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Abstract

We illustrate how multistate Markov and semi-Markov models can be used for the actuarial
modeling of health insurance policies, focussing on health insurances that are pursued on
a similar technical basis to that of life insurance. On the basis of the general modeling
framework of Helwich (2008), we study examples of permanent health insurance, critical
illness insurance, long term care insurance, and German private health insurance and discuss
the calculation of premiums and reserves on the safe side. In view of the rising popularity
of stochastic mortality rate modeling, we present a theoretical foundation for stochastic
transition rates and explain why there is a need for future statistical research.

Key Words: health insurance; Markov jump process; semi-Markov process; prospective
reserve; actuarial calculation on the safe side; systematic biometric risk; worst case scenario



1 Introduction and motivation
Health insurances provide financial protection in case of sickness or injury by covering medical
expenses or loss of earnings. Throughout the world there are various types of health insurance
products, and there are many different traditions when it comes to their actuarial calculation.
All of the calculation techniques are

• either pursued on a similar technical basis to that of life insurance

• or pursued on a similar technical basis to that of non-life insurance.

The multistate modeling approach that we are presenting here belongs to the first group.
That means that we assume that (despite some financial risks) the only source of randomness
is a random pattern of (finitely many) states that the policyholder goes through during the
contract period. Claim sizes and occurrence times of all health insurance benefits just depend
on that random pattern of states. At first let us consider four small examples that illustrate
the fundamental ideas of multistate modeling in health insurance.

Example 1.1 (disability insurance). A disability insurance or permanent health insurance
(PHI) provides an insured with an income if the insured is prevented from working by dis-
ability due to sickness or injury. It is usually modeled by a multiple state model with state
space S := {a = active/healthy, i = invalid/disabled, d = dead}.
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Note that in some countries, e.g. Germany, disability insurance is rather categorized as life
or pension insurance than health insurance.

Example 1.2 (critical illness insurance). A critical illness insurance or dread disease in-
surance (DD) provides the policyholder with a lump sum if the insured contracts an illness
included in a set of diseases specified by the policy conditions. The most commonly diseases
are heart attack, coronary artery disease requiring surgery, cancer and stroke. For example,
it can be modeled by a multi state structure with state space S := {a = active/healthy, i =
ill, dd = dead due to dread disease , do = dead due to other causes}.

��
��
a ��

��
i

��
��
do ��

��
dd

�
�

��	

-

? ?

1



Example 1.3 (long term care insurance). A long term care insurance (LTC) provides fi-
nancial support for insured who are in need of nursing or medical care. The need for care
due to the frailty of an insured is classified according to the individuals ability to take
care of himself by performing activities of daily living such as eating, bathing, moving
around, going to the toilet, or dressing. LTC policies are commonly modeled by mul-
tistate models, and the state space usually consists of the states active, dead, and the
corresponding levels of frailty. For example, in Germany three different levels of frailty
are used and, moreover, lapse plays an important role. Thus, we have a state space of
S = {a = active/healthy, cI = need for basic care, cII = need for medium care, cIII =
need for comprehensive care, l = lapsed/canceled, d = dead}.
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Example 1.4 (German private health insurance). A German private health insurance pri-
marily covers actual medical expenses of the policyholder. In fact, the individual future
medical expenses are unknown and, thus, stochastic. However, German private health
insurers use deterministic forecasts for individual medical expenses that only depend on
the age of the policyholder, so that the state space consists only of S := {a = alive, l =
lapsed/canceled, d = dead}. There is no differentiation made between different types and
levels of morbidity, and so the only source of randomness is the time of death or lapsation,
whichever occurs first.
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For health insurances pursued on a similar technical basis to that of life insurance (the
type of products we are studying here), the contractual guaranteed payments between insurer
and policyholder are defined as deterministic functions of time and of the pattern of states
of the policyholder. From a mathematical point of view, an insurance contract is just the
set of that deterministic payment functions. Beside the specification of the contract terms
(the payment functions), one of the main tasks of an actuary is to formulate a stochastic
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model for the random pattern of states of the policyholder. In many cases it is reasonable to
assume that the random pattern of states is a Markovian process. The Markovian property
reduces complexity and leads to an easily manageable model. However, in some cases we
have significant durational effects, that is, the duration of stay in certain states has an effect
on the likeliness of future transitions between states. For example, for disabled insured
both the probability of recovering and the probability of dying usually significantly decrease
with increasing duration of disability (see, for example, Segerer (1993)). In such cases the
Markovian assumption clearly oversimplifies matters. The literature shows that then the
best compromise between accuracy and feasibility is a semi-Markovian model. That is a
model where (1) the present state of the policyholder and (2) the actual duration of stay in
the present state together form a two-dimensional Markovian process. Nearly all multistate
health insurance models presented in the literature fit into that semi-Markovian framework.
(An interesting exception is the concept of Davis (1984).) By inserting the pattern of states
process into the payment functions, we obtain the random future cash flow between insurer
and policyholder. The job of the actuary is then to analyze this cash flow with the objective
of determining premiums, solvency reserves, portfolio values, profits and losses, and so on.

For the interested reader we recommend the monograph of Haberman and Pitacco (1999),
which gives a comprehensive survey of actuarial modeling of disability insurance, critical
illness cover, and long-term care insurance. A detailed overview of actuarial modeling of
private health insurance in Germany is given in Milbrodt (2005). In the insurance literature,
the Markovian multistate model first appeared in Amsler (1968) and Hoem (1969). Since
then the literature offers a range of papers that study this model, most of them under
the topic ’life insurance’. Comprehensive presentations of the Markovian model and lots of
further references can be found in the monographs of Wolthuis (1994), Milbrodt and Helbig
(1999), and Denuit and Robert (2007). The semi-Markovian approach is much less studied
in the literature, and we are not aware of a comprehensive monograph here. For the reader
who is interested in the mathematical details of the semi-Markovian multistate modeling,
we recommend Nollau (1980), Janssen and De Dominicis (1984), and Helwich (2008). In
the insurance literature the semi-Markovian approach first appeared in Janssen (1966) and
Hoem (1972). Further references are, for example, Waters (1989), Møller (1993), Segerer
(1993), Gatenby and Ward (1994), Möller and Zwiesler (1996), Rickayzen and Walsh (2000),
and Wetzel and Zwiesler (2003).

2 Random pattern of states
For health insurances pursued on a similar technical basis to that of life insurance, contractual
guaranteed payments between insurer and policyholder are defined as deterministic functions
of time and of the pattern of states of the policyholder. Therefore, at first we need a model
for that pattern of states.

Definition 2.1. The random pattern of states is a pure jump process (Ω,F, P, (Xt)t≥0) with
finite state space S and right continuous paths with left-hand limits, where Xt represents
the state of the policyholder at time t ≥ 0.
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We further define the transitions space J := {(i, j) ∈ S×S|i 6= j}, the counting processes

Njk(t) := #
{
τ ∈ (0, t]

∣∣Xτ = k,Xτ− = j
}
, (j, k) ∈ J ,

the time of the next jump after t

T (t) := min
{
τ > t

∣∣Xτ 6= Xt

}
,

the series of the jump times

S0 := 0 , Sn := T (Sn−1) , n ∈ N ,

and a process that gives for each time t the time elapsed since entering the current state,

Ut := max
{
τ ∈ [0, t]

∣∣Xu = Xt for all u ∈ [t− τ, t]} .
Instead of using a jump process (Xt)t≥0, some authors describe the random pattern of states
by a chain of jumps. The two concepts are equivalent.

2.1 The semi-Markovian approach
The random pattern of states (Xt)t≥0 is called semi-Markovian, if the bivariate process
(Xt, Ut)t≥0 is a Markovian process, which means that for all i ∈ S, u ≥ 0, and t ≥ tn ≥ ... ≥
t1 ≥ 0 we have

P
(
(Xt, Ut) = (i, u)

∣∣Xtn , Utn , ..., Xt1 , Ut1
)

= P
(
(Xt, Ut) = (i, u)

∣∣Xtn , Utn
)

almost surely. In the following we always assume that the initial state (X0, U0) is determin-
istic. (Note that U0 = 0 by definition.) In practice that means that we know the state of the
policyholder when signing the contract. With this assumption and the Markov property of
(Xt, Ut)t≥0 we have that the probability distribution of (Xt, Ut)t≥0 is already uniquely defined
by the transition probability matrix

p(s, t, u, v) :=
(
P (Xt = k, Ut ≤ v |Xs = j, Us = u)

)
(j,k)∈S2

, 0 ≤ u ≤ s ≤ t <∞ , v ≥ 0 .

Practitioners usually prefer the notation

v,t−sp
jk
x+s,u := pjk(s, t, u, v) ,

where x is the age of the policyholder at contract time zero. Alternatively, we can also
uniquely define the probability distribution of (Xt, Ut)t≥0 by specifying the probabilities

p(s, t, u) =
(
pjk(s, t, u)

)
(j,k)∈S2

,

pjk(s, t, u) := P (T (s) ≤ t,XT (s) = k |Xs = j, Us = u) , j 6= k ,

pjj(s, t, u) := P (T (s) ≤ t |Xs = j, Us = u)
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for 0 ≤ u ≤ s ≤ t <∞. For j = k the corresponding actuarial notation is

t−sp
jj

x+s,u := 1− pjj(s, t, u) = P (T (s) > t |Xs = j, Us = u) .

A third way to uniquely define the probability distribution of (Xt, Ut)t≥0 is to specify the
cumulative transition intensity matrix

q(s, t) =
(
qjk(s, t)

)
(j,k)∈S2

,

qjk(s, t) :=
∫

(s,t]

pjk(s, dτ, 0)
1− pjj(s, τ−, 0) , 0 ≤ s ≤ t <∞ .

(2.1)

If q(s, t) is differentiable with respect to t, we can also define the so-called transition intensity
matrix

µ(t, t− s) := d
dtq(s, t) =

( d
dtpjk(s, t, 0)

1− pjj(s, t, 0)

)
(j,k)∈S×S

,

which is some form of multi-state hazard rate. The quantity µjk(t, t − s) gives the rate of
transitions from state j to state k at time t given that the current duration of stay in j is
t− s. The corresponding actuarial notation is

µjkx+t,u := µjk(t, u) .

If the transition intensity matrix µ exists, it also already uniquely defines the probability
distribution of (Xt, Ut)t≥0. In order to obtain the transition probabilities from the cumulative
transition intensities, we can use the Kolmogorov backward integral equation system

pik(s, t, u, v)− 1{i=k} 1{v≥u+t−s} =
∑
j:j 6=i

∫
(s,t]

pjk(τ, t, 0, v) qij(s− u, dτ)

+
∫

(s,t]
pik(τ, t, u+ τ − s, v) qii(s− u, dτ) .

(2.2)

We will base all our actuarial calculations on the cumulative transition intensity matrix
q(s, t) and the probabilities pjj(s, t, u), where the latter can be derived from the former by
the so-called exponential formula

1− pii(s, t, u) = eq
c
ii(s−u,t)−qcii(s−u,s)

∏
s<τ≤t

(
1 + qii(s− u, τ)− qii(s− u, τ−)

)
. (2.3)

Here, qcii(s−u, t) is the continuous part of t 7→ qii(s−u, t). Thus, for our actuarial calculations
following later on, we have to specify q(s, t), and only q(s, t). The following concepts are
frequently used in practice.

(a) We estimate the µjkx+t,u = µjk(t, u) from statistical data, often by using a parametric
method (cf. Haberman and Pitacco (1999), section 4). The cumulative transition inten-
sities q(s, t) are obtained by integrating the transition intensities. In case we are also
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interested in the transition probability matrix p(s, t, u, v), we can obtain it as the unique
solution of the Kolmogorov backward differential equation system

∂

∂s
p(s, t, u, v) = −µ(s, u) p(s, t, 0, v)− ∂

∂u
p(s, t, u, v)

with boundary condition p(t, t, u, v) = 1{i=k} 1{v≥u+t−s}.

(b) We estimate ∞,t−spjkx+s,u := pjk(s, t, u,∞) from statistical data, but only at integer times
s, t, u. We generally assume that transitions can only occur at the turn of the years.
Then from (2.1) we obtain that q(m, dt) = 0 for non-integer times t, and from (2.2) we
get

qjk(m,n)− qjk(m,n−) :=
{
pjk(n− 1, n, n− 1−m,∞) : j 6= k
pjj(n− 1, n, n− 1−m,∞)− 1 : j = k

for integer times m < n.
In practice, the probabilities pjk(n− 1, n, n− 1−m,∞) are often provided by so-called
select-and-ultimate tables (cf. Bowers et al. (1997), section 3.8). Such tables generally
contain annual rates that depend on the age at selection (e.g. onset of disability) and on
the duration since selection. The common actuarial notation is

pjk(n− 1, n, n− 1−m,∞) =: pjk[x+m]+n−1−m .

(The value in the square brackets is the age of the policyholder at the last transition, and
the addend after the brackets gives the duration of stay in the actual state.) Usually,
beyond a certain period such as 5 years, the dependence on the time since selection is
neglected and the corresponding transition probabilities are combined, resulting in the
so-called ultimate table pjkx+n−1 := pjk[x+m]+n−1−m for n− 1−m ≥ 5.

(c) Similarly to (b), we estimate the ∞,t−spjkx+s,u := pjk(s, t, u,∞) from statistical data at
integer times s, t, u. But differing from (b), we distribute the mass qjk(m,n)−qjk(m,n−1)
equally on the interval (n− 1, n] by defining

µjk(t, t−m) :=
{
pjk(n− 1, n, n− 1−m,∞) : j 6= k , t ∈ (n− 1, n]
pjj(n− 1, n, n− 1−m,∞)− 1 : j = k , t ∈ (n− 1, n]

for all integer times m.

(d) We estimate the ∞,t−spjkx+s,u := pjk(s, t, u,∞) from statistical data at integer times s, t, u.
For times in between we use linear interpolation. See Helwich (2008, p. 93).

If the cumulative transition intensity matrix q(t, s) is regular (the matrix elements qjk(s, ·),
j 6= k, are monotonic non-decreasing and right-continuous functions that are zero at time
s, qjj = −∑k 6=j qjk, qjj(s, t) − qjj(s, t−) ≥ −1, and in case of qjj(s, t0) − qjj(s, t0−) =
−1 the function qjj(s, ·) is constant from t0 on), then there always exists a corresponding
semi-Markovian process ((Xt, Ut))t≥0, which is even strong Markovian (see Helwich (2008),
Remark 2.34).

In the insurance literature the semi-Markov model based on transition intensities was
first described by Hoem (1972). The more general model based on cumulative intensities
was introduced by Helwich (2008).
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2.2 The Markovian approach
For some insurance products we can simplify the semi-Markovian model to the special case
where (Xt)t≥0 on its own is a Markovian process, which means that for all i ∈ S and
t ≥ tn ≥ ... ≥ t1 ≥ 0 we have

P
(
Xt = i

∣∣Xtn , ..., Xt1

)
= P

(
Xt = i

∣∣Xtn

)
almost sure. As a consequence, the transition probabilities pjk(s, t, u, v) and the probabilities
pjk(s, t, u) do not depend on u or v anymore, the cumulative transition intensity matrix q(s, t)
is constant with respect to its first argument s, and the transition intensity matrix µ(t, u) is
constant with respect to the second argument u. Actuaries then use the notation

t−sp
jk
x+s := P (Xx+t = k |Xx+s = j) = pjk(s, t, u,∞) ,

t−sp
jj

x+s := P (T (s) > t |Xs = j) = 1− pjj(s, t, u) ,
µjkx+t := µjk(t) = µjk(t, u) .

In the insurance literature the Markov model based on transition intensities µjk(t) and a
differentiable discounting function was already described by Sverdrup (1965) and Hoem
(1969). The more general cumulative intensity approach was introduced by Milbrodt and
Stracke (1997).

Markovian models are sometimes used to approximate semi-Markovian models. The idea
is to split all states i with durational effects into a set of states i1, i2, ..., in with the meaning

• ik = ’insured in state i with a duration between k − 1 and k’ for k = 1, ..., n− 1,

• in = ’insured in state i with a duration greater than n− 1’.

For example, for disability policies we have the well-known effect that for different durations
since disability inception the observed recovery and mortality rates differ. Instead of using
the three state model S = {a, i, d} of Example 1.1 in a semi-Markovian setup, we could use
the multistate model S = {a, i1, ..., in, d} in a Markovian setup.
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We have to specify q(t) in such a way that the transitions (i1, i2), ..., (in−1, in) occur with
probability one at the turn of the years. Durational effects are taken into account by using
different recovery and mortality rates for the states i1, ..., in. This differentiation of disability
states has been originally proposed by Amsler (1968).

7



2.3 Other approaches
More realistic and sophisticated models can be built by considering for example

• the dependence on the age x at policy issue,

• the dependence on the total time spent in some states since policy issue, stressing the
health history of the insured.

Both approaches complicate the actuarial models. The first one can be included by esti-
mating v,t−sp

jk
x+s,u, t−sp

jj

x+s,u, or µjkx+t,u separately for each starting age x. Another interesting
approach is given by Davis (1984). However, reasonable models can be defined by considering
just the semi-Markovian case of above.

3 Payment functions
As already mentioned in the introduction, premiums and benefits are paid according to the
pattern of states of the policyholder.

Definition 3.1 (contractual payments). Payments between insurer and policyholder are of
two types:

(a) Lump sums are payable upon transitions between two states and are specified by de-
terministic nonnegative functions bjk(t, u) with bounded variation on compacts. The
amount bjk(t, u) is payable if the policy jumps from state j to state k at time t and the
duration of stay in state j was u.
In order to distinguish between payments from insurer to insured and vice versa, benefit
payments get a positive sign and premium payments get a negative sign.

(b) Annuity payments fall due during sojourns in a state and are defined by deterministic
functions Bj(s, t), j ∈ S. Given that the last transition occurred at time s, Bj(s, t) is
the total amount paid in [s, t] during a sojourn in state j. We assume that the Bj(s, ·)
are right-continuous and of bounded variation on compacts.

Example 3.2 (disability insurance). Suppose we have a contract that pays a continuous
disability annuity with rate r > 0 as long as the insured is in state disabled, and a constant
(lump sum) premium p > 0 has to be paid yearly in advance as long as the policyholder is
in state active. Following a modeling framework of Pitacco (1995),

• let (n1, n2) denote the insured period, meaning that benefits are payable if the disability
inception time belongs to this interval,

• let f denote the deferred period (from disability inception),

• let m be the maximum number of years of annuity payment (from disability inception),

• and let T (≥ n2 + f) be the stopping time of annuity payment (from policy issue at
time zero).
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Then the contractual payment functions are

Ba(s, t) =
n2−1∑
k=0
−p1[k,∞)(t) ,

Bi(s, t) = 1(n1,n2)(s)
∫ min{t,s+f+m,T}

min{t,s+f}
r du ,

Bd(s, t) = 0

for all 0 ≤ s ≤ t. The transitions payments bjk(t, u) are all constantly zero.

Example 3.3 (critical illness insurance). Let the state space be S := {a = active/healthy, i =
ill, d = dead}, and denote by T the policy term. Suppose that a constant (lump sum) pre-
mium p > 0 has to be paid yearly in advance as long as the policyholder is in state active.
A lump sum is payed upon death or a dread disease diagnosis, whichever occurs first. The
death benefit is ld. The dread disease benefit is li, but only if the policyholder outlives a
deferred period f , otherwise the sum ld is paid. We assume that a recovery from state i to
state a is impossible. The contractual payment functions are

Ba(s, t) =
T−1∑
k=0
−p1[k,∞)(t) , Bi(s, t) = li 1(0,T−f ](s) 1[s+f,∞)(t) , Bd(s, t) = 0 ,

bad(t, u) = ld 1(0,T ](t) , bai(t, u) = 0 , bid(t, u) = ld 1(0,T ](t) 1[0,f)(u) ,

for all 0 ≤ s ≤ t and u ≥ 0. Without the deferred period (f = 0), we can alternatively write

Ba(s, t) =
T−1∑
k=0
−p1[k,∞)(t) , Bi(s, t) = 0 , Bd(s, t) = 0 ,

bad(t, u) = ld 1(0,T ](t) , bai(t, u) = li 1(0,T ](t) , bid(t, u) = 0 .

Example 3.4 (long-term care insurance). Suppose we have a German policy with state
space S = {a = active/healthy, cI = need for basic care, cII = need for medium care, cIII =
need for comprehensive care, l = lapsed/canceled, d = dead}. Continuous annuities are paid
with rates rI , rII , rIII as long as the insured is in state cI , cII , cIII , respectively. A constant
(lump sum) premium p > 0 has to be paid yearly in advance till retirement at contract time
R, lapse, or death, whichever occurs first. The contractual payment functions are

Ba(s, t) =
R−1∑
k=0
−p1[k,∞)(t) ,

BcI/II/III (s, t) = (t−min{t, s}) rI/II/III ,
Bl(s, t) = 0 , Bd(s, t) = 0

for all 0 ≤ s ≤ t. The transitions payments bjk(t, u) are all constantly zero. Interestingly,
the benefits Bi(s, dt) at time t ≥ s do not really depend on s. Hence, we can simplify the
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payment functions by skipping the first argument,

Ba(t) =
R−1∑
k=0
−p1[k,∞)(t) ,

BcI/II/III (t) = t rI/II/III ,

Bl(t) = 0 , Bd(t) = 0 .

Example 3.5 (German private health insurance). As already mentioned above, German
health insurers calculate on the basis of deterministic benefit forecasts that only depend on
the age of the policyholder. This deterministic approach is justified by the argument that,
though the individual medical expenses are far from being deterministic, the portfolio average
of medical expenses is nearly deterministic in case of a large portfolio of independent insured
because of the law of large numbers. The law of large numbers does not work for systematic
changes of medical expenses with progression of calendar time, but German health insurers
have the exceptional right to adapt their deterministic forecasts of the medical expenses
if calculated values and real values differ significantly. (The special right of German and
Austrian health insurers to change the payments functions after(!) signing of the contract is
unique in private health insurance.) Let the average yearly medical expenses (Kopfschäden)
of a policyholder with age x+ k be a deterministic quantity Kx+k, where x is the age of the
policyholder at inception of the contract. Recall that the state space is S := {a = alive, l =
lapsed/canceled, d = dead}. A constant (lump sum) premium p > 0 has to be paid yearly
in advance till death or lapsation. The contractual payment functions are

Ba(s, t) =
∞∑
k=0

(
Kx+k − p

)
1[k,∞)(t) ,

Bl(s, t) = 0 , Bd(s, t) = 0

for all 0 ≤ s ≤ t. The transitions payments bjk(t, u) are all constantly zero. All payments
are independent of the duration of stay. Hence, we can simplify the payment functions by
skipping the first argument,

Ba(t) =
∞∑
k=0

(
Kx+k − p

)
1[k,∞)(t) ,

Bl(t) = 0 , Bd(t) = 0 .

4 Reserves
By statute the insurer must at any time maintain a reserve in order to meet future liabilities
in respect of the contract. This reserve bears interest with some rate ϕ(t). On the basis of
this interest rate we define a discounting function,

v(s, t) := e−
∫ t
s ϕ(r)dr . (4.1)
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We can interpret v(s, t) as the value at time s of a unit payable at time t ≥ s. At next, we
study the present value of future payments between insurer and policyholder, that is, the
discounted sum of all future benefit and premium payments,

A(t) :=
∑
j∈S

∞∑
n=0

∫
(t,∞)

v(t, τ) 1{Xτ=j} 1{Sn≤τ<Sn+1}Bj(Sn, dτ)

+
∑

(j,k)∈J

∫
(t,∞)

v(t, τ) bjk(τ, Uτ ) dNjk(τ) .
(4.2)

A(t) gives the amount that an insurer needs at time t in order to meet all future obligations in
respect of the contract, but, because of its randomness, we do not know its value. However,
if we have a homogeneous portfolio of stochastically independent policies, then the law of
large numbers yields that the average present value per policy is close to its mean. This
motivates the following definition.

Definition 4.1. The prospective reserve at time t in state (i, u) is defined by

Vi(t, u) := E
(
A(t)

∣∣ (Xt, Ut) = (i, u)
)
,

given that the expectation exists.

Vi(t, u) is the amount that the insurer needs on portfolio average in order to meet all
future obligations. At present time t we do not only know the value of (Xt, Ut) but also
the complete history of (Xτ , Uτ )τ≥0 up to time t. But since we assumed that (Xτ , Uτ )τ≥0 is
Markovian, in the above definition we may just condition on (Xt, Ut).

Theorem 4.2. The prospective reserves Vi(t, u), i ∈ S, 0 ≤ u ≤ t, equal almost sure the
unique solution of the integral equation system

Vi(t, u) =
∫

(t,∞)
v(t, τ) (1− pii(t, τ, u))Bi(t− u, dτ)

+
∑
j:j 6=i

∫
(t,∞)

v(t, τ) (1− pii(t, τ − 0, u))
(
bij(τ, τ − t+ u) + Vj(τ, 0)

)
qij(t− u, dτ) .

(4.3)

A proof can be found in Helwich (2008). The integral equation system (4.3) is also de-
noted as Thiele integral equations (of type 1). The theorem provides a way for the calculation
of Vi(t, u). Generally, we can use the following method.

Algorithm 4.3. (1) At first solve the integral equation system (4.3) for u = 0,

Vi(t, 0) =
∫

(t,∞)
v(t, τ) (1− pii(t, τ, 0))Bi(t, dτ)

+
∑
j:j 6=i

∫
(t,∞)

v(t, τ) (1− pii(t, τ − 0, 0))
(
bij(τ, τ − t) + Vj(τ, 0)

)
qij(t, dτ) .
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If there is no closed form solution, we have to use numerical methods in order to obtain
at least approximations on a fine time grid. In practice we will always have some time
T < ∞ such that Vi(t, 0) = 0 for all t ≥ T and i ∈ S. We start from that T and make
small backward steps till we arrive at t = 0.

(2) On the basis of the solution from (1), we can now calculate the integrals in (4.3), at least
approximately by using numerical integration. Recall that the probability pii(t, τ, 0) has
the explicit representation (2.3).

We now demonstrate this algorithm for some examples. We will see that in many practical
examples the calculation method can be considerably simplified.

Example 4.4 (disability insurance). We continue with Example 3.2. Suppose that the
transition intensity matrix µ(t, u) exists. As there are no payments in state d = dead,
and since the transitions (d, a) and (d, i) are not possible, we obtain Vd(t, u) = 0 for all
0 ≤ u ≤ t. Furthermore, we have Va(t, u) = 0 and Vi(t, u) = 0 for all t ≥ T , because there
are no payments after stopping time T . Thus, we get

Va(t, u) =
∫

(t,T ]
v(t, τ) (1− paa(t, τ, u))Ba(t− u, dτ)

+
∫ T

t

v(t, τ) (1− paa(t, τ, u))Vi(τ, 0)µai(τ, τ − t+ u) dτ ,

Vi(t, u) =
∫

(t,T ]
v(t, τ) (1− pii(t, τ, u))Bi(t− u, dτ)

+
∫ T

t

v(t, τ) (1− pii(t, τ, u))Va(τ, 0)µia(τ, τ − t+ u) dτ .

(4.4)

Inserting the definitions of Ba and Bi, for u = 0 we get

Va(t, 0) =
n2−1∑

k=0,k>t
v(t, k) (1− paa(t, k, 0)) (−p)

+
∫ T

t

v(t, τ) (1− paa(t, τ, 0))Vi(τ, 0)µai(τ, τ − t) dτ ,

Vi(t, 0) =
∫

(t,T ]∩(n1,n2)∩(t+f,t+f+m)
v(t, τ) (1− pii(t, τ, 0)) r dτ

+
∫ T

t

v(t, τ) (1− pii(t, τ, 0))Va(τ, 0)µia(τ, τ − t) dτ .

Since the mapping t 7→ (Va(t, 0), Vi(t, 0)) is continuous at non-integer times t, we can ap-
proximate this mapping in between integer times by a piecewise constant function on a fine
time grid. At integer times t = n we have Va(n−, 0) = Va(n+, 0)− v(t, n) (1− paa(t, n, 0)) p
and Vi(n−, 0) = Vi(n+, 0). We start from (Va(T, 0), Vi(T, 0)) = (0, 0) and use a backward
approximation scheme with sufficiently small steps. When reaching t = 0, we have an approx-
imation of t 7→ (Va(t, 0), Vi(t, 0)) for all t ≥ 0, and in a second step we can now approximate
the Va(t, u) and Vi(t, u) by using numerical integration in formula (4.4). Sometimes actuaries
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further simplify the model by assuming that there is no reactivation (i, a) possible. In this
case, Vi(t, u) can be directly calculated from

Vi(t, u) =
∫

(t,T ]
v(t, τ) (1− pii(t, τ, u))Bi(t− u, dτ) ,

and then Va(t, u) can be directly calculated from (4.4), if necessary by using numerical
integration.

Example 4.5 (critical illness insurance). We continue with Example 3.3. Again suppose
that the transition intensity matrix µ(t, u) exists. Generally, we can use Algorithm 4.3
similarly to Example 4.4. In case the deferred period f is zero, we have Vi(t, u) = 0 and
Vd(t, u) = 0 for all 0 ≤ u ≤ t, and it suffices to solely look at Va(t, u),

Va(t, u) =
T−1∑

k=0,k>t
v(t, k) (1− paa(t, k, u)) (−p)

+
∫ T

t

v(t, τ) (1− paa(t, τ, u)) bai(τ, τ − t+ u)µai(τ, τ − t+ u) dτ

+
∫ T

t

v(t, τ) (1− paa(t, τ, u)) bad(τ, τ − t+ u)µad(τ, τ − t+ u) dτ .

(4.5)

Since the right hand side does not contain any prospective reserves anymore, we just have
to (numerically) integrate the right hand side in order to obtain Va(t, u).

Example 4.6 (long-term care insurance). We continue with Example 3.4. Our model with
state space S = {a = active/healthy, cI = need for basic care, cII = need for medium care, cIII =
need for comprehensive care, l = lapsed/canceled, d = dead} is a so called hierarchical model
since the transition probability matrix p(s, t) has a triangular form. As a consequence, for
each state i in the ordered set [a, cI , cII , cIII , l, d] formula (4.3) depends only on prospective
reserves of states that follow state i in [a, cI , cII , cIII , l, d]. We start with state d for which
we get Vd(t, u) = 0 for all 0 ≤ u ≤ t. Then we continue with state l for which we also have
Vd(t, u) = 0 for all 0 ≤ u ≤ t. At next we calculate VcIII (t, u),

VcIII (t, u) =
∫

(t,∞)
v(t, τ) (1− pii(t, τ, u)) rIII dτ .

Then we go on with cII and calculate VcII (t, u) on the basis of Vd(t, 0), Vl(t, 0), and VcIII (t, 0).
The last steps are the calculations of VcI (t, u) and Va(t, u). While for the general method
according to Algorithm 4.3 we have to solve an integral equation system, we can here simply
use consecutive (numerical) integration in order to obtain the prospective reserves.

Example 4.7 (German private health insurance). We continue with Example 3.5. As there
are no payments in state l and state d, and since we cannot jump back to state a, we have
Vl(t, u) = 0 and Vd(t, u) = 0 for all 0 ≤ u ≤ t, and it suffices to solely look at Va(t, u),

Va(t, u) =
∞∑

k=0,k>t
v(t, k) (1− paa(t, k, u)) (Kx+k − p) .

13



According to the definition of Ba(s, t) in Example 3.5, all medical expenses are paid as lump
sums yearly in advance. This simplification is motivated by the discrete time approach (b)
of section 2.1, where state changes may only occur at the turn of the years. German private
health insurers usually use such a discrete time approach and additionally assume that the
random pattern of states is a Markovian process according to section 2.2. This Markov
assumption is controversial because statistical data shows that withdrawal probabilities de-
crease with the time elapsed since inception of the contract. This effect can be explained
by the fact that policyholders partly lose their ageing provision (the prospective reserve) if
they switch insurance companies. The aging provision rises with increasing contract time
and with it the loss due to lapse. Nevertheless, German private health insurers use the
Markovian approach, and for integer times t and k with t < k we get

1− paa(t, k, u) = P (T (t) > k |Xt = a, Ut = u)
= P (T (t) > k |Xt = a)

=
k−1∏
j=t

P (T (j) > j + 1 |Xj = a)

=
k−1∏
j=t

1p
aa
x+j .

The probabilities 1p
aa
x+j = 1− 1p

al
x+j − 1p

ad
x+j =: 1− ωx+j − qx+j are estimated from statistical

data. Referring to approach (b) in section 2.1, we define the cumulative transition intensity
matrix q(s, t) by qal(m,n) − qal(m,n−) := ωx+n−1, qad(m,n) − qad(m,n−) := qx+n−1, and
q(m,n−)− q(m,n− 1) = 0 for all integer times n ≥ 1.

Remark 4.8 (Discrete time approach). Following approach (b) in section 2.1, let transitions
between different states only happen at integer times. Then q(s, dτ) is zero at non-integer
times. Suppose that also the Bi(s, dτ) are zero at non-integer times, which means that
payments during sojourns in a state are paid either yearly in advance or yearly in arrears.
As transitions shall only occur at the turn of the years, that does not mean a loss of generality.
Let T <∞ be the contract term. Then we can rewrite (4.3) to

Vi(n,m) =
T∑

τ=n+1
v(n, τ) (1− pii(n, τ,m))

(
Bi(τ, n−m)−Bi(τ−, n−m)

)
+
∑
j:j 6=i

T∑
τ=n+1

v(n, τ) (1− pii(n, τ − 0,m))
(
bij(τ, τ − n+m) + Vj(τ, 0)

)
× (qij(n−m, τ)− qij(n−m, τ−)

)
for all integer times 0 ≤ m ≤ n. We obtained a recursion formula that can be easily solved
backwards starting from some n = T and making time steps of −1 till we arrive at t = 0.
Recall that the probabilities pii(n, τ,m) can be easily calculated with the help of (2.3).

Remark 4.9 (Absolute continuity approach). If not only the cumulative transition intensi-
ties are differentiable with respect to their second argument (the transition intensity matrix
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µ exists), but also the Bj(s, t) are differentiable in the second argument with derivatives
bj(t, t− s), then we can alternatively obtain the prospective reserves Vi(t, u) by solving the
system of partial differential equations

∂

∂t
Vi(t, u) = − ∂

∂u
Vi(t, u)− bi(t, u) + ϕ(t)Vi(t, u)

−
∑
j:j 6=i

(
bij(t, u) + Vj(t, 0)− Vi(t, u)

)
µij(t, u) .

(4.6)

See Helwich (2008, Theorem 4.11). If there are no durational effects, then ∂
∂u
Vi(t, u) is always

zero and (4.6) reduces to a system of ordinary differential equations.

5 Premiums
Definition 5.1 (equivalence premium). The equivalence principle states that premiums
should be chosen in such a way that at time zero (the beginning of the contract) the expected
present value of future premiums should equal the expected present value of future benefits.
In mathematical terms that is just the case if and only if

BX0(0, 0) + VX0(0, 0) = 0 .

(Recall that we assumedX0 to be deterministic, and that VX0(0, 0) just contains the payments
strictly after time zero and, thus, we have to add BX0(0, 0).)

The typical way for the calculation of the equivalence premium is as follows. First we
choose the benefits. Second, we choose a premium scheme such as a lump sum premium at
beginning of the contract, a yearly constant premium, or a regular premium that increases
each year by some specified factor. The last step is then to find a scaling factor for the
premiums such that the equivalence principle is met.

The equivalence premium is also called net premium. In practice the real market pre-
miums (gross premiums) additionally comprise a risk load, acquisition costs, administrative
costs, profit margins, and taxes. The risk load is needed since the real sum BX0(0, 0) +A(0)
that an insurer needs at the beginning of the contract (in order to meet all obligations in
respect of the contract) can deviate from the expected one,

BX0(0, 0) + A(0) ?≈ E
(
BX0(0, 0) + A(0)

)
= BX0(0, 0) + VX0(0, 0) .

We suppose for the moment that the valuation basis, that is the probability distribution
of (Xτ )τ≥0 and the discounting factor, is known at the time of inception of the contract.
Then, because of the law of large numbers, BX0(0, 0) +VX0(0, 0) is a good approximation for
BX0(0, 0) + A(0) in case the insurer has a large portfolio of independent insured. We only
have a so-called unsystematic risk that is diversifiable by increasing the size of the portfolio.
In reality, however, the valuation basis may undergo significant and unforeseeable changes
within the time horizon of the contract, thus exposing the insurer to a systematic risk that
is non-diversifiable. There are two ways in which actuaries deal with the systematic risk:
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(a) Adding explicit risk loads on the premium. The equivalence premium is increased by an
amount that reflects the uncertainty of VX0(0, 0). For example, the risk load is chosen
proportional to the variance or the standard deviation, or is derived from quantiles.

(b) Adding implicit risk loads on the premium. In practice this is done by calculating the
equivalence premium on a conservative so-called first order basis, which represents a
provisional worst-case scenario for the future development.

For that part of the systematic risk that is traded on a financial market, e.g. interest rate
risk, we can also derive a risk load from market prices observed in reality. In practice,
we often have a mixture of explicit and implicit risk loads. They must be chosen very
carefully, since the insurer has no right to increase premiums later on if it turns out that
the first order basis was too optimistic. An exception are German private health insurances,
where the regulatory regime allows to adapt premiums under specified circumstances. These
circumstances are given if the average yearly medical expenses or the mortality rates change
significantly. However, a German health insurer still needs carefully chosen risk loads since
the regulatory regime does not allow premium adaptions at the discretion of the insurer but
imposes sharp restrictions.

6 Calculation on the safe side
For all kinds of actuarial calculations, the actuary first has to specify the probability dis-
tribution of the random pattern of states. The insurance literature offers various statistical
methods for the estimation of (past) transition rates from data. For the interested reader we
suggest to consult Haberman and Pitacco (1999, section 4) and Milbrodt and Helbig (1999,
section 3.F). However, history shows that the probability distribution of the random pattern
of states can change significantly within the contract period. For example, the world life
expectancy more than doubled over the past two centuries (see Oeppen and Vaupel (2002)),
and disability and recovery rates are affected by the rapid progress in medical treatment
and fast changing requirements in the world of work. Since many health insurance policies
have rather long contract periods, these changes can have a considerable effect on actuarial
calculations, exposing the insurer to a systematic biometric risk. In this section we discuss
several methods that address this risk.

6.1 Valuation basis of first order
Health insurance pursued on a similar technical basis to that of life insurance is calculated
either with first order valuation bases or with second-order valuation bases. First order
bases include a safety margin whereas second-order ones do not contain any margin and
are assumed to be close to reality. Appropriate first order bases are essential to the health
insurance business if implicit risk loads according to item (b) in section 5 are used. The first
order basis justifies the use of expected present values (see Definitions 4.1 and 5.1) without
explicit safety loading. In general it is not obvious how to include a safety margin in the
transition probabilities. Should we rather overestimate or underestimate mortality rates,
morbidity rates, reactivation rates, and so on?
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According to Helwich (2008, chapter 4.D), the prospective reserves Vi(t, u) can also be
seen as the unique solution of the following Thiele integral equation system (of type 2)

Vi(t, u) =
∫

(t,∞)
Bi(t− u, dτ)−

∫
(t,∞)

Vi(t−, u+ τ − t)ϕ(τ) dτ

+
∑
j:j 6=i

∫
(t,∞)

Rij(τ, u+ τ − t) qij(t− u, dτ) ,
(6.1)

where Rij(τ, v) is the so-called sum at risk associated with a possible transition from state i
to state j at time τ ,

Rij(τ, v) := bij(τ, v) + Vj(t, 0) +Bj(τ, τ)− Vi(τ, v)− (Bi(τ − v, τ)−Bi(τ − v, τ−)) .

(We use the convention Bi(τ, τ−) := 0.) Now suppose that we have another set of actuarial
assumptions ϕ∗(t) and q∗(s, t) with corresponding prospective reserves V ∗i (t, u) and sums at
risk R∗ij(t, u). Let Wi(t, u) := V ∗i (t, u)− Vi(t, u). From (6.1) we get

Wi(t, u) = −
∫

(t,∞)
Wi(τ−, u+ τ − t)ϕ(τ) dτ

−
∫

(t,∞)
V ∗i (τ−, u+ τ − t) (ϕ∗(τ)− ϕ(τ)) dτ

+
∑
j:j 6=i

∫
(t,∞)

(
Wj(τ, 0)−Wi(τ, u+ τ − t)) qij(t− u, dτ)

+
∑
j:j 6=i

∫
(t,∞)

R∗ij(τ, u+ τ − t) (q∗ij − qij)(t− u, dτ) .

For the sum of the second and fourth integral we write

−
∫

(t,r]
V ∗i (τ−, u+ τ − t) (ϕ∗(τ)− ϕ(τ)) dτ

+
∑
j:j 6=i

∫
(t,r]

Rij(τ, u+ τ − t) (q∗ij − qij)(t− u, dτ)

=:
∫

(t,r]
Ci(t− u, dτ) = Ci(t− u, r)− Ci(t− u, t) .

Suppose that the cumulative transition intensities q∗ij and qij have representations of the
form

q∗ij(s, t) =
∫

(s,t]
λ∗ij(τ, τ − s) dΛij(τ) ,

qij(s, t) =
∫

(s,t]
λij(τ, τ − s) dΛij(τ) .

For example, if the transition intensity matrices µ∗ and µ exist, then let the Λij be Lebesgue-
Borel measures and define λ∗ij := µ∗ij and λij := µij. In the discrete time model according
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to approach (b) in section 2.1 and Remark 4.8, we define the Λij as counting measures and
λ∗ij(n,m) := p∗jk(n − 1, n, n − 1 − m,∞) and λij(n,m) := pjk(n − 1, n, n − 1 − m,∞). By
interpreting the Ci as synthetic annuity payments, we can see the integral equation system for
the Wi(t, u) as a Thiele integral equation system of the form (6.1) of a policy with cumulative
annuity payments Ci and zero transition benefits under the valuation basis (ϕ∗, q∗). It has
the unique solution (see Helwich (2008), chapter 4)

Wi(t, u) = −
∑
j∈S

∫
(t,∞)

∫
[0,∞)

v(t, τ)V ∗j (τ−, l) (ϕ∗(τ)− ϕ(τ)) pij(t, τ, u, dl) dτ

+
∑

(j,k)∈J

∫
(t,∞)

∫
[0,∞)

v(t, τ)R∗jk(τ, l) (λ∗jk(τ, l)− λjk(τ, l)) pij(t, τ, u, dl) dΛjk(τ) .

From this equation we can derive a sufficient condition for a valuation basis of first order to
be on the safe side.

Lemma 6.1. If

V ∗j (τ−, l) R 0⇐⇒ ϕ(τ) R ϕ∗(τ) and R∗jk(τ, l) R 0⇐⇒ λ∗jk(τ, l) R λjk(τ, l) (6.2)

for all j, k ∈ S, j 6= k, 0 ≤ l ≤ τ , then we have V ∗i (t, u) ≥ Vi(t, u) for all i ∈ S and
0 ≤ u ≤ t. If the transition intensity matrices µ∗ and µ exist, the second condition in (6.2)
is equivalent to

R∗jk(τ, l) R 0⇐⇒ µ∗jk(τ, l) R µjk(τ, l) ,

and in the discrete time model according to approach (b) in section 2.1 and Remark 4.8, the
second condition in (6.2) has the form

R∗jk(n,m) R 0⇐⇒ p∗jk(n− 1, n, n− 1−m,∞) R pjk(n− 1, n, n− 1−m,∞)

for integer times 0 ≤ m ≤ n.

Example 6.2 (critical illness insurance). In case the deferred period f is zero, we have
Vi(t, u) = 0 and Vd(t, u) = 0 for all 0 ≤ u ≤ t. The only relevant transitions are (a, i) and
(a, d). The corresponding sums at risk are

Rai(τ, v) = bai(τ, v)− Va(τ, v)− (Ba(τ − v, τ)−Ba(τ − v, τ−)) ,
Rad(τ, v) = bad(τ, v)− Va(τ, v)− (Ba(τ − v, τ)−Ba(τ − v, τ−)) .

If the illness benefit li and the death benefit ld are equal, one can show that both Rai(t, u)
and Rad(t, u) are never negative, and the second condition in (6.2) can be written in the
form

µ∗ai(τ, l) ≥ µai(τ, l) , µ∗ad(τ, l) ≥ µad(τ, l) , 0 ≤ l ≤ τ .

If li 6= ld, the sign of R∗ai(τ, l) or R∗ad(τ, l) can get negative for some τ and l. In this case it
is still unclear how to choose the first order basis µ∗. Although we can calculate R∗ai(τ, l)
and R∗ad(τ, l) for fixed µ∗, a change of µ∗ – in order to meet (6.2) – at the same time leads
to a change of R∗ai(τ, l) and R∗ad(τ, l) and, thus, we have the problem that we simultaneously
change both sides of condition (6.2).
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Example 6.3 (German private health insurance). The only relevant transitions are (a, l)
and (a, d). The corresponding sums at risk are

Ral(τ, v) = Rad(τ, v) = −Va(τ, v)− (Ba(τ − v, τ)−Ba(τ − v, τ−)) .

Normally, the mean individual medical expenses Kx+m are non-decreasing with respect to
age x + m, which implies that Va(τ, v) is never negative. Hence, Ral(τ, v) = Rad(τ, v) ≤ 0,
and the second condition in (6.2) has here the form

q∗x+n ≥ qx+n , ω∗x+n ≥ ωx+n , n ≥ 0 .

As already mentioned in Example 6.2, if the sign of the R∗jk(τ, l) in (6.2) can change,
then it is still unclear how to find a safe side valuation basis. The problem is that a change
of λ∗ in order to meet condition (6.2) at the same time changes the condition itself since
the R∗jk(τ, l) are varying as well. This construction problem is formulated in form of an
optimization problem in section 6.3.

6.2 Stochastic biometric valuation basis
Though actuaries usually model the sojourn times in the different states stochastically, they
frequently rely on deterministic prognoses of the transition probabilities. However, the fu-
ture transition probabilities are unknown and, thus, random. Among actuaries there is an
increasing awareness for the corresponding systematic biometric risk, and there is a recent
trend to model transition rates stochastically. The advantage of a stochastic modeling of
transition rates is not only in substituting point estimates by confidence estimates, but also
in the fact that a stochastic model much better describes the diversity of possible future
scenarios than a single scenario like the first order basis.

In order to allow for stochastic transition rates, we need to extent our modeling frame-
work. Let Q be a set of regular cumulative transition intensity matrices q, and let q̃ ∈ Q be a
stochastic cumulative interest intensity matrix on (Ω,F, P ). (Regular means that the matrix
elements qjk(s, ·), j 6= k, are non-decreasing and right-continuous functions that are zero at
time s, qjj = −∑k 6=j qjk, qjj(s, t)−qjj(s, t−) ≥ −1, and in case of qjj(s, t0)−qjj(s, t0−) = −1
the function qjj(s, ·) is constant from t0 on.) As already mentioned above, for each q ∈ Q
there exists a corresponding semi-Markovian process (Xq

t , U
q
t )t≥0 with q as its cumulative

transition intensity matrix (see Helwich (2008), Remark 2.34). We write Aq(t) for the cor-
responding present value (cf. formula (4.2)). If (q, A) 7→ P ((Xq

t , U
q
t )t≥0 ∈ A) is a Markov

kernel (Christiansen (2007) showed that in the Markovian case according to section 2.2 we
basically always have this kernel property), then there exists a random pattern of states
(X̃t, Ũt)t≥0 such that

P
(
(X̃t, Ũt)t≥0 ∈ C

∣∣ q̃ = q
)

= P
(
(Xq

t , U
q
t )t≥0 ∈ C

)
almost sure for all measurable events C and q ∈ Q. We now consider (X̃t)t≥0 to be the
random pattern of states that gives the current state of the policyholder and write Ã(t) for
the corresponding present value. Then one can show that

E
(
Ã(t)

∣∣ (X̃t, Ũt) = (i, u), q̃ = q
)

= E
(
Aq(t)

∣∣ (Xq
t , U

q
t ) = (i, u)

)
19



almost sure for all i ∈ S, u ≥ 0, and q ∈ Q. Thus, the prospective reserve of the extended
model

Ṽi(t, u) := E
(
Ã(t)

∣∣ (X̃t, Ũt) = (i, u), q̃ = q
)

– now a stochastic quantity – can be represented by just replacing q in (4.3) or (6.1) with the
stochastic cumulative transition intensity matrix q̃. In other words, we can calculate Ṽi(t, u)
pathwise with the help of (4.3) or (6.1). The actuary is then interested in the probability
distribution of Ṽi(t, u) in order to

• quantify the systematic mortality risk,

• place premiums and reserves on the safe side,

• estimate future surplus and losses,

• determine solvency reserves,

• value a portfolio of insurance contracts.

First we need to specify the probability distribution of q̃, and then we can get the probability
distribution of Ṽi(t, u) either by analytical methods (in general very difficult) or by Monte-
Carlo simulation. While the second step is mainly a technical problem, the first step is a
really controversial matter. So far, systematic changes of transition rates are not very well
understood. What is worse, health insurance policies can have quite long contract terms,
and so q̃ has to be modeled for the long-term.

Concerning mortality, the most prominent stochastic mortality model was already intro-
duced in 1992 by Lee and Carter (1992). But it took some more years until the scientific
community saw stochastic modeling of future mortality as a central actuarial task; see, for
example, the time-dependent Gompertz-approach of Milevsky and Promislov (2001), the
stochastic Perks-Modell of Cairns et al. (2006), the extension of the Lee-Carter model of
Delwarde, Denuit, and Eilers (2007), or the forward model of Bauer et al. (2008). Apart
from the two state model where the only transition is from active to dead, very few stud-
ies investigated time trends in transition rates for multistate actuarial models. Noticeable
exceptions are Renshaw and Haberman (2000) and Christiansen, Denuit and Lazar (2010).
Renshaw and Haberman (2000) considered the sickness recovery and inception transition
rates, together with the mortality rates when sick, which form the basis of the UK con-
tinuous mortality investigation Bureau’s multistate model. These authors identified the
underlying time trends from the observation period 1975-1994 using separate Poisson GLM
regression models for each transition. Christiansen, Denuit and Lazar (2010) consider a three
state disability model, using a multivariate Lee-Carter type model that is fitted as described
in Hyndman and Ullah (2007), that is, by means of a functional data approach.

6.3 Worst-case method
Basically all stochastic models for transition rates to be found in the literature are in some
way parametric models that are based on a number of a priori assumptions with scarce
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empirical evidence, thus exposing the insurer to a considerable model risk, especially in the
long term. However, often actuaries do not create a complete stochastic model for q̃ but only
estimate confidence sets M ⊂ Q for q̃ ∈ Q. As a result we loose the chance to derive the
probability distribution of Ṽi(t, u), but we gain robustness with respect to misspecification.
Once we have estimated a confidence set M for q̃, we aim to calculate premiums and reserves
in such a way that we are on the safe side with respect to all scenarios in M . From a
mathematical perspective, we are looking for

sup
q∈M

V q(t, u) .

It is often convenient to identify also a corresponding worst case scenario

qWC = argmax
q∈M

V q(t, u) . (6.3)

For example, we can use such a worst-case scenario qWC as a valuation basis of first order, see
section 6.1. The maximality of qWC can often be proven with the help of Lemma 6.1. The
difficulties are more in the construction of a maximal solution. If we are in the Markovian
case of section 2.2, some construction methods can be found in Christiansen (2010a, 2010b).

Example 6.4 (critical illness insurance). Suppose we are in the setting of Example 4.5 with
a deferred period of zero, but with a premium that is paid continuously, that is, Ba(s, t) =
−p (t−s) 1[0,T ](t). If the random pattern of states is a Markovian process, then formula (6.1)
has the form

Va(t) =
∫ T

t

−p dτ −
∫ T

t

Va(τ)ϕ(τ) dτ +
∫ T

t

Rai(τ)µai(τ) dτ +
∫ T

t

Rad(τ)µad(τ) dτ

=
∫ T

t

(
− p− Va(τ)ϕ(τ) + (li − Va(τ))µai(τ) + (ld − Va(τ))µad(τ)

)
dτ ,

or, equivalently,
d
dtVa(t) = p+ Va(t)ϕ(t)− (li − Va(t))µai(t)− (ld − Va(t))µad(t)

with starting value Va(T ) = 0. Let the confidence set M for q be given by the condition

lai(t) ≤ µai(t) ≤ uai(t) , lad(t) ≤ µad(t) ≤ uad(t)

for all t ≤ 0, where lai(t), uai(t), lad(t), uad(t) are confidence bounds that are estimated from
data. Then, according to Christiansen (2010a), any solution of

d
dtVa(t) = p+ Va(t)ϕ(t)− (li − Va(t))µai(t)− (ld − Va(t))µad(t) ,

(µai(t), µad(t)) = argmin
(mai,mad)∈[lai(t),uai(t)]×[lad(t),uad(t)]

{
p+ Va(t)ϕ(t)− (li − Va(t))mai − (ld − Va(t))mad

}

with starting value Va(T ) = 0 is a solution of the optimization problem (6.3). We can find a
solution of this ordinary differential equation system by using numerical standard techniques.
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7 Conclusion
For many different types of health insurances, reasonable actuarial models can be built by
describing the medical history of the policyholder by a multistate jump process. Usually the
random pattern of states of the policyholder is assumed to be Markovian or semi-Markovian.
The probability distribution of the random pattern of states has to be estimated for the
future; in doing so it is convenient to work with (cumulative) transition intensities. The past
showed that this (cumulative) transition intensities can vary significantly within a contract
period, exposing the insurer to a systematic biometric risk. In order to deal with that risk,
an actuary needs reliable prognoses of future demographical developments. The prognoses
can be in the form of point estimates, confidence estimates, or even stochastic processes
for the transition intensities. However, so far very few studies investigated time trends in
transition rates for multistate health models.
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