν)n−1
ν=0 and uk :=

(
n∑

µ=ν+1
(−∆)µ−ν−1{rµ(k)∆µyk+1−µ}

)n−1

ν=0

.

(5)
Then, for any k ∈ Z, the equation

L(y)k+ν = λyk+1+ν

is equivalent with the Hamiltonian system

∆xk = Axk+1 + Bkuk , ∆uk = (Ck − λC̃)xk+1 − AT uk,

provided that rn(k) 6= 0, where we use the following notation:
A,Bk, Ck, C̃ are n× n -matrices defined by

A :=


0 1 · · · 0
...

. . .
. . .

...
0 · · · 0 1
0 · · · 0 0

 , Bk := 1
rn(k)B with B := diag (0, . . . , 0, 1) ,

Ck := diag (r0(k), . . . , rn−1(k)) , and C̃ := diag (1, 0, . . . , 0) .

For the next lemma see e.g. [5, formulae (6) and (9)] for the case of constant
coefficients. It follows easily from our formulae (3) and (5) by computing the
finite differences via ∆νwk =

∑ν
µ=0

(
ν
µ

)
(−1)ν−µwk+µ.

Lemma 3 Let x̃k (correspondly x̃k+n ), xk, and uk be defined by (3)
and (5). Then,

x̃k = Txk, uk = T1(k)x̃x + T2(k)x̃k+n, (6)

where T =
(
(−1)ν

(
n−1−µ

ν

))
0≤µ,ν≤n−1 is invertible with T−1 =(

(−1)n−1−ν
(

µ
n−1−ν

))
0≤µ,ν≤n−1 , and where T1(k), T2(k) are n × n -matrices

with

T2(k) =

 ? · · · (−1)n−1rn(k + n− 1)
... . .

. ...
(−1)0rn(k) · · · 0

 ,

and T2(k) is invertible, if rn(ν) 6= 0 for k ≤ ν ≤ k + n− 1.
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3 Dirichlet’s formula
The next lemma is a discrete version of the continuous Dirichlet’s formula
[10, Lemma 8.4.3].

Lemma 4 For k ∈ Z and two sequences y = (yν)ν∈Z, ȳ = (ȳν)ν∈Z let
the operator L and the vectors xk, uk, x̄k, ūk, the matrices B and Ck be
defined as in the previous section by (1) and Lemma 2. Then, for any k ∈ Z,

ȳk+1L(y)k =
n∑

µ=0
rµ(k)∆µȳk+1−µ∆µyk+1−µ −∆(x̄T

k uk) (7)

= x̄T
k+1Ckxk+1 + rn(k)(x̄k+1 − x̄k)T B(xk+1 − xk)−∆(x̄T

k uk).

Proof. A straight forward calculation using (1) and (5) yields:

∆(x̄T
k uk) = x̄T

k+1(∆uk) + (∆x̄T
k )uk

=
n−1∑
µ=0

∆µȳk+1−µ

n∑
ρ=µ+1

(−1)ρ−µ−1∆ρ−µ{rρ(k)∆ρyk+1−ρ}

+
n−1∑
µ=0

∆µ+1ȳk−µ

n∑
ρ=µ+1

(−1)ρ−µ−1∆ρ−µ−1{rρ(k)∆ρyk+1−ρ}

=
n∑

µ=1
∆µȳk+1−µrµ(k)∆µyk+1−µ

+ȳk+1

n∑
ρ=1

(−1)ρ−1∆ρ{rρ(k)∆ρyk+1−ρ}

=
n∑

µ=0
rµ(k)∆µȳk+1−µ∆µyk+1−µ − ȳk+1L(y)k,

which proves our assertion (7) using also the definition of Ck and B by
Lemma 2. ¤

Proposition 1 The matrices T, T1(k), T2(k), and 4(k) from Lemma 3
and Lemma 1 satisfy

T2(k) = −T T 4 (k) and T1(k)T is symmetric. (8)
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Proof. We consider the functional Fk := vT
k−n

˜̄xk, with vk−n and ˜̄xk

defined by (3) of Lemma 1, where we put x̃k−n = 0. Then, by (4) of Lemma
1 we have that

Fk = ˜̄xT
k {M(k − n)x̃k +4(k)x̃k+n}. (9)

From the definition of vk−n by (3) and Dirichlet’s formula (7) we obtain
that

Fk =
n−1∑
ν=0

L(y)k−n+ν ȳk−n+ν+1

=
n−1∑
ν=0
{x̄T

k−n+ν+1Ck−n+νxk−n+ν+1 + rn(k − n + ν)×

(x̄k−n+ν+1 − x̄k−n+ν)T B(xk−n+ν+1 − xk−n+ν)} − x̄T u |kk−n

= ˜̄xT
k Sx̃k − x̄T

k uk = (by (6) of Lemma 3)
= ˜̄xT

k Sx̃k − ˜̄xT
k (T T )−1(T1(k)x̃k + T2(k)x̃k+n),

where S is a symmetric matrix. Comparing this last formula (observe that
˜̄xk, x̃k, x̃k+n are completely free) with (9) we can conclude that

−(T T )−1T2(k) = 4(k), and (T T )−1T1(k) is symmetric,

because M(k−n) is symmetric by Lemma 1. This yields our assertion (8).
¤

4 Discrete Sturm-Liouville eigenvalue prob-
lems with separated, self-adjoint boundary
conditions

Let be given integers n,N ∈ N with N ≥ 2n (see (19) below) and real
coefficients rµ(k). Then, we consider the following discrete eigenvalue prob-
lem, which we will denote by (E). It consists of the N + 1 self-adjoint
Sturm-Liouville difference equations of even order 2n (see (SL), Lemma 1
and Lemma 2 above):

L(y)k =
n∑

µ=0
(−∆)µ {rµ(k)∆µyk+1−µ} = λyk+1 for 0 ≤ k ≤ N, (10)
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and it consists of the 2n linearly independent, separated, and self-adjoint
boundary conditions

R∗
0x0 + R0u0 = 0 (11)

at the beginning, and

R∗
N+1xN+1 + RN+1uN+1 = 0 (12)

at the end, where x0, u0, xN+1, uN+1 are defined by (5) of Lemma 2, and
where the real n× n -matrices R∗

0, R0, R
∗
N+1, RN+1 satisfy the conditions

rank (R∗
0, R0) = rank (R∗

N+1, RN+1) = n,R∗
0R

T
0 and R∗

N+1R
T
N+1 are symmetric.

(13)
By Lemma 3, (11) and (12) lead to the following equivalent conditions on
x̃0, x̃n, x̃N+1, x̃N+1+n, defined by (3), i.e. on y1−n, . . . , yn and on yN+2−n, . . . ,
yN+1+n, respectively:

R∗
b x̃0 + Rbx̃n = 0, where R∗

b := {R∗
0T

−1 + R0T1(0)}, Rb := R0T2(0), (14)

and
R∗

ex̃N+1 + Rex̃N+1+n = 0, (15)
where R∗

e := {R∗
N+1T

−1 + RN+1T1(N + 1)}, Re := RN+1T2(N + 1),
and where T, T1(·), T2(·) are defined by Lemma 3. Moreover, the equivalence
of (11), (12) with (14), (15) requires the assumption that T2(0) and T2(N +
1) are invertible, which means by Lemma 3 that

rn(0) · · · rn(n− 1)rn(N + 1) · · · rn(N + n) 6= 0, (16)

We assume this from now on.
The selfadjointness of (E) follows from general theory of linear Hamiltonian
difference systems [1], and from the equivalence of our difference equation
(10) with such systems, which is stated in Lemma 2. In addition, the self-
adjointness of the boundary conditions via the assumption (13) is stated or
discussed e.g. in [10, Def. 2.1.2], [6, Remark 2 (iii)], [8, Prop. 2] or [9, Def.
1].
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5 Construction of the symmetric, banded ma-
trix

First, by Lemma 1, the Sturm-Liouville difference equations (10) may be
written in matrix notation, namely:

Ay = λỹ, (17)

where the coefficient matrix is of the form
A =4

T (0) M(0) 4(n) · · · 0 0 0
...

...
...

0 0 0 · · · 4T (N + 1− n) M(N + 1− n) 4(N + 1)


(18)

which is ∈ R(N+1)×(N+1+2n), and where

y = (y1−n, · · · , yN+1+n) = (x̃T
0 , x̃T

n , · · · , x̃T
N+1−n, x̃T

N+1) ∈ RN+1+2n, and
ỹ = (y1, · · · , yN+1) = (x̃T

n , · · · , x̃T
N+1−n) ∈ RN+1,

and where we have written the first n and the last n rows of A in blocked
form according to (3) and (4) of Lemma 1. It is the aim of this section to
incorporate the boundary conditions (11) or (14) and (12) or (15) into the
first n and the last n equations of (10), i.e., the first and last block row of
A, respectively. This requires in general that

N ≥ 2n. (19)

As a result we will obtain an algebraic eigenvalue problem for a symmetric,
banded matrix of size (N+1−rb−re)×(N+1−rb−re) with integers rb, re ∈
{0, . . . , n} depending on the boundary conditions. This algebraic eigenvalue
problem will be equivalent with our given Sturm-Liouville eigenvalue problem
(E) from Section 4 under the assumptions (13) and (16).

5.1 Boundary conditions at the beginning
We consider the boundary conditions (11) or (14) at the beginning by as-
suming (13) and (16). Hence, T2(0) and 4(0) are invertible by Lemma 1
and Lemma 3. Let X̃, Ũ be real n× n -matrices such that (see (14))

X̃T Ũ = ŨT X̃, X̃T U − ŨT X = I, and X̃ is invertible, (C1)
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where X := −4−1 (0)(R∗
b)T , U := RT

b .
The existence (including construction) follows from [10, Cor. 3.3.9], because

rank (XT , UT ) = n, UT X = XT U (20)

holds. This follows from (13) and (14) by the calculations

rank (R0T2(0), {R∗
0T

−1 + R0T1(0)}(4T )−1(0)) = rank (R0, R
∗
0) = n,

and

R0T2(0)4−1 (0){R∗
0T

−1 + R0T1(0)}T = −R0(R∗
0)T −R0T

T T T
1 (0)RT

0

is symmetric, where we used (8) of Proposition 1. Moreover, (C1) and (20)
imply by [10, Prop. 1.1.5] that

UX̃T − ŨXT = I, and XX̃T , UŨT are symmetric. (21)

We conclude from (C1) and (21) that our boundary conditions (11) or (14)
are equivalent with

−X̃XT 4T (0)x̃0 + X̃UT x̃n = 0. (22)

Since X̃XT is real-symmetric by (21), there exists by the spectral theorem
[13] an orthogonal matrix Ṽ such that

Ṽ T X̃XT Ṽ =
(

0 0
0 D

)
,

where D ∈ R(n−rb)×(n−rb) is diagonal and invertible, so that

rb = n− rank X = n− rank R∗
b = n− rank {R∗

0 + R0T1(0)T}. (23)

We use this block structure from now on including the extreme cases rb = 0
and rb = n, where the zero-matrices or D do not occur. By the Gram-
Schmidt process (or QR-factorization [13]), there exists an orthogonal matrix
Q ∈ R(n−rb)×(n−rb) such that QT422 is lower triangular, where Ṽ T4(n) :=(411 412
421 422

)
∈ Rn×n with the blockstructure above, i.e., 411 ∈ Rrb×rb .

Then V := Ṽ

(
I 0
0 Q

)
is orthogonal, and

S := V T (−X̃XT )V =
(

0 0
0 S22

)
,
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where S22 = −QT DQ is symmetric and invertible. Let

R := V T X̃UT V =
(

R11 R12
R21 R22

)
.

By (20) and (C1), rank (S, R) = n, and

SRT =
(

0 0
S22R

T
12 S22R

T
22

)
= −V T X̃XT UX̃T V

is symmetric. Hence, R12 = 0, because S22 is invertible, and
rank

(
0 0 R11 0
0 S22 R21 R22

)
= n, so that R11 is invertible.

Altogether, we have constructed V ∈ Rn×n such that

S := −V T X̃XT V =
(

0 0
0 S22

)
with a symmetric and invertible matrix S22 ∈ R(n−rb)×(n−rb),
where rb = n− rank X,

R := V T X̃UT V =
(

R11 0
R21 R22

)
(C2)

with an invertible matrix R11 ∈ Rrb×rb and so that S22R
T
22

is symmetric, and

4̃ := V T 4 (n) =
(4̃11 4̃12
4̃21 4̃22

)
,

so that 4̃22 ∈ R(n−rb)×(n−rb) is lower triangular, and where V is orthogo-
nal.
It follows immediately from(C1) and (C2) that our boundary conditions (11)
or (14) are equivalent with

SV T 4T (0)x̃(0) + RV T x̃n = 0,

and therefore with

x1(n) = 0, x2(0) = −S−1
22 R22x2(n), where

13



˜̃x0 := V T 4T (0)x̃0 =
(

x1(0)
x2(0)

)
, ˜̃xn := V T x̃n =

(
x1(n)
x2(n)

)
(24)

with x1(0), x1(n) ∈ Rrb , while x1(0) and x2(n) remain free.
We say that (24) are the boundary conditions in normalized form.
Now, we consider the first n equations or the first block row of our difference
equations (10) or (17), i.e., by Lemma 1 and (18),

v0 = 4T (0)x̃0 + M(0)x̃n +4(n)x̃2n = λx̃n. (25)

We obtain from (21) and (22) that

4T (0)x̃0 = (UX̃T − ŨXT )4T (0)x̃0, and − ŨXT 4T (0)x̃0 = −X̃UT x̃n.

Hence, under (22) (i.e., the boundary conditions) the equation (25) is equiv-
alent with (use also the notation of (24) and (C2)):

0 = V T (UX̃T 4T (0)x̃0 − ŨUT )x̃n + V T{M(0)− λI}V x̃n + V T 4 (n)x̃2n

= RT ˜̃x0 + {M̃(0)− λI}˜̃xn + 4̃ x̃2n,

where M̃(0) =
(

M11 M12
M21 M22

)
:= V T{M(0) − ŨUT}V is symmetric by

Lemma 1 and (21). Hence, by (C2), the equation (25) is equivalent with
(under the boundary conditions (24)):

x1(0) = −(RT
11)−1{−RT

21S
−1
22 R22x2(n) + M12x2(n) + (4̃11 4̃12)x̃2n} (26)

and

{M − λI}x2(n) + (4̃21 4̃22)x̃2n = 0, where M := −RT
22S

−1
22 R22 + M22. (27)

Now, (26) defines x1(0) independently of λ, which was free by (24). Note
that M is symmetric, because M(0) and ŨUT are symmetric by Lemma
1 and (21). Moreover, 4̃22 is lower triangular by (C2), so that (27) leads
to bandwidth 2n + 1 and symmetry. More precisely, we drop the first
n + rb columns of A, and the first n rows are replaced by the following
rows, which constitute the first n−rb rows of the symmetric, banded matrix
under construction:

(M 4̃21 4̃22 0 · · · 0), where M := −RT
22S

−1
22 R22+M22 ∈ R(n−rb)×(n−rb), (C3)
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and where
(

M11 M12
M21 M22

)
:= V T{M(0)− ŨUT}V.

The next n equations of (10) are given by

4T (n)x̃n + {M(n)− λI}x̃2n +4(2n)x̃3n = 0, (28)

where 4T (n)x̃n = 4̃T ˜̃xn = (4̃21 4̃22)T x2(n) by (C2), because x1(n) = 0
by (24). Hence, the next n rows from n− rb + 1, . . . , 2n− rb of our matrix
under construction have to be defined by((

4̃T

21

4̃T

22

)
M(n) 4 (2n) 0 · · · 0

)
. (C4)

This completes the construction concerning the boundary conditions at the
beginning. Thus, possible eigenvectors have to be of the form (xT

2 (n), yn+1, · · · ),
where the boundary conditions are satisfied by putting x1(n) = 0 and defin-
ing x2(0) and x1(0) by (24) and (26), respectively.

5.2 Boundary conditions at the end
We proceed similarly as in the previous subsection. Therefore, we can skip
some details. We shall use for convenience the same notation for auxiliary
matrices or vectors here, but of course, with a different meaning. Observe
that the situation is nevertheless not symmetric (see the concluding remarks
(ii) below).
We consider the boundary conditions (12) or (15) at the end by assuming
(13) and (16), so that T2(N + 1) and 4(N + 1) are invertible. Let X̃, Ũ
be real n× n -matrices such that (see (15))

X̃T Ũ = ŨT X̃, X̃T U − ŨT X = I, and X̃ is invertible, (C5)

where X := (Re 4−1 (N + 1))T , U := (R∗
e)T .

These matrices exist, because (20) holds by (13) and (15). Note that

X = −TRT
N+1

by Proposition 1 and (15). Moreover, (21) holds as before. Hence, the
boundary conditions (12) or (15) are equivalent with

X̃UT x̃N+1 + X̃XT 4 (N + 1)x̃N+1+n = 0. (29)
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By the spectral theorem there exists an orthogonal matrix Ṽ such that

Ṽ T X̃XT Ṽ =
(

D 0
0 0

)
,

where D ∈ R(n−re)×(n−re) is diagonal and invertible, so that

re = n− rank X = n− rank Re = n− rank RN+1. (30)

As before we use this block structure including the extreme cases re = 0
and re = n. By QR-factorization there exists an orthogonal matrix Q ∈
R(n−re)×(n−re) such that QT4T

11 is upper triangular, where 4(N + 1−n)Ṽ

:=
(411 412
421 422

)
with the blockstructure above, i.e., 422 ∈ Rre×re . Then

V := Ṽ

(Q 0
0 I

)
is orthogonal, and

S := V T (−X̃XT )V =
(

S11 0
0 0

)
,

where S11 = −QT DQ is symmetric and invertible. Let

R := V T X̃UT V =
(

R11 R12
R21 R22

)
.

By (20) and (C5) we obtain that R21 = 0 and that R22 is invertible.
Altogether, we have constructed V ∈ Rn×n such that

S := −V T X̃XT V =
(

S11 0
0 0

)
with a symmetric and invertible matrix S11 ∈ R(n−re)×(n−re),
where re = n− rank X,

R := V T X̃UT V =
(

R11 R12
0 R22

)
(C6)

with an invertible matrix R22 ∈ Rre×re and so that S11R
T
11

is symmetric, and

4̃ := 4(N + 1− n)V =
(4̃11 4̃12
4̃21 4̃22

)
,
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so that 4̃T

11 ∈ R(n−re)×(n−re) is upper triangular, and where V is orthogo-
nal.
It follows from(C5) and (C6) that our boundary conditions (12) or (15) or
(29) are equivalent with

RV T x̃N+1 + SV T 4 (N + 1)x̃N+1+n = 0,

and therefore with

x2(N + 1) = 0, x1(N + 1 + n) = −S−1
11 R11x1(N + 1), where

˜̃xN+1 := V T x̃N+1 =
(

x1(N + 1)
x2(N + 1)

)
, (31)

˜̃xN+1+n := V T 4 (N + 1)x̃N+1+n =
(

x1(N + 1 + n)
x2(N + 1 + n)

)

with x2(N +1), x2(N +1+n) ∈ Rre , x1(N +1) and x2(N +1+n) remain free.

We say that (31) are the boundary conditions (at the end) in normalized
form.
Next, we consider the last n equations of our difference equations (10) or
(17), i.e., by Lemma 1 and (18),

vN+1−n =4T(N+1−n)x̃N+1−n+M(N+1−n)x̃N+1+4(N+1)x̃N+1+n =λx̃N+1.
(32)

Then, under (31) (i.e., the boundary conditions) this is equivalent with (using
the notation of (31) and (C6)):

4̃T
x̃N+1−n + V T{M(N + 1− n)− λI}V

(
x1(N + 1)

0

)
+ ˜̃xN+1+n = 0,

that is

(4̃T

11, 4̃
T

21)x̃N+1−n + (M11 − λI, M12)
(

x1(N + 1)
0

)
+ x1(N + 1 + n) = 0,

and

(4̃T

12, 4̃
T

22)x̃N+1−n + (M21,M22 − λI)
(

x1(N + 1)
0

)
+ x2(N + 1 + n) = 0,
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where
(

M11 M12
M21 M22

)
:= V T M(N + 1 − n)V is symmetric by Lemma 1.

Hence, by (C6), the equation (32) is equivalent with (under the boundary
conditions (31)):

x2(N + 1 + n) = −(4̃T

12, 4̃
T

22)x̃N+1−n −M21x1(N + 1) (33)

and

(4̃T

11, 4̃
T

21)x̃N+1−n + {M − λI}x1(N + 1) = 0, where M := M11 − S−1
11 R11.

(34)
Now, (33) defines x2(N + 1 + n) independently of λ, which was free by
(31). Note that M is symmetric, because M(N + 1 − n) is symmetric
by Lemma 1 and because S−1

11 R11 is symmetric by (C6). Moreover, 4̃T

11
is upper triangular by (C6), so that (34) leads to bandwidth 2n + 1 and
symmetry. More precisely, we drop the last n + re columns of A, and the
last n rows are replaced by the following rows, which constitute the last
n− re rows of the symmetric, banded matrix under construction:

(0 · · · 0 4̃T

11 4̃
T

21 M), where M := M11 − S−1
11 R11 ∈ R(n−re)×(n−re), (C7)

and where
(

M11 M12
M21 M22

)
:= V T M(N + 1− n)V.

The last but one n equations of (10) are given by

4T (N+1−2n)x̃N+1−2n+{M(N+1−2n)−λI}x̃N+1−n+4(N+1−n)x̃N+1 = 0.
(35)

Note that for 2n ≤ N < 3n this overlaps with (28) of the previous subsec-
tion, and 4(N + 1−2n) may have been changed by the construction there.
We use here this new 4(N + 1 − 2n) from Section 5.1, but note that it is
irrelevant here. By (C6) and (31) we have that

4(N + 1− n)x̃(N + 1) = 4̃ ˜̃xN+1 =
(4̃11
4̃21

)
x1(N + 1).

Hence, the n rows before the n − re rows of (C7) of our matrix under
construction have to be defined by(

0 · · · 0 4T (N + 1− 2n) M(N + 1− 2n)
(4̃11
4̃21

))
. (C8)
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This completes the construction. Thus, possible eigenvectors must be of the
form

(xT
2 (n), yn+1, . . . , yN+1−n, xT

1 (N + 1)) ∈ RN+1−rb−re .

6 Main result and concluding remarks
Altogether we have shown by the construction of Section 5 the following
result.

Theorem 1 Assume (13) and (16). Then the construction of Section 5
transforms the Sturm-Liouville eigenvalue problem (E) (given by (10) and
(11)) of Section 4 into an equivalent algebraic eigenvalue problem for a real-
symmetric, banded matrix with bandwidth 2n + 1. This matrix is of size
(N + 1− rb− re)× (N + 1− rb− re) with rb, re ∈ {0, 1, . . . , n} given by (23)
and (30), and it is constructed from A (defined by (18)) by (C1)-(C8).

Concluding Remarks
(i) By our Theorem every discrete Sturm-Liouville eigenvalue problem (E)
is equivalent with an algebraic eigenvalue problem for a banded, symmetric
matrix under the assumptions (13) and (16). On the other hand, by [11,
Remark 1 (i)], such an algebraic eigenvalue problem is equivalent with a dis-
crete Sturm-Liouville eigenvalue problem with Dirichlet boundary conditions.
Moreover, if rn(k) 6= 0 for all k, then our eigenvalue problem (E) can be
written as an eigenvalue problem for a corresponding Hamiltonian system or
symplectic system [7] according to Lemma 2. Note that it is quite natural
to assume that the leading coefficient rn(k) never vanishes, because it is
the case in most applications. But the main point is that the incorpora-
tion of our general boundary conditions into the difference equations by our
construction leads in general to a problem where the leading coefficient may
vanish for some k′s at the beginning and the end. To be more precise, our
construction may cause that matrix elements ak,k+n become zero at the be-
ginning and at the end, so that its equivalent Sturm-Liouville problem with
Dirichlet boundary conditions will not satisfy rn(k) 6= 0 for all k anymore,
because ak,k+n = (−1)nrn(k + n) by (2). Hence, it cannot be written as an
eigenvalue problem for a linear Hamiltonian difference system, so that the
corresponding recursion formulae (based on the Hamiltonian or associated
Riccati difference system [1], [12]) cannot be applied for numerical purposes
as in [12, Theorem A and Theorem 2]. Therefore, divisions by rn(k) must
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be avoided, which is done by the divisionfree algorithms presented in [12]
and [14]. Hence, these divisionfree algorithms are crucial for our purposes.
(ii) Note that in contrast to the corresponding continuous Sturm-Liouville
problems (or the corresponding Hamiltonian differential systems), there is
no symmetry with respect to the endpoints in the discrete case. This is quite
obvious by the difference equation (10) with forward differences. Therefore
the treatment of the boundary conditions at the endpoints in the subsections
above had to be done separately. Actually the results of this treatment are
quite different as can be seen also from the next remark.
(iii) We discuss the extreme cases rb, re = 0 or = n of our construction. It
follows from (23) and (30) that:
rb = 0 if and only if R∗

b is invertible, i.e., x̃0 = −(R∗
b)−1Rbx̃n by (14) (this

includes Dirichlet conditions x̃0 = 0 for Rb = 0 ).
rb = n if and only if R∗

b = 0, i.e., x̃n = 0 by (14) (so that x̃0 or x0 is
free).
re = 0 if and only if Re or RN+1 is invertible, i.e., x̃N+1+n = −R−1

e R∗
ex̃N+1

by (15) or uN+1 = −R−1
N+1R

∗
N+1xN+1 by (12) (this includes natural boundary

conditions uN+1 = 0 for R∗
N+1 = 0 ).

re = n if and only if Re = 0, i.e., x̃N+1 = xN+1 = 0 (Dirichlet conditions).
Hence, our construction leads to the maximal size (N + 1)× (N + 1) (i.e.,
rb = re = 0 ) of the constructed matrix for Dirichlet conditions x̃0 = x0 = 0
(more general for x̃0 = −(R∗

b)−1Rbx̃n ) at the beginning and for natural
boundary conditions (more general for x̃N+1+n = −R−1

e R∗
ex̃N+1 ) at the

end. The construction leads to the minimal size (N +1−2n)× (N +1−2n)
for x̃n = 0 (or for free x̃0 ) at the beginning and for Dirichlet conditions
x̃N+1 = xN+1 = 0 at the end.
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[5] M. Bohner, O. Došlý and W. Kratz: Inequalities and asymptotics for
Riccati matrix difference operators, J. Math. Anal. Appl. 221 (1998),
262-286 .
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