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ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS

SEBASTIAN KESTLER AND KARSTEN URBAN

Abstract. In this paper, we introduce an adaptive wavelet method for oper-
ator equations on unbounded domains. We use wavelet bases on R

n to equiv-
alently express the operator equation in terms of a well-conditioned discrete
problem on sequence spaces. By realizing an approximate adaptive operator
application also for unbounded domains, we obtain a scheme that is convergent
at an asymptotically optimal rate. As an alternative, we introduce a simplified
version of this algorithm. In both cases, we use anisotropic wavelet bases in
the multivariate case. We show the quantitative performance of the scheme
by various numerical experiments.

1. Introduction

Operator equations on unbounded domains are relevant in various fields where
no boundary conditions, but only the asymptotic behavior of the solution is known.
Examples include radiation or wave propagation processes as well as valuation prob-
lems in finance. In many cases, the asymptotic nature of the solution allows to trun-
cate the computational domain to a bounded one and to perform all computations
by standard methods on that bounded domain. Obviously, this requires a careful
compromise of accuracy (sufficiently large truncation domain) and computational
complexity (possibly small truncation domain). However, in more complex situa-
tions (like for complex structured financial products), such an a priori truncation
is not straightforward.

There are several known methods to numerically treat problems on unbounded
domains such as infinite elements, inverted finite elements, FEM-BEM coupling
and others. In this paper, we introduce an adaptive wavelet method for operator
equations on unbounded domains. The idea is as follows. Wavelet bases on Sobolev
spaces H1(Rn) can easily be constructed as tensor products of dilations and integer
translates of some mother wavelet ψ (j = (j1, . . . , jn)

T , k = (k1, . . . , kn)
T )

(1.1) ΨR
n

:= {ψj,k : j,k ∈ Z
n}, ψj,k(x) :=

(
1 +

n∑

i=1

22ji

)− 1
2 n∏

i=1

2
ji
2 ψ(2jixi − ki),

for x ∈ R
n. Thus, one can follow the idea from [5] to transform the original operator

equation Au = f on H−1(Rn) into an equivalent well-posed problem Au = f on
sequence spaces ℓ2 for the wavelet coefficients. This idea has been used e.g. in
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[2, 5, 6, 13, 17, 25] (see also [30]) with wavelet bases on bounded domains. This
approach results in adaptive wavelet methods that have been proven to converge
at an optimal rate as compared with the best N -term approximation w.r.t. the
same basis. To highlight the differences to bounded settings, let us mention that a
wavelet basis on a bounded domain Ω ⊂ R

n typically takes the form

(1.2) ΨΩ := {ψj,k : j ≥ j0,k ∈ Ij},
where |suppψj,k| ∼ 2−j, but ψj,k may not result by scaling and translating mother

wavelets, e.g. [3, 9, 11, 13]. Both ΨR
n

and ΨΩ consist of infinitely many basis func-
tions. Whereas ΨR

n

consists of all dilates and translates, ΨΩ has a fixed minimal
level j0 (depending on Ω as well as the type of wavelets) and the location index
k ∈ Ij ranges over a finite index set Ij with #Ij ∼ 2jn.

If we can manage to design an adaptive wavelet method that is able to select
appropriate subsets out of Z

n×Z
n, then we can –in principle– use the same adaptive

schemes as on Ω. This is precisely the path we follow in this paper. We introduce an
adaptive selection procedure on unbounded domains and derive an asymptotically
optimal adaptive wavelet method. Let us mention that this approach offers some
interesting features:

• Though possible, the construction of wavelet bases on general domains Ω is
technically challenging. Here, we completely circumvent the need of constructing
a basis on a possibly complicated domain and use the most simple situation that
is possible for wavelets, namely, the shift-invariant case.

• Adaptive methods are particularly favorable if the solution has local effects like
a singularity of the derivative at a single point. Such effects can result from three
different sources, namely the domain, the operator or the right-hand side. The
first source does not appear for problems on R

n. For the remaining two, certain
a priori information is available. In fact, for example in the case A = −∆+I, the
wavelet decomposition of the right-hand side f is already a good prediction for
the relevant coefficients of the solution. Thus, this can be used as initial index
set in order to improve the efficiency of the method.

• We do not need to truncate the domain, the scheme automatically detects the sig-
nificant wavelets and determines a ‘computational domain’ automatically. Thus,
our method allows to solve a PDE problem on an unbounded domain by a com-
pactly supported and locally refinable basis.

• This approach concerning the treatment of unbounded domains can be general-
ized to higher space dimensions, nonlocal operators or nonlinear problems. In
fact, our framework can be used in methods to treat high-dimensional [25] or
nonlinear problems [7].

Nevertheless, it is a priori not clear how actually the resolution of the asymptotic
boundary conditions realized by adaptive wavelet schemes look like. As we have
to take into account an infinite number of translation indices on each level (recall
that in a bounded setting, this number is finite), the question arises how fast the
asymptotic behavior of the best N-term approximation is reached by the algorithm.

The remainder of this paper is organized as follows. In Section 2, we review the
main ingredients of adaptive wavelet methods. Section 3 contains the modification
and extension to unbounded domains of the adaptive scheme from [17]. We shall
describe a second heuristic adaptive scheme and a comparison of the two algorithms
in Section 4 and finish with some conclusions and an outlook in Section 5.
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2. Adaptive Wavelet Methods

2.1. Elliptic operator equations. Let H be a Hilbert space (e.g. H1(Rn)) and
H ′ its dual w.r.t. L2(R

n) (e.g. H−1(Rn)) where we denote by 〈 ·, · 〉 the duality
pairing in H ′×H . For a linear, self-adjoint operator A : H → H ′ and a right-hand
side f ∈ H ′, we are concerned with the numerical solution of the operator equation
for u ∈ H

(2.1) Au = f in H ′.

We assume that the bilinear form a(·, ·) : H ×H → R defined by a(·, ·) := 〈A ·, · 〉
is symmetric, continuous and coercive, i.e., there exist constants 0 < cA ≤ CA <∞
such that

cA‖v‖2
H ≤ a(v, v), ∀v ∈ H,(2.2)

|a(w, v)| ≤ CA‖w‖H‖v‖H , ∀v, w ∈ H.(2.3)

In this article, we focus on the case H = H1(Rn) and A a differential operator.

2.2. Wavelets. For the discretization of (2.1), we use the tensor product wavelet
basis ΨR

n

on R
n which is also known as anisotropic wavelet basis. Such systems

have shown some advantages in applications, in particular in higher space dimen-
sions, see e.g. [13, 14, 24, 25]. Since H1(Rn) is isomorphic to

⋂n
k=1

⊗n
i=1H

δi,k(R)
with δi,k the Kronecker delta and H0(R) := L2(R), it also holds that (cf. e.g. [20])

(2.4) Ψ := {ψλ := ψj,k : λ = (λ1, . . . , λn) ∈ J},
where λi = (ji, ki) for i = 1, . . . , n and J := J × · · · × J , J := Z

2, is a Riesz basis
of H1(Rn), i.e., there exist constants 0 < cΨ ≤ CΨ <∞ such that

(2.5) cΨ‖d‖ℓ2(J) ≤ ‖dTΨ‖H1(Rn) ≤ CΨ‖d‖ℓ2(J), d ∈ ℓ2(J).

To shorten notation, as long as it cannot be misunderstood, we skip the index set
for norms and scalar products. In the sequel we shall only consider biorthogonal
B-spline wavelet bases from [8].

In order to avoid arbitrarily coarse levels ji → −∞ (keeping in mind that the
support size of the wavelets grows exponentially with decreasing levels), one can

also consider a minimal level j0 = (j
(1)
0 , . . . , j

(n)
0 ), −∞ < j

(i)
0 <∞, and the system

(2.6) Ψ̄ = Φj0 ∪ {ψλ : λ = (j,k) ∈ J, ji ≥ j
(i)
0 , 1 ≤ i ≤ n}

with the so called scaling functions Φj0 := {⊗n
i=1 ϕj(i)0 ,ki

: k ∈ Z
n}, [23]. Here, ϕ

is a refinable function such as a cardinal B-spline.
A basic assumption is that ϕ and ψ are compactly supported and therefore, we

have in particular that |supp ψλ| ∼ 2−|λ|1 , |λ|1 := |j|1 := j1 + · · · + jn. Another
important feature is the polynomial exactness of order d of Φj0 and the number

d̃ ≥ d of vanishing moments of the wavelets. Both parameters depend on the
particular choice of ϕ and ψ. Following [10, 22], we remark that d ≥ 2 is a sufficient
condition in our case for Ψ and Ψ̄ to be Riesz bases for H1(Rn).

2.3. Wavelet discretization. Now we use a tensor wavelet basis Ψ := {ψλ : λ ∈
J} to transform (2.1) into a well-conditioned discrete operator equation. Note that
this definition includes both types of wavelet basis defined above, i.e. without (cf.
(2.4)) and with scaling functions on a fixed level j0 (cf. (2.6)). From the Riesz
basis property of Ψ, we infer that for the solution u to (2.1) there exists a unique
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u ∈ ℓ2(J) with u = uTΨ. This means that u is the (unknown) sequence of wavelet
coefficients of u. Thus, (2.1) is equivalent to the infinite linear system

(2.7) Au = f ,

where A := (〈AΨ,Ψ 〉)T and f := 〈 f,Ψ 〉. Note, that (2.7) is well-posed on ℓ2(J)
since by (2.2), (2.3) and (2.5), the symmetric bilinear form a(v,v) := 〈Av,v 〉ℓ2 =
a(vTΨ,vTΨ) satisfies

(2.8) c1‖v‖2
ℓ2 ≤ a(v,v) ≤ c2‖v‖2

ℓ2 , v ∈ ℓ2(J),

with c1 := c2ΨcA and c2 := C2
ΨCA.

Therefore, a(·, ·) is coercive and, by an analogous reasoning using (2.3), also con-
tinuous. For this reason, the operator A : ℓ2(J) → ℓ2(J) is symmetric, continuous
(with continuity constant c2) and coercive (with coercivity constant c1). Moreover,
from (2.8) follows that A : ℓ2(J) → ℓ2(J) is boundedly invertible with operator
norms on ℓ2(J)

‖A‖ := sup
v∈ℓ2(J)

‖Av‖ℓ2
‖v‖ℓ2

≤ c2, ‖A−1‖ := sup
v∈ℓ2(J)

‖A−1v‖ℓ2
‖v‖ℓ2

≤ c−1
1 .

The condition of A is defined by κ(A) := ‖A‖‖A−1‖ and is bounded which is in
fact a crucial property for the numerical treatment.

Setting ‖v‖a := a(v,v) for v ∈ ℓ2(J), we see that the energy norm ‖ · ‖a is
equivalent to the norm ‖ · ‖ℓ2 on ℓ2(J), i.e., ‖v‖a ∼ ‖v‖ℓ2 , v ∈ ℓ2(J). We can also
define another norm for v ∈ ℓ2(J) by ‖v‖A := ‖Av‖ℓ2 for which we have

(2.9) ‖v‖A ∼ ‖v‖ℓ2 ∼ ‖vTΨ‖H1(Rn), ∀v ∈ ℓ2(J).

To avoid the use of various constants, we write C . D if there exists a constant c > 0
such that C ≤ cD. Analogously, we define &. We use C ∼ D if C . D and C & D.
In the sequel, we shall need the restriction of the infinite matrix A and infinite
vectors v ∈ ℓ2(J) to finite index sets Λ ⊂ J. For this purpose, we introduce for
v ∈ ℓ2(J) the projection PΛv := v|ℓ2(Λ). Analogously, we set AΛ := (PΛA)|ℓ2(Λ),
fΛ := PΛf and vΛ := PΛv. Thus, we obtain the finite Galerkin system

(2.10) AΛuΛ = fΛ.

One possible interpretation of many adaptive schemes is to find a sequence of indices

Λ(0),Λ(1),Λ(2), . . . so that the corresponding Galerkin solutions u(k) of (2.10) for

Λ = Λ(k) converge possibly fast towards u with as few active wavelet coefficients
as possible.

2.4. Nonlinear approximation theory. The analysis of adaptive schemes auto-
matically leads to nonlinear approximation theory. The reason is that we wish to
approximate the unknown solution u with as few wavelet coefficients as possible.
Thus, the optimum would be a quasi best N-term approximation uN of u with
# supp uN = N , i.e., an argument of

(2.11) σN (u) := inf
w∈ΣN

‖u− w‖ℓ2 ,

where ΣN := {v ∈ ℓ2(J) : # supp v ≤ N} is a nonlinear manifold in ℓ2(J).
In order to define (quasi-)optimality, we collect all sequences whose best N -term

approximation converges with rate s > 0 in the so called approximation class

As := {v ∈ ℓ2 : σN (v) . N−s}, s ≥ 0.
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A (quasi-)norm on As is given by |v|As := supN≥0(N + 1)s‖v− vN‖ℓ2 , where vN
is a best N -term approximation of v. It can be shown, that if u ∈ As for some
s > 0, then u can be approximated for a given tolerance ε > 0 by some v = v(ε)
such that

(2.12) ‖u− v||ℓ2 ≤ ε, #supp v . ε−1/s |u|1/sAs .

This sets the benchmark and we call an adaptive wavelet method (quasi-)optimal
if for u = uTΨ with u ∈ As, s ∈ (0, s∗], and a given accuracy ε > 0 the scheme
produces an output v with (2.12) with linear complexity in arithmetic operations
and storage requirements.

The next question is of course, under which conditions on u or u, one actually
has u ∈ As. As far as the sequence u of the wavelet coefficients is concerned,
it is well-known that certain decay rates are needed in order to ensure a certain
rate of approximation. This decay is expressed by the so called weak ℓτ (J)-spaces
defined as follows (cf. [12]). For each 0 < τ < 2 and v ∈ ℓ2(J), we define
|v|ℓwτ := supn≥1 n

1/τv∗n, where v∗n is the n-th largest entry in modulus of v and
v∗ := (v∗n)n∈N. Then we set ℓwτ (J) := {v ∈ ℓ2(J) : |v|ℓwτ <∞} with the correspond-
ing norm ‖v‖ℓwτ := |v|ℓwτ + ‖v‖ℓ2 , v ∈ ℓwτ . Then, it is known that ℓτ →֒ ℓwτ →֒ ℓτ+δ
for any δ ∈ (0, 2 − τ ] explaining the notion ‘weak’-ℓτ . With this notation at hand,
σN (u) decays with a fixed rate s > 0 if u ∈ ℓwτ (J) for

(2.13)
1

τ
= s+

1

2
.

In this case, there exists a constant Cτ > 0 depending on τ such that (cf. [5])

(2.14) σN (u) ≤ Cτ‖u‖ℓwτ N−s.

Hence, the best possible value s∗ for which (2.14) holds for all s < s∗, is the optimal
rate. It turns out that s∗ is related to the Besov regularity of the underlying function
(and properties of the wavelets Ψ).

For anisotropic (tensor product) wavelets, it is known from [24, 27] that if u ∈⋂n
k=1

⊗ n
τ i=1 B

s+δi,k
τ (Lτ (R)), then u ∈ ℓwτ (J) for 0 < s < d − 1, d being the order

of the wavelets. Here, ⊗τ is a so called τ -tensor product introduced in [24]. Thus,
we obtain s∗ = d−1 provided that we use anisotropic wavelets (of order d) and the
solution of (2.1) is sufficiently smooth in the above Besov sense.

2.5. Optimality and locality. Before we come to the formulation of adaptive
wavelet methods, we need one more ingredient. In order to obtain a best possible
method, it is not enough to generate a scheme which converges with the same
rate as a best N -term approximation. In fact, we also need to be able to actually
compute such an approximation with at most linear complexity. One key ingredient
is that wavelets allow for a compression of a large class of operators due to their
locality and their vanishing moments. A symmetric operator A : ℓ2(J) → ℓ2(J) is
said to be in the class Bs if there are two positive, summable sequences (αj)j≥0

and (βj)j≥0 such that for every j ∈ N0, there exists a matrix Aj with at most 2jαj
nonzero entries per row and column such that

(2.15) ‖A − Aj‖ ≤ βj2
−js.

Compression estimates which fit into the setting of (2.15) have been discussed in
detail for different types of operators for example in [25, 28]. We consider such
estimates for operators and wavelet bases on unbounded domains later in Section



6 SEBASTIAN KESTLER AND KARSTEN URBAN

3.1. This property can be used for the design of efficient algorithms as we shall
review now. If we define v[j] as a best 2j term approximation to v ∈ ℓwτ (J) (e.g.

the first 2j entries of v∗), then it holds

(2.16) ‖v − v[j]‖ℓ2 ≤ 2−js |v|As ,

if τ is chosen as in (2.13). One can use this observation to show that if A ∈ Bs,
then it is a bounded operator on ℓwτ (J) and also derive a method for approximating
an infinite matrix-vector product Av (cf. [5]).

2.6. An optimal adaptive wavelet algorithm. Now, we describe the adaptive
wavelet solver ADWAV from [17] which we used as a basis for our extension to
unbounded domains. The core scheme is shown in Algorithm 1. We start with a
real number ν−1 (whose meaning will be explained below) and a desired tolerance
ε > 0. Finally, we need to choose constants α, γ, θ, ω such that:

• 0 < ω < α < 1 such that α+ω
1−ω < κ(A)−

1
2 ,

• 0 < γ < 1
6κ(A)−1/2 α−ω

1+ω and θ > 0.

Algorithm 1 [u(ε),Λ(ε)] = ADWAV[ν−1, ε]

1: Λ(0) = ∅, k := 0, w(0) := 0
2: repeat

3: [Λ(k+1), νk] = GROW[w(k), θνk−1, ε]
4: g(k+1) = PΛ(k+1)(RHS[γνk])

5: w(k+1) = GALSOLVE[Λ(k+1),g(k+1),w(k), (1 + γ)νk, γνk]
6: k = k + 1
7: until νk ≤ ε
8: u(ε) = w(k), Λ(ε) = Λ(k)

Before we detail the subroutines called within ADWAV, let us recall the prop-
erties of this adaptive wavelet scheme.

Theorem 2.1 ([17, Theorem 2.7]). The output w = u(ε) of the routine AD-
WAV[ν−1, ε] satisfies ‖Aw − f‖ℓ2 ≤ ε. If ν−1 ∼ ‖f‖ℓ2 & ε, and u ∈ ℓwτ (J) for

some s < s∗, 1
τ = s+ 1

2 , then #supp w . ε−1/s|u|1/sℓwτ
and the number of arithmetic

operations and storage locations is bounded by some absolute multiple of the same
expression. �

Now, we are going to detail all subroutines involved in ADWAV. Within AD-
WAV, the routine GROW shown in Algorithm 2 enlarges the current index set

Λ(k) in such a way that the new index set Λ(k+1) guarantees

(2.17) ‖PΛ(k+1)(AuΛ(k) − f)‖ℓ2 ≥ β‖AuΛ(k) − f‖ℓ2 ,

for some 0 < β < 1 (this is sometimes also called saturation property). Then, due to
Galerkin orthogonality (cf. [5, Lemma 4.1]), one has the following error reduction
‖u− uΛ(k+1)‖a ≤ (1 − c2

c1
β2)1/2 ‖u− uΛ(k)‖a with the constants c1, c2 from (2.8).

Under the same assumptions as in Theorem 2.1 and if w ∈ ℓwτ (J), then the
number of operations and storage locations required by [Λ, ν] = GROW[w, ν̄, ε] is
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Algorithm 2 GROW[w, ν̄, ε] → [Λ, ν]

1: Define ζ := 2 ων̄
1−ω .

2: repeat
3: ζ := ζ/2, r :=RHS[ζ/2]−APPLY[w, ζ/2],
4: until ν := ‖r‖ℓ2 + ζ ≤ ε or ζ ≤ ω‖r‖ℓ2
5: if ν > ε then
6: determine a minimal set Λ ⊃ supp w such that ‖PΛr‖ ≥ α‖r‖ℓ2 .
7: else
8: set Λ := ∅.
9: end if

bounded by some absolute multiple of min{ν̄, ν}−1/s[|w|1/sℓwτ
+|u|1/sℓwτ

+ν̄1/s(# supp w+

1)]. Moreover, we have ν ≥ ‖Aw − f‖ℓ2 and, if ν > ε, the saturation property

(2.18)
α− ω

1 + ω
ν ≤ ‖PΛ(Aw − f)‖ℓ2 , #(Λ\supp w) . ν−1/s|u|ℓwτ

holds with the constants α and ω described above.
The routine RHS[δ] produces an approximation g to f such that ‖f − g‖ℓ2 ≤ δ.

To preserve the linear complexity of ADWAV, the length of g must be bounded

by some constant multiple of δ−1/s|u|1/sℓwτ
.

Finally, GALSOLVE (short for Galerkin solver) produces an approximate so-
lution w̃Λ with ‖AΛw̃Λ − fΛ‖ ≤ ε starting with an initial guess wΛ satisfying
‖AΛwΛ − fΛ‖ ≤ δ.

Algorithm 3 GALSOLVE[Λ, fΛ,wΛ, δ, ε] → [w̃Λ]

1: Determine AJ in the sense of (2.15) with J = J(ε) as small as possible and
‖A− AJ‖ ≤ ε

3 .

2: Assemble B := PΛ[ 12 (AJ + A∗
J)]|ℓ2(Λ) with A∗

J being the adjoint of AJ .
3: Compute r0 := fΛ − PΛ(APPLY[wΛ,

ε
3 ]).

4: Determine x as the solution of Bx = r0 and set w̃Λ = wΛ + x.

One key ingredient both in GROW and GALSOLVE is the routine APPLY
shown in Algorithm 4 which is an adaptive approximate application of the biinfinite
operator A to a given compactly supported input v with the following properties.
The output w = APPLY[v, η] satisfies ‖Av − w‖ℓ2 ≤ η as well as supp w .

‖v‖1/s
ℓwτ
η−

1
s provided that v ∈ ℓwτ (J), 1

τ = s+ 1
2 , see [5, Properties 6.4]. We remark

that necessary sorting operations in GROW and APPLY which are not of linear
complexity can be replaced by approximative sorting procedures introduced in [1,
13] without destroying the approximation properties.

3. An optimal adaptive wavelet algorithm on unbounded domains

Having reviewed all ingredients of the asymptotically optimal scheme ADWAV,
we can now identify the modifications that are necessary in order to treat problems
on unbounded domains. In particular, we have to verify that A ∈ Bs and that a
realization of RHS for both basis types, namely Ψ (cf. (2.4)) and Ψ̄ (cf. (2.6))
is available. Here, we shall focus on the case n = 1. Extensions to higher space
dimensions can then be derived analogously (cf. eg. [25]). In order to facilitate
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Algorithm 4 APPLY[v, η] → w

1: Set N := #supp v and k(η) as the smallest integer such that 2k(η) ≥ η−
1
s ‖v‖

1
s

ℓwτ
.

2: Compute v[0],v[i] − v[i−1] for i = 1, . . . , ⌊logN⌋ and set v[i] := v for i > logN .
3: for k = 1 to k(η) do

4: Rk := c2{‖v − v[k]‖ℓ2 + αk2
−ks‖v[0]‖ℓ2 +

∑k−1
ℓ=0 αℓ2

−ℓs‖v[k−ℓ] − v[k−ℓ−1]‖ℓ2}
5: if Rk ≤ η exit
6: end for
7: Compute w := wk := Akv[0] + Ak−1(v[1] − v[0]) + · · · + A0(v[k] − v[k−1]).

the distinction between the two basis types Ψ and Ψ̄, in the sequel a minimal level
j0 = −∞ refers to the first type and j0 > −∞ to the second type. Note that
the remaining routines GROW, GALSOLVE and APPLY can be used without
modifications. Optimality and convergence of the scheme on unbounded domains
then follow directly from Theorem 2.1.

3.1. Compressibility. To show the property A ∈ Bs, one assumes that there
exists σ > 0 such that the operator A : H1+σ(R) → H1−σ(R) is bounded and uses
the Bernstein inequality

(3.1) ‖wℓ‖Hr(R) . 2l(r−s)‖wℓ‖Hs(R), ∀wl ∈ Wℓ := spanL2(R){ψλ : |λ| = ℓ},

which holds for ℓ ≥ 0, s < d− 1
2 and r ∈ [−d̃, d− 1

2 ) (cf., e.g. [28]).

The case j0 > −∞. If we use a wavelet basis with scaling functions on a minimal
level j0 > −∞, then, by rescaling the underlying mother wavelet ψ and mother
scaling function ϕ, we can assume w.l.o.g. that j0 = 0. In this setting we can use
(3.1) and apply the compression scheme for differential operators from [28].

The case j0 = −∞. Conversely, without a lower bound for the levels, A from (2.7)
can be subdivided into four blocks corresponding to the sign of the level of the
wavelets corresponding to rows and columns. Here, (3.1) cannot be applied to the
blocks of the subdivision corresponding to negative row and/or column levels.

Instead, let λ = (j, k), λ′ = (j′, k′) ∈ J with (w.l.o.g) j′ ≤ j as well as 0 ≤
ν, ν′ ≤ 1. Then, by transforming the variables, we get
∫

R

ψ
(ν)
λ (x)ψ

(ν′)
λ′ (x) dx

=

∫

R

dν

dxν
(1 + 22j)−

1
2 2

1
2 j ψ(2jx− k)

dν
′

dxν′ (1 + 22j′)−
1
2 2

1
2 j

′

ψ(2j
′

x− k′) dx

= (1 + 22j)−
1
2 (1 + 22j′)−

1
2 2jν 2j

′ν′

2−j
′

2
1
2 (j+j′)

∫

R

ψ(2j−j
′

y − k + 2j−j
′

k′)ψ(y)dy

=

√
1 + 22(j−j′)

√
(1 + 22j)(1 + 22j′)

22j′ν′

∫

R

ψ
(ν)

j−j′,k−2j−j′ k′
(y)ψ(ν′)(y) dy.

Thus, we can now apply (3.1) and use the results from [28] for all matrix blocks.

Remark 3.1. We restrict ourselves to the case of differential operators with con-
stant coefficients as in this case, the so called s-computability (cf. [18]) of A fol-
lows directly from the compressibility. The s-computability property says that for
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A ∈ Bs, the compressed matrix Aj can also be computed with at most O(2j) opera-
tions such that ‖A−Aj‖ . 2−js. Thus, for differential operators with non-constant
coefficients, we can apply the results from [18] if j0 > −∞, but not if j0 = −∞
since the supports of the wavelets can get arbitrary large with decreasing level.

3.2. RHS on unbounded domains. We describe one possible realization for the
set up of RHS which consists of constructing a priori an index set of active right-
hand side wavelet coefficients ∇η of size O(η−1/s) for a given accuracy η such that
‖f−f |∇η

‖ℓ2 ≤ η. Here, we focus on the case j0 = −∞ since for j0 > −∞, analogous
estimates can even easier be derived.

As opposed to the case of a bounded domain, we do not only have to control
the maximal level of wavelet indices in such a set ∇ε but also a minimal level and
bounds for the translation indices on each level. For this purpose, besides additional
smoothness conditions on f , we require that f satisfies certain decay conditions.
Moreover, we assume that f = f1+f2 can be splitted into a smooth part f1 ∈ L2(R)
and into a singular part which is a sum of delta distributions f2 =

∑n
i=1 ci δxi

for
c1, . . . , cn ∈ R and x1, . . . , xn ∈ R.

Singular part. Due to the H1(R)-normalization of the wavelets ψλ ∈ Ψ, it holds

(3.2) ‖ψλ‖L∞
=

2|λ|/2‖ψ‖L∞√
1 + 22|λ|

≤ 2−|λ|/2 ‖ψ‖L∞
, ∀λ ∈ J .

Moreover, due to the locality of the wavelets, on each level ℓ there is only a uni-
formly bounded number of wavelets whose supports contain the singular points
{x1, . . . , xn} and we can proceed as for bounded Ω (cf., e.g. [17]).

Smooth part. For the smooth part of f we need estimates for the wavelet coefficients
〈 f1, ψλ 〉 for both negative and non-negative levels. To ease notation, we set f ≡ f1.

The starting point for compression estimates for non-negative levels is the vanish-
ing moment property of the wavelets which yields |〈 f, ψλ 〉| ≤ ‖ψλ‖L1 infp∈P

ed−1
‖f−

p‖L∞(supp ψλ). As ‖ψλ‖L1 ≤ 2−
3
2 |λ|‖ψ‖L1, a Whitney type estimate (cf. [4, Theo-

rem 25.1]) gives

(3.3) |〈 f, ψλ 〉| ≤ Cψ,f 2−(ed+ 3
2 )|λ|, ∀λ ∈ J with |λ| ≥ 0,

where Cψ,f := CW (supp ψλ)
ed+ 1

2 ‖ψ‖L1 |f |W ed,∞(R)
and CW > 0 is a constant arising

from the Whitney estimate. Obviously, (3.3) is not a estimate if |λ| < 0. Instead,
assuming that f ∈ L1(R), the Hölder inequality yields

(3.4) |〈 f, ψλ 〉| ≤ ‖f‖L1(R)‖ψ‖L∞
2|λ|/2, ∀λ ∈ J with |λ| < 0.

Now we are ready to prove the announced approximation for the right-hand side.

Proposition 3.2. Let s > 0 and f ∈ L1(R) ∩W ed,∞(R). Assume that there exist

R0 > 0 and Cf > 0 such that for β ≥ s(ed+ 3
2 )

1+ed−s :

(3.5) ‖f − fR‖L2(R) ≤ CfR
−β, ∀R > R0, fR := f |[−R,R].

Then, for ε . 1, there exist J+
ε , J

−
ε ∈ N and Rε > R0 such that gε := g+

ε +g−
ε with

g+
ε :=

{
〈 f, ψλ 〉 : |supp ψλ ∩ [−Rε, Rε]| > 0, 0 ≤ |λ| ≤ J+

ε

}
,(3.6)

g−
ε :=

{
〈 fRε

, ψλ 〉 : |supp ψλ ∩ [−Rε, Rε]| > 0, −J−
ε ≤ |λ| < 0

}
,(3.7)

satisfies ‖f − gε‖ℓ2 ≤ ε and #supp gε ∼ ε−1/s.
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Proof. Let ε > 0 and set Rε := D1 ε
−1/β with D1 := (Cf c2 (cΨcA)−1)1/β . Then,

(3.5) yields ‖f−fRε
‖L2(R) ≤ CfR

−β
ε ≤ cΨcA

c2
·ε. Denote by uRε

= uTRε
Ψ the unique

solution of the operator equation A[uRε
] = fRε

. We set fε := f+
ε + f−ε where

f+
ε := {〈 f, ψλ 〉 : |supp ψλ ∩ [−Rε, Rε]| > 0, |λ| ≥ 0} ,
f−ε := {〈 fRε

, ψλ 〉 : |supp ψλ ∩ [−Rε, Rε]| > 0, |λ| < 0} .
Then, we have fε = 〈 fRε

,Ψ 〉 and because of ‖g‖H−1(R) ≤ ‖g‖L2(R), g ∈ L2(R):

‖f − fε‖ℓ2 = ‖A(u − uRε
)‖ℓ2 ≤ c2‖u− uRε

‖ℓ2 ≤ c2
cΨ

‖uTΨ − uTRε
Ψ‖H1(R)

≤ c2
cΨcA

‖f − fRε
‖H−1(R) ≤

c2
cΨcA

‖f − fRε
‖L2(R) ≤ ε.

Due to the compact support of ψλ, there is a constant c > 1 independent of j and
Rε such that

#{λ ∈ J : |λ| = j, |supp ψλ ∩ [−Rε, Rε]| > 0} ≤ max{c 2j+1Rε,M},
with M := ⌈|supp ψ|⌉ = #{k ∈ Z : |supp ψ0,k ∩ supp ψ| > 0}. Then, we have for

Rε >
M
2 with D2 := 2 cC2

ψ,f by (3.3)

‖f+
ε − g+

ε ‖2
ℓ2 ≤

∑

|λ|>J+
ε

|supp ψλ∩[−Rε,Rε]|>0

|〈 f, ψλ 〉|2 ≤ D2Rε 2−2(1+ed)J+
ε .

Thus, we can determine

J+
ε =

1

2(1 + d̃)

[(
2 +

1

β

)
| log2 ε| + | log2(D1D2)|

]
∼ 1 +

2 + 1/β

2(1 + d̃)
| log2 ε|,

such that ‖f+
ε − g+

ε ‖2
ℓ2

≤ ε2. As the length of g+
ε is of order Rε · 2J

+
ε ∼ ε

−
ed+β+3

2

β(1+ed)

and β ≥ s(ed+ 3
2 )

1+ed−s , the length of g+
ε is bounded by some constant multiple of ε−1/s.

For negative levels, we now take (3.4) into account. Moreover, we know that for
a fixed level |λ| < 0, there are only max{2cD1ε

−1/β 2|λ|,M} non-zero entries f−λ in

f−. Thus, by choosing J−
ε ≥ 1 + | 1β log2 ε|+ | log2

M
2cD1

|, there are only M non-zero

entries in f−ε on each level |λ| < −J−
ε . As f ∈ L1(R), it holds by (3.4):

‖f−ε − g−
ε ‖2

ℓ2 ≤
∑

|λ|<−J−

ε

|supp ψλ∩[−Rε,Rε]|>0

|〈 f, ψλ 〉|2 ≤ D3 2−J
−

ε ,

where D3 := M‖f‖2
L1(R)‖ψ‖2

L∞
. Thus, we can choose

J−
ε = max

{
2| log2 ε| + | log2D3|, 1 +

∣∣∣∣
1

β
log2 ε

∣∣∣∣+
∣∣∣∣log2

M

2c

∣∣∣∣
}
,

such that ‖f−ε − g−
ε ‖2

ℓ2
≤ ε2. Moreover, #supp g−

ε . Rε + MJ−
ε ∼ ε−1/β + (1 +

max{2, 1
β }| log2 ε|). As J−

ε ∼ 1 + max{2, 1
β }| log2 ε| . ε−1/β and since β ≥ s such

as ε . 1, it follows that #supp g−
ε . ε−1/s. Finally, we only have to collect the

above results to obtain:

‖f − g‖2
ℓ2 = ‖f − fε‖2

ℓ2 + ‖f+ − g+
ε ‖2

ℓ2 + ‖f− − g−
ε ‖2

ℓ2 ≤ 3ε2.

Replacing ε by ε√
3

then yields the claim. �
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Remark 3.3.

a) Note that both parts g+
ε and g−

ε can be computed efficiently. This is due to the
compact support of ψλ and fR.

b) Moreover, the construction of g+
ε in (3.6) did not make use of the fact, that

f ∈ W
ed,∞(R\[−Rε, Rε]). Moreover, by defining decay conditions on f (ed), one

can relax (3.5) and a different construction of g+
ε is possible.

3.3. Numerical examples in one dimension. We give some examples in 1D,
namely instances of the following reaction-diffusion problem:

(3.8) −u′′(x) + u(x) = f(x), x ∈ R, lim
|x|→∞

u(x) = 0, u ∈ H1(R),

for f ∈ H−1(R). Note that the operator fulfills all required assumptions and that
cA = CA = 1. All examples (also those presented in Section 4 below) are realized
in C++ using the software libraries FLENS and LAWA, [21, 29]. We consider
six different choices of the right-hand side f which permit a reference solution in
closed form. The solutions are shown in Figure 3.1. We have chosen these particular
examples due to the following reasons:
(P1) Global, smooth solution, exponential decay.
(P2) Global solution with peak, large significant domain, exponen-

tial decay.
(P3) Global solution with 2 peaks, polynomial decay.
(P4) Compactly supported, smooth solution.
(P5) Compactly supported function with strong gradient.
(P6) Global, piecewise defined solution with strong peak, asymmet-

ric polynomial decay.
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Figure 3.1. Solutions ui for (P1)-(P6).
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3.3.1. Normalization of the wavelets. It has turned out that quantitatively, it is
favorable to replace the definition of H1(R)-normalized wavelets in (1.1) by the
following equivalent version:

(3.9) ψj,k(x) :=
(
‖ψ‖L2 + 22j‖ψ(1)‖L2

)− 1
2

2
j
2ψ(2jx− k), ∀x ∈ R, ∀j, k ∈ Z,

which we used for our numerical experiments (including those in Section 4).

3.3.2. Parameters. For the realization of ADWAV, good estimates of the con-
stants c1 and c2 in the norm equivalence (2.8) are necessary for different polynomial

orders d, vanishing moments d̃ and different minimal levels. The values we used
can be found in Table 3.1.

In order to ensure a good performance of ADWAV the choice of the parameters
α, ω, γ and θ (cf. Subsection 2.6) is not trivial. We fixed the parameter ω = 0.01

and chose the parameter α < (1 − ω)κ(A)−
1
2 − ω as large as possible. Moreover,

we used γ = 1
12κ(A)−

1
2
α−ω
1+ω and θ = 2

7 . Note that this set of parameters satisfies

the necessary optimality and convergence condition stated in [17].

j0 0 −1 −2 −4 −6 −20 −∞
d = 2, d̃ = 2

c1 0.37 0.58 0.58 0.46 0.36 0.22 0.19
c2 2.10 1.86 1.86 1.86 1.89 1.98 2.10

d = 3, d̃ = 3
c1 0.43 0.39 0.29 0.15 0.11 0.04 0.03
c2 1.94 2.03 2.24 2.55 2.61 2.65 2.70

d = 3, d̃ = 5
c1 0.45 0.41 0.32 0.19 0.17 0.16 0.16
c2 1.96 2.07 2.32 2.66 2.71 2.73 2.80

Table 3.1. Estimated bounds for c1, c2 from (2.8) for ADWAV.

Remark 3.4. Concerning the computation of the estimates in Table 3.1, to our
knowledge, there is no method to compute these values analytically. Nevertheless,
bounds for c1, c2 can be computed numerically. We describe the case j0 = −∞ since
j0 > −∞ can be treated analogously. It suffices to consider the finite collections
ΨR,J−,J+ := {ψλ : supp ψλ ∩ [−R,R] 6= ∅, J− ≤ |λ| < J+} for R > 0, J− ≤ 0
and J+ ≥ 0 and to compute c1, c2 for the finite matrices AR,J−,J+ obtained by
replacing Ψ by ΨR,J−,J+ in (2.7). For R → ∞, J+ → ∞, J− → −∞, one can then
observe that the computed eigenvalues converge.

3.3.3. Choice of a minimal level. The bounds for c1 and c2 given in Table 3.1
already indicate that the choice of a minimal level j0 is not trivial as we might have
two conflicting goals: On the one hand, we want to be free in the choice of a minimal
level j0 to capture both small and very large supports of the numerical solution. On
the other hand, we clearly see that the condition number κ(A) depends strongly
on j0 and for ADWAV, it is favorable to choose κ(A) as small as possible. For our
first experiments in this section, we choose the level j0 = |λ| of the largest wavelet
coefficient 〈 f, ψλ 〉 in the right-hand side vector that can be derived analytically.
We will further discuss this issue below.

3.3.4. Convergence rates. The results of our experiments concerning the conver-
gence are shown in Figure 3.2 for j0 = −∞ and Figure 3.3 for j0 > −∞ where we

used wavelet bases with d = 2, d̃ = 2 and d = 3, d̃ = 5. The latter choice is due to
the much better condition number κ(A) if j0 = −∞ (cf. Table 3.1). In both cases
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we see the error estimator νk. To be able to compare different bases with regard to
their performance, we measure the error in H1(R). We observe in both cases that
the optimal rate is asymptotically attained and also that the error estimates are
quite sharp.
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(b) (P2) with j0 = −∞.
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(c) (P3) with j0 = −∞.
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(d) (P4) with j0 = −∞.
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(e) (P5) with j0 = −∞.
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(f) (P6) with j0 = −∞.

Figure 3.2. Residual estimator νk andH1(R)-error for ADWAV
over the degrees of freedom N .
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(a) (P1) with j0 = −2.
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(b) (P2) with j0 = −4.
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(c) (P3) with j0 = −1.
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(d) (P4) with j0 = 0.
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(f) (P6) with j0 = −1.

Figure 3.3. Residual estimator νk andH1(R)-error for ADWAV
over the degrees of freedom N .
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3.3.5. Discussion of the numerical results. Despite the same asymptotic conver-
gence rates for j0 = −∞ and j0 > −∞, there are some important quantitative
differences between the two approaches. As an example, we consider (P1) and
(P2). In Figure 3.4, we observe that the use of scaling functions on a minimal
level j0 significantly reduces the number of degrees of freedom required to attain a
given target accuracy. This is due to the fact that few scaling functions suffice to
approximate the polynomial part of the solution, whereas, in the case j0 = −∞, in
order to obtain the same approximation using only wavelets, we also need wavelets
on very low levels j ≤ 0 which results in a higher number of degrees of freedom.
Moreover, although we have a very simple structure in the basis for j0 = −∞ (we
do not have to distinguish between wavelet and scaling functions), this advantage
does not payoff as we can see from the computation times in Figure 3.4 c) and d).
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(a) N vs. error reduction for (P1).
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(b) N vs. error reduction for (P2).
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(c) Time vs. error reduction for (P1).
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(d) Time vs. error reduction for (P2).

Figure 3.4. Comparison of the approximation errors (H1(R)-
error) produced by ADWAV for j0 = ∞ and j0 > −∞.

Next, we compare the influence of the choice of the minimal level j0 and the
choice of the number of vanishing moments to the error reduction and the CPU
times. Representatively, we consider (P2) for which the result can be found in
Figure 3.5. We see in Figure 3.5 a) that the rate of convergence with respect to the

number of degrees of freedom does not depend on d̃. Observe that the minimal level
j0 = 0 results in a worse rate of convergence compared to j0 = −4. But if we take
the required computation time into account (cf. Figure 3.5 b)), we observe that, due
a better condition number, the scheme converges asymptotically faster for j0 = 0.

Moreover, due to the fact that wavelets with d̃ = 3 have shorter support lengths
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and less singular points than the one with d̃ = 5, the convergence of ADWAV

is faster for d̃ = 3. At this point, note that the wavelet basis with d = 3, d̃ = 3
provides less favorable condition numbers for j0 → −∞ (cf. Table 3.1).
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Figure 3.5. Influence of the minimal level j0 and comparison be-

tween d = 3, d̃ = 3 and d = 3, d̃ = 5 for (P2).

Our numerical results indicate that the use of scaling functions on a coarse
level j0 is favorable. Nevertheless, as we can see in Figures 3.2 and 3.3, both
versions of ADWAV require a lot of iterations. In order to reduce this number,
one can increase the value for α which mainly determines the number of added
indices per iteration in GROW. But doing so, we loose the guaranteed convergence.
Alternatively, we present a heuristic algorithm in the next section.

4. A simplified adaptive wavelet algorithm

The simplified adaptive wavelet algorithm we present in this paragraph is a slight
modification and adaption of the algorithm proposed in [2, 30]. To our knowledge,
there is no proof of convergence or optimality. Nevertheless, numerical experiments
have shown that this adaptive wavelet algorithm performs very well in practice.
The simplified algorithm passes on the usage of the routines RHS and APPLY,

but explicitly determines Λ(k+1) from Λ(k) by a heuristic approach. Moreover, we
do not need the assumption that A is self-adjoint.

Motivated by the numerical results from Section 3, we shall use from now on ex-

clusively the collection Ψ̄ defined in (2.6) for a fixed coarse level j0 = (j
(1)
0 , . . . , j

(n)
0 ).

To simplify notations, we set ψ
j
(i)
0 −1,ki

:= ϕ
j
(i)
0 ,ki

for ki ∈ Z and define J̄i := {λi :=

(ji, ki) : j
(i)
0 −1 ≤ ji, ki ∈ Z} for i = 1, . . . , n such that with J̄ := J̄1×· · ·×J̄n ⊂ J,

we have Ψ̄ = {ψλ : λ ∈ J̄}.

4.1. Algorithm. We start by describing the main components of the algorithm.

4.1.1. Numerical solution of the Galerkin system. In each iteration of the algorithm,
we have to solve a Galerkin system (2.10) for an index set Λ ⊂ J̄. But in general
one only solves a perturbed linear system

(4.10) ÃΛũΛ = f̃Λ, f̃Λ := fΛ + s̃Λ,
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with ‖s̃Λ‖ℓ2 < ηf , ηf > 0 a given tolerance, instead of solving (2.10) exactly. These
perturbations may arise from numerical integration or, for the stiffness matrix, also
from matrix compression techniques. We estimate the error as follows.

Proposition 4.1. Let Λ be a finite subset of J̄ and assume that ‖AΛ − ÃΛ‖ < ηA
with ηA < c1 and ‖fΛ − f̃Λ‖ℓ2 < ηf . Then, ÃΛ, Ã−1

Λ are uniformly bounded and it
holds that

(4.11) ‖uΛ − ũΛ‖ℓ2 ≤ c−1
1

( ηA
c1 − ηA

(
ηf + ‖fΛ‖ℓ2

)
+ ηf

)
,

where uΛ is the solution of (2.10) and ũΛ is the solution of (4.10).

Proof. First, we prove continuity and coercivity of the bilinear form induced by ÃΛ

on ℓ2(Λ). From the assumptions, we infer from (2.8) that for all wΛ,vΛ ∈ ℓ2(Λ)

|〈 ÃΛwΛ,vΛ 〉ℓ2 | ≤ (ηA + c2)‖wΛ‖ℓ2‖vΛ‖ℓ2 ,
with c2 from (2.8). Moreover, for all vΛ ∈ ℓ2(Λ) we have

(4.12) (c1 − ηA)‖vΛ‖2
ℓ2 ≤ 〈 ÃΛvΛ,vΛ 〉ℓ2 ,

with c1 from (2.8). Now, the following estimate is straightforward:

‖uΛ − ũΛ‖2
ℓ2 ≤ c−1

1 〈AΛ(uΛ − ũΛ),uΛ − ũΛ 〉ℓ2
≤ c−1

1 〈AΛuΛ − ÃΛũΛ + ÃΛũΛ − AΛũΛ,uΛ − ũΛ 〉ℓ2
≤ c−1

1

(
‖(AΛ − ÃΛ)ũΛ‖ℓ2‖uΛ − ũΛ‖ℓ2 + 〈 fΛ − f̃Λ,uΛ − ũΛ 〉ℓ2

)

≤ c−1
1 ‖uΛ − ũΛ‖ℓ2 (ηA‖ũΛ‖ℓ2 + ηf ) .

From estimate (4.12) we finally get

(4.13) ‖ũΛ‖ℓ2 ≤ (c1 − ηA)−1‖fΛ + s̃Λ‖ℓ2 ≤ (c1 − ηA)−1 (ηf + ‖fΛ‖ℓ2) .
�

Remark 4.2. We remark that ellipticity is not a necessary condition for estimate
(4.11). The proof of Proposition 4.1 remains essentially the same if we only require
that the norms of A, A−1 and their perturbations are uniformly bounded.

From Proposition 4.1, we infer that there is no gain if one of the tolerances ηf or
ηA is much smaller than the other. For this reason, we assume from now on that
for a given tolerance tol iter,

ηf ∼ tol iter, and ηA < min{c1, tol iter},
so that (4.11) can be replaced by ‖uΛ − ũΛ‖ℓ2 . tol iter ‖fΛ‖ℓ2 . In particular, we
have in mind to use a compressed matrix AJ,Λ = PΛAJ |ℓ2(Λ) for A ∈ Bs to solve
the Galerkin system (2.10) approximately using the compression results from [28].
Under the assumption that this is possible, we propose the routine LINSOLVE
(Algorithm 5) to solve appearing linear systems.

Remark 4.3. Concerning the complexity of LINSOLVE, observe that for a given
tolerance tol iter, there exists an increasing function C(tol iter) such that the assem-

bling of f̃Λ can be obtained in O(C(tol iter)·#Λ) operations where C(tol iter) → ∞ if
tol iter → 0. This is due to the fact that for a decreasing target tolerance tol iter, we

require better approximations f̃Λ to fΛ which leads to a increasing complexity. The
same can be found for the assembling of AJ,Λ. The compression level J is actually
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Algorithm 5 LINSOLVE[Λ,wΛ, tol iter] → ũΛ

1: Estimate J ∈ N such that ‖AΛ − AJ,Λ‖ℓ2 < min{c1, tol iter}.
2: Compute f̃Λ such that ‖fΛ − f̃Λ‖ℓ2 < tol iter.
3: Use a linear system solver like CG or GMRES with initial guess wΛ to compute

ũΛ such that ‖AJ,ΛũΛ − f̃Λ‖ℓ2 ≤ tol iter.

an increasing function of tol iter such that J(tol iter) → ∞ if tol iter → 0. Therefore,
the complexity for the assembling of AJ,Λ is of order O(min{#Λ, J(tol iter)} ·#Λ)
and thus asymptotically not optimal. This is in contrast to the method GAL-
SOLVE where the maximal compression level J(ε) is uniformly bounded for all
ε > 0. Moreover, it is a priori not clear how the number of iterations of the inner
linear solver depends on tol iter. We shall come back to this issue in Section 4.3.

4.1.2. Residual computation. A large part of the computation time of the ADWAV
algorithm is used by APPLY. Alternatively, starting from an index set Λ and the
corresponding Galerkin system (2.10), one can compute a so called security zone

Λ̂ ⊃ Λ using Algorithm 6 (cf. [30, p.235]). For a constant c > 0, we set for λi ∈ J̄i
with supp ψλi

= [lλi
, uλi

] and i = 1, . . . , n:

(4.14) C(λi, c) := {µ ∈ J̄i : |supp ψµ ∩ c · supp ψλi
| > 0, |λi| ≤ |µ| ≤ |λi| + 1},

where c · supp ψλi
:= [c lλi

+ (1 − c)zλi
, c uλi

+ (1 − c)zλi
], zλi

= 1
2 (lλi

+ uλi
), is

the contracted support of ψλi
around its barycenter. Due to the locality of the

basis function ψλi
, the cardinality of C(λi, c) for i = 1, . . . , n is uniformly bounded

by a constant M(c) > 0. Observe that not only wavelets on higher levels are
inserted into the security zone, but also further scaling function indices are added

for |λi| = j
(i)
0 − 1. This will later on permit an adaptive truncation of the formerly

unbounded domain.

Remark 4.4. We emphasize that the security zone C(λi, c) in (4.14) is constructed

such that no indices λi with levels |λi| < j
(i)
0 − 1 are inserted. Since both scaling

functions and wavelets on level j
(i)
0 − 1 are linear combinations of scaling functions

on level j
(i)
0 , this would a result in an over-determined system.

Algorithm 6 C[Λ, c] → Λ̂

1: Λ̂ := ∅.
2: for λ = (λ1, . . . , λn) ∈ Λ do
3: for i = 1, . . . , n do
4: Compute C(λi, c).
5: end for
6: Define C(λ, c) := C(λ1, c) × λ2 × · · · × λn ∪ · · · ∪ λ1 × · · · × λn−1 × C(λn, c).

7: Set Λ̂ := Λ̂ ∪ C(λ, c).
8: end for

As seen above, for any λ = (λ1, . . . , λn) ∈ J̄, #C(λi, c) ≤ M(c) for i = 1, . . . , n.
Thus, the cardinality of C(λ, c) defined in Algorithm 6 is bounded by n ·M(c). For
this reason, the cardinality of the output of C[Λ, c] such as the complexity of this
routine are both of order O(n ·M(c) · #Λ).
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As an estimate of the residual AuΛ − f , we now take

(4.15) rbΛ
:= PbΛ

(AuΛ − f),

where Λ̂ is the output of C[Λ, c]. To reduce the complexity of the residual compu-
tation, we alternatively compute

(4.16) r̃bΛ
:= PbΛ

(AJ,ΛũΛ − f̃),

using the compressed matrix AJ,Λ and an approximate solution ũΛ from (4.10).
For the next result we need the following notation: If vΛ is a vector in ℓ2(Λ) with

finite support Λ, then vbΛ
denotes its extension by zeros to Λ̂.

Proposition 4.5. Let Λ, Λ̂ be finite subsets of J̄ with Λ̂ ⊃ Λ and assume that

the assumptions from Proposition 4.1 hold. Then, by setting ÃbΛ
:= AJ,bΛ for

sufficiently large J , we have

(4.17) ‖r̃bΛ
− rbΛ

‖ℓ2 . tol iter ‖fbΛ
‖ℓ2.

Proof. By definition, we have for vΛ ∈ ℓ2(Λ) that ‖vbΛ
‖ℓ2 = ‖vΛ‖ℓ2 and, moreover,

AbΛ
vbΛ

= PbΛ
AvΛ. Using this, we get the following estimate:

‖(AJ,bΛũbΛ
− f̃bΛ

) − (AbΛ
ubΛ

− fbΛ
)‖ℓ2 ≤ ‖uΛ‖ℓ2‖AbΛ

− AJ,bΛ‖
+ ‖AJ,bΛ‖‖ũΛ − uΛ‖ℓ2 + ‖fbΛ

− f̃bΛ
‖ℓ2 .

From Proposition 4.1 we get that ‖ũΛ − uΛ‖ℓ2 . tol iter ‖fΛ‖ℓ2 . Moreover, as in
(4.13), we see that ‖uΛ‖ℓ2‖AbΛ

− AJ,bΛ‖ . tol iter ‖fΛ‖ℓ2 . �

At this point we recall that replacing the exact, infinite residual AuΛ − f by r̃bΛ

is an heuristic approach. On the one hand, there is no proof of the existence of
0 < β < 1 such that ‖PbΛ

(AuΛ − f)‖ℓ2 ≥ β‖AuΛ − f‖ℓ2 . On the other hand, the
advantage is that we do not need APPLY or RHS.

Algorithm 7 RESIDUAL[Λ̂, ũΛ, tol iter] → r̃bΛ

1: Estimate J ∈ N such that ‖AbΛ
− AJ,bΛ‖ℓ2 < min{c1, tol iter}.

2: Compute r̃bΛ
according to (4.16).

4.1.3. Coefficient thresholding. Obviously, if we call iteratively Λ(k+1) = C(Λ(k), c)

starting with some initial set Λ(0), the sizes of the index sets (Λ(k))k∈N may grow
exponentially fast. For this reason, we have to keep the index sets for which we call
C small. This is realized by thresholding the wavelet coefficients in ũΛ(k) and in
the estimated residual r̃Λ(k) . For this purpose, Algorithm 8 realizes a threshold on
finitely supported vectors v and returns a vector v̄ such that ‖v − v̄‖ℓ2 ≤ δ for a
given tolerance δ > 0. Here, also approximate sorting procedures from [1, 13] can
be used, so that THRESH can be realized in linear complexity.

Let us now investigate what the effect of THRESH used to threshold the
output of LINSOLVE. Therefore, let uΛ be the solution of (2.10) and ũΛ :=
LINSOLVE[Λ,wΛ, tol iter] for some starting point wΛ. Then, as ‖uΛ − ũΛ‖ℓ2 .
tol iter‖fΛ‖ℓ2 , it holds for ū =THRESH[ũΛ, tol iter] that

‖uΛ − ū‖ℓ2 . tol iter(1 + ‖fΛ‖ℓ2),
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Algorithm 8 THRESH[v, δ] → v̄

1: Sort the vector v = (vλ)λ∈supp v by decreasing order which yields the sorted
vector v∗ = (v∗

(i,λi)
)i=1,...,M whereM := #(supp v) and (i,λi) for i = 1, . . . ,M

indicate the ordering in v∗ such as the corresponding index in supp v.
2: Compute ‖v‖ℓ2 . The vector v and its support Λ are given by v :=

(vλi
)i=1,...,K and Λ := {λ1, . . . ,λK} where K is the smallest integer such that∑K

i=1 |v∗
(i,λi)

|2 ≥ ‖v‖2
ℓ2
− δ2.

where supp ū ⊆ Λ. Hence, we get an approximation of order tol iter to the Galerkin
solution uΛ but in general with a much smaller support. This observation can also
be made for the residual computation. Let rΛ be the residual defined in (4.15)

and r̃bΛ
=RESIDUAL[Λ̂, ũΛ, tol iter]. Then, by Proposition 4.5, ‖rbΛ

− r̃bΛ
‖ℓ2 .

tol iter‖fbΛ
‖ℓ2 . Thus, for r̄ =THRESH[r̃bΛ

, tol iter], it holds ‖rbΛ
− r̄‖ℓ2 . tol iter(1 +

‖fbΛ
‖ℓ2), where, as above, the support of r̄ is in general much smaller than Λ̂.

4.1.4. The simplified algorithm S-ADWAV. Now that we have all necessary rou-
tines together, we can describe the complete algorithm. S-ADWAV (cf. Algorithm
9 below) computes in each iteration an approximate solution w(k) to the Galerkin

system AΛcand.
k

w(k) = fΛcand.
k

where Λcand.
k is referred to as the set of candidate

indices, i.e., indices that can be activated in the current iteration. The target pre-
cision for solving the linear system is tol iter. As already stated above, we have to
keep index sets for which we call the C routine small. Therefore, with the (ap-
proximate) Galerkin solution w(k) at hand, we threshold this vector in order to
obtain the active wavelet coefficients u(k) that satisfy ‖u(k) −w(k)‖ℓ2 ≤ tol iter. Its

support Λ(k) := supp u(k) is referred to as the set of active indices. Around the

support of u(k), the security zone Λ̂k is constructed using the routine C and the
residual rbΛk

= PbΛk
(Au(k) − f) is computed. If ‖rbΛk

‖ℓ2 is smaller than the given

target tolerance, then we accept u(k) as solution. Otherwise, a new candidate set
of activable indices Λcand.

k+1 is constructed by thresholding the residual rbΛ
. As we

always use the same tolerance tol iter for thresholding and the numerical solution of
the Galerkin system, the approximation errors we generate are all of order tol iter
(see Propositions 4.1 and 4.5 such as Paragraph 4.1.3). But if we fix this tolerance,
it may happen that the algorithm stagnates before the target accuracy ε is reached.
Namely, by thresholding the approximate Galerkin solution w(k), it may occur that
no higher levels or translation indices on the coarsest level are added in the course

of the algorithm and we end up with Λ(k) = Λ(k+1). Therefore, in addition to the
algorithm described in [2] and [30], we decrease the threshold tolerance tol iter by
a factor 1

2 if the difference of the relative residuals of two iterations is too close

to zero. Thus, in case of Λ(k+1) = Λ(k), the threshold tolerance is decreased and
therefore, we obtain w(k) = w(k+1) but supp u(k+1) ⊇ supp u(k) which means that
also finer information on high levels or further translations on the coarsest level
remain in the set of active indices. Moreover, as cycles of type Λk = Λk+m for
some m ≥ 2 cannot not be excluded, we add an inner loop with a maximal number
M of iterations which prevents such loops and ensures that the tolerance tol iter
decreases.
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Algorithm 9 [u(ε),Λ(ε)] = S-ADWAV[ε]

Let h > 0 be a control width, M a fixed number of inner loops, c > 0, ρ a tuning
parameter, tol iter > 0 an initial tolerance and Λcand.

1,1 an initial index set.

1: for k = 1, 2, 3, . . . do
2: for m = 1, 2, . . . ,M do
3: w(k,m) = LINSOLVE[Λcand.

k,m ,u(k−1,m), ρ · tol iter]

4: u(k,m) = THRESH[w(k,m), tol iter]

5: Λ(k,m) = supp u(k,m); Λ̂k,m = C[Λ(k,m), c]

6: r(k,m) = RESIDUAL[Λ̂k,m,u
(k,m), tol iter]

7: if ‖r(k,m)‖ℓ2 ≤ ε‖fbΛk,m
‖ℓ2 then

8: u(ε) := u(k,m), Λ(ε) := Λ(k,m); EXIT
9: end if

10: r̄(k) = THRESH[r(k,m), tol iter]; Λcand.
k+1,m = supp u(k) ∪ supp r̄(k,m)

11: if
∣∣∣ ‖r(k,m)‖ℓ2

‖P
bΛk,m

f‖ℓ2
− ‖r(k−1,m)‖ℓ2

‖P
bΛk−1,m

f‖ℓ2

∣∣∣ < h then

12: BREAK
13: end if
14: end for
15: tol iter = 1

2 tol iter
16: end for

At this point, it is important to note that the adaptive truncation of a computa-
tional domain, i.e., the support of the computed solutions supp (u(m,k))TΨ, is done

implicitly. Every time C[Λ(k,m), c] is called, additional scaling function indices on

the coarsest level are added to the security zone Λ̂
(k,m)

. If these added scaling
function indices are relevant for a more precise approximation of the solution, their
corresponding value in r(k,m) is relatively large and they will be added in the new
candidate Λcand.

k+1,m set after the call of THRESH[r(k,m), tol iter]. This proceeding
provides the possibility that in each iteration, the computational domain can be ex-
tended, but also truncated as we have another call of THRESH after the solution
of the Galerkin system. Therefore, the call of THRESH in line 5 of Algorithm 9
is not only necessary to reduce the complexity but also to estimate if further scal-
ing function translation indices are relevant. Otherwise, the computational domain
would grow too fast.

4.1.5. Choice of a minimal level and an initial index set. As for ADWAV, the
choice of a minimal level is crucial. Choosing the level |λ| of the largest wavelet co-

efficient 〈 f, ψΛ 〉 is one possibility to construct Λcand.
1,1 by adding the scaling function

index with the same level and translation index as the largest wavelet coefficient.
We emphasize that estimates for 〈 f, ψλ 〉 are available in Section 3.2. This is the
path we follow for the one-dimensional examples below. For the examples in two
dimensions, we briefly describe an alternative for determining j0 and Λcand.

1,1 .

4.1.6. Convergence and complexity. As already mentioned at the beginning of this
section, there is no proof for the convergence of S-ADWAV . In view of Remark 4.4
there is another issue concerning the complexity of S-ADWAV. For the routines
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LINSOLVE and RESIDUAL, the constants C(tol iter) (for assembling the right-
hand side) and J(tol iter) (for assembling the matrix) determine the complexity and
are increasing if tol iter tends to zero which is actually the case in S-ADWAV. This
shows that asymptotically, this algorithm cannot be optimal.

Nevertheless, we show in our numerical experiments that these constants do not
grow fast for decreasing tol iter and still permit an efficient numerical algorithm.
This is also due to the fact that we use solutions from former iterations as initial
guesses in LINSOLVE so that the number of iterations of the linear solver only
grows for very small values of tol iter.

4.2. Numerical experiments in one dimension. In this section, we present
numerical results obtained with S-ADWAV in one space dimension. We focus on
the reaction-diffusion problems from Section 3.3 and compare the results with those
obtained by ADWAV.

4.2.1. Convergence rates. Within S-ADWAV, we used the parameters c = 0.125,

h = 0.0001, M = 2, ρ = 0.1, tol iter = 0.01 and d = d̃ = 2 such as d = d̃ = 3. We
observe in Figure 4.6 that both the output ‖r(k,m)‖ℓ2 of the heuristic residual error
estimator RESIDUAL such as the corresponding approximation error measured
in H1(R) converge asymptotically with the optimal rate s = d − 1. But we also
observe that the error in S-ADWAV not necessarily decreases in each iteration –
we observe jumps in both the residual and the H1(R)-error (cf. Figures 4.6 c), e)
and f) ).
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(a) (P1) with j0 = −2.
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(b) (P2) with j0 = −4.
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(c) (P3) with j0 = −1.
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(d) (P4) with j0 = 0.
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(e) (P5) with j0 = 0.
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(f) (P6) with j0 = −1.

Figure 4.6. Output ‖r(k,m)‖ℓ2 of RESIDUAL and H1(R)-error
for S-ADWAV over the degrees of freedom N .

4.2.2. Comparison of ADWAV and S-ADWAV. Exemplarily, we consider (P1)
and (P2) to compare the two adaptive schemes where we only consider ADWAV
with j0 > −∞. In Figure 4.7 a), we see that for the smooth solution of (P1) there
is nearly no difference between ADWAV and S-ADWAV with regard to required
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degrees of freedom to attain a certain target tolerance. In contrast, in case of the
singular solution of (P2), ADWAV needs less degrees of freedom compared to S-
ADWAV (cf. Figure 4.7 b) ). This is due to the fact that within GROW higher
levels for the resolution of a singularity can be added within one iteration whereas
the routine C can add at most wavelets on the next higher level. Nevertheless, we
observe from the computation times given in Figures 4.7 c) and d) that this effect
is compensated by S-ADWAV which needs less outer iterations.
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Figure 4.7. Output ‖r(k,m)‖ℓ2 of RESIDUAL and H1(R)-error
for S-ADWAV over the degrees of freedom N .

In Figure 4.8, we show the structure of the index sets produced by ADWAV (top
row) and S-ADWAV (bottom row). Here, we exemplarily consider the reference
solution (P5) with compact support (left column) and a singular reference solution
with global support (P6). Using the example of (P5), we see that for a comparable
size of index set sets, ADWAV uses the information provided by RHS to add
higher levels already at early stages of the algorithm. As already said above, this is
not the case for S-ADWAV which does not have this information. Nevertheless,
we observe that both algorithms reliably detect singularities – both for the interval
example (where the interval bounds are treated as singularities) and the globally
supported solution of (P6)

4.2.3. A convection-diffusion problem. For the reaction-diffusion examples one
might argue that it would also be possible to a determine a computational domain
a priori and then to use standard methods for PDEs on bounded domains. In order
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Figure 4.8. Numerical solutions uΛ for (P5) (left) and (P6) right
obtained with ADWAV (top) and S-ADWAV (bottom) for d =

d̃ = 2.

to treat a problem where this is not that obvious, we consider a convection diffusion
problem of the form

(4.18) −u′′(x) + βu′(x) + u(x) = f1(x), x ∈ R,

using the right-hand side from (P1) which also fulfills all required assumptions. For
increasing values of β, the solution exhibits a strong layer at x = 0, see the left
part of Figure 4.9. On the right side of Figure 4.9, we see the adaptive truncation
of the computational domain. In particular, the layer is automatically detected.

4.3. Examples in two dimensions. Finally, we consider some bivariate prob-
lems. As above, we consider the following reaction-diffusion problem on H1(R2):

(4.19) −∆u+ u = f, u ∈ H1(R2),

for f ∈ H−1(R2). Here, we consider the following examples:

(P7) u7(x1, x2) := e−
(x1+0.1)2

10 · e−
(x2−0.1)2

2 ,

(P8) u8(x1, x2) := e−2|x1− 1
3 | · e−

(x2− 1
3
)2

10 ,

(P9) u9(x1, x2) = e−(2(x1−0.1)2+(x1−0.1)·(x2−0.1)+(x2−0.1)2).

(P10) u10(x1, x2) := e−
√

(x1−0.1)2+(x2−0.1)2 ,

The tensor product structure of the reference solutions u7 and u8 permits us, at
least in theory, to obtain the best possible approximation s = d − 1 for (P7) and
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Figure 4.9. Solution u, right-hand side f (left) and estimated

index set (right) for (4.18) with d = d̃ = 2, j0 = −2 and β = 10.

(P8). Examples (P9) and (P10) do not have a tensor product structure. It is known
that u10 ∈ H1(R2)\H2(R2). The function u9 is of Schwartz type and thus has the
required tensor regularity. We emphasize that the tensor product structure and the
symmetry of the solutions was not exploited in the numerical solution.

Remark 4.6. In this section, we only consider S-ADWAV since, to our knowl-
edge, heuristic adaptive schemes have not been investigated numerically with a
tensor wavelet basis Ψ. Moreover, it is known (cf. eg. [13, Chapter 5]) that the
condition numbers κ(A) = c2

c1
and CΨ

cΨ
in (2.8) and (2.5) grow exponentially in the

spatial dimension n as φ and ψ are not L2-orthonormal. Thus, the requirement
for a quantitative good performance of ADWAV, namely a small condition num-
ber κ(A) being crucial for the number of degrees of freedom that are added per
iteration by GROW, is not met. An alternative approach using L2-orthonormal
multiwavelet-bases (cf. [15, 16, 19]) which was investigated for a bounded setting
in [13, 14] is on our agenda.

Convergence rates. We shall investigate whether it is possible to obtain the best
possible approximation rate s = d − 1 with S-ADWAV using the parameters

c = 0.125, h = 0.0001, M = 3, ρ = 0.1, tol iter = 0.4, d = 2, d̃ = 2 and d = d̃ = 3.
Here, the minimal level j0 has been estimated by the following proceeding. By
considering the right-hand side f of each problem (given in an analytical form), we
determine a finite index set ∇ such that ‖〈 f,Ψ 〉 − 〈 f,Ψ 〉|∇‖ℓ2‖ . ε, ε the given
target tolerance. But instead of taking the level of the largest wavelet coefficient
within 〈 f,Ψ 〉|∇, we compute the vector

f̃∇ := {〈 f, ϕj1,k1 · ϕj2,k2 〉 : λ = ((j1, k1), (j2, k2)) ∈ ∇},
and consider the level of the largest scaling function coefficient in f̃∇ as j0. Moreover,
we take the corresponding scaling function index as initial candidate set.

In Figures 4.10 a)-d), we show the rate of convergence for (P7) – (P10). We
observe that the asymptotically optimal rate s = d − 1 is realized asymptotically
for the solutions of (P7), (P8) and (P9). In particular, for the reference solution u10

that does not permit a tensor structure, the optimal rate is not attained exactly.
But we see that the modified estimate of j0 pays off as one can see in Figure 4.10
a) and b) where we also plot the approximation error (measured in H1(R2)) for the
wavelet type estimate from Section 4.1.5.
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Finally, we show the number of inner iterations in LINSOLVE (here, a cg-
method was used) for (P8). Using solutions from the previous iteration as initial
guess allows to reduce this number such that for increasing number of degrees of
freedom as well as for a decreasing tol iter, the numbers remain small and grow very
slow. We observe that the choice of the minimal level has a negligible impact.
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(a) (P7) with d = ed = 2,
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(b) (P8) with d = ed = 2,

j0 = (−4,−2) and d = ed = 3,
j0 = (−4,−1).
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(c) (P9) with d = ed = 2,

j0 = (−1,−2) and d = ed = 3,
j0 = (0, 0).
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(d) (P10) with d = ed = 2,

j0 = (−2,−2) and d = ed = 3,
j0 = (−2,−2).
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Figure 4.10. Output ‖r(k,m)‖ℓ2 of RESIDUAL and H1(R2)-
error for S-ADWAV over the degrees of freedom N .

Adaptive truncation of the computational domain. To get an impression of the so-
lutions in two dimensions , we present exemplarily plots of the absolute error ob-
tained with S-ADWAV. We observe that the anisotropic nature of u8 is captured
by S-ADWAV. The same holds true for the point singularity of u10 which is also
detected and resolved even at an early stage of the algorithm.

5. Conclusions and Outlook

We have introduced an adaptive wavelet method for operator problems on R
n.

It was shown that the method converges and is asymptotically optimal. We have
seen the benefit of using anisotropic wavelet bases in the multivariate case has been
demonstrated. We have also introduced a simplified adaptive wavelet method with-
out prove of optimality but with very quantitative numerical results. The perfor-
mance of the scheme has been demonstrated by a variety of numerical experiments
in 1D and 2D. It has been shown that the scheme also performs quantitatively very
well.

This opens the door to several questions which will be subject to future research.
The extension to different kind of problems (nonlinear, integral equations, obstacle
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Figure 4.11. L∞-error for (P8) and (P10) with d = d̃ = 2.

problems, etc.) has already been mentioned in the introduction. Moreover, a
coupling with the space-time adaptive method proposed in [26] is on our agenda.
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