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Abstract
New solvency regimes in Europe, Solvency II and the Swiss Solvency

Test, necessitate the stochastic modeling of mortality/longevity trend risk.
In this paper, we propose a mortality model which fulfills all requirements
imposed by these regimes. We show how the model can be calibrated and
applied to the simultaneous modeling of mortality and longevity risk for
several populations.

To account for the one-year time horizon of the solvency regimes, we
propose a specification of the model parameters which implies stochasticity
in the long-term mortality trend. This approach spares the common re-
estimation of the mortality model at the end of the one-year time horizon
and, at the same time, provides highly plausible run-off scenarios. Finally, we
explain how expert judgment in form of mortality/longevity threat scenarios
can be used to test and enrich a mortality model.

∗Corresponding Author



1 Introduction
In Europe, new solvency regimes such as of Solvency II and the Swiss Sol-
vency Test (SST) will be introduced in the near future or have already been
introduced. Both regimes are conceptually similar and follow the common
goal of a comprehensive modeling and assessment of the risks insurance com-
panies are exposed to, both in terms of number of risk factors as well as
severity of risks. For a detailed overview and a discussion of the Solvency II
proposals, we refer to Eling et al. (2007), Steffen (2008), and Doff (2008), for
the SST, we refer to the Swiss Federal Office of Private Insurance (2006) and
Eling et al. (2008). A comparison of these solvency regimes also with other
regimes can be found in Holzmüller (2009).

In both solvency regimes, capital requirements can either be computed
via a standard formula or an internal model. However, companies are en-
couraged to develop internal models which cover the company specific risk
profile as closely as possible. In contrast to the scenario based standard
formula, these internal models are generally stochastic and thus are often
more complex than the standard formula. They do share however with the
standard formula the split of the overall risk into several modules for which
separate capital requirements are computed and finally aggregated. For a
life insurance company, one of these modules is devoted to the treatment of
mortality and/or longevity risk.

In this paper, we focus on mortality trend risk which we define as the
risk of unexpected changes in the (long-term) trend underlying the future
mortality evolution. This risk is relevant for insurance products which pay
upon death of the insured person as well as products which pay upon survival.
We are therefore considering a common “trend risk component” in business
exposed to mortality risk as well as in business exposed to longevity risk. The
present analysis excludes catastrophe risk, e.g. the risk arising from natural
disasters, pandemics, etc. or random risk, i.e. the risk of random fluctuations
in a small portfolio of contracts. The former type of risk requires specific
models which differ significantly from trend models, the latter is merely an
application of the binomial distribution once the true underlying mortality
rates are given.

For the simulation of mortality rates, a wide range of different models
has been proposed in the literature and for an overview of different types
of models we refer to Cairns et al. (2008). However, only very few of the
existing models are appropriate for the computation of capital requirements
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under Solvency II or the SST as certain features of these solvency regimes
impose strong requirements on the models.

In this paper, we propose a mortality model which satisfies all these
requirements. It can be applied in basically all relevant settings where the
most complex one is generally seen as the simultaneous modeling of mortality
and longevity risk for several different populations. We discuss all aspects of
the model specification, calibration, and application and provide ideas and
practical advice for the implementation of all three steps.

Our model covers the full range of ages prevalent in typical risk products
and annuity/pension portfolios, and includes cohort effects. The fitting of the
model via Generalized Linear Model (GLM) techniques is simple and fast.
Moreover, the model structure is such that it permits the modeling of devia-
tions from today’s best estimate mortality rates. This overcomes the typical
issue of insufficient data for the calibration of a stochastic mortality model
for an insured portfolio. When modeling mortality deviations, the model can
be fitted to general population data, which is generally sufficiently available,
but still be applied to an insurance portfolio. Five stochastic drivers ensure a
large variety in simulated mortality scenarios and, since they apply differently
to different age groups, the correlation structure of the model is non-trivial.
This is particularly relevant when mortality and longevity risk are consid-
ered simultaneously such that diversification effects between these risks can
be exploited. The correlation in the mortality evolution for adjacent ages
is typically very strong but for larger age differences, this is not necessarily
true. Therefore, since mortality risk is usually relevant for younger ages and
longevity risk is most significant for older ages, a perfect correlation implies
an overestimation of the diversification between mortality and longevity risk.

Under Solvency II and the SST, mortality/longevity risk is to be quan-
tified over a one-year time horizon, i.e. an insurance company needs to hold
enough capital that economic losses which may occur over one year can be
covered with sufficiently large probability. As Börger (2010) points out, this
does not only affect the simulation of one-year-ahead mortality but also
the reassessment of assumptions with respect to future expected mortal-
ity. Hence, a mortality model for solvency purposes does not only have to
be specified such that it provides plausible realized mortality rates but also
realistic changes in the long-term mortality trend assumption. A common
approach to implementing this one-year view is to simulate next year’s mor-
tality rates and then to re-estimate the mortality model based on a data set
which contains the historical data and the newly generated data point. This
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approach is plausible in that an update of the mortality trend assumption
must rely on the new information obtained in the current year. The appli-
cation of this approach, however, can become extremely time consuming, in
particular when several populations are considered, as the model parameters
have to be re-estimated in each simulation path.

In order to avoid these re-estimations, we propose and implement stochas-
tic processes in our model which do not only provide plausible mortality rates
for the current year but, at the same time, imply the corresponding changes
in the (long-term) mortality trend. In other words, the long-term mortality
trend is stochastic. Thus, no re-estimation of the model is required anymore
which is particularly helpful when consistent mortality scenarios for several
populations are required. Moreover, our approach implies consistency be-
tween the one-year view and the run-off view as the model’s run-off view
is obtained via iterative one-year simulations. When re-estimating model
parameters each year, the resulting iterative run-off does generally not co-
incide with any possible run-off simulation without re-estimation, which is
counterintuitive. Another appealing feature of our choice of the stochastic
processes is best estimate consistency. This means that the mortality trend
assumption does not change if next year’s realized mortality rates coincide
with their best estimates today. In case of the re-estimation approach, this
consistency is usually not fully guaranteed. Even though we only implement
our “implicit re-estimation approach” in the model setting of this paper, it
can be applied to basically any mortality model which includes a linear trend
assumption, e.g. in form of a random walk with drift.

An issue which needs careful consideration in any re-estimation approach
is the allowance for reasonably significant trend changes. For instance, when
a (linear) trend is fitted to, say, 50 data points the addition of another data
point – even though it may be quite an extreme one – hardly impacts the
trend. The equal weight assigned to each data point is critical in this case.
Figure 1 illustrates this point for the (partially linear) trend in life expectancy,
i.e. period life expectancy at birth. For all countries, more or less obvious
breaks in the trend can be observed. This underlines the necessity of weight-
ing data points in order to capture the most recent trend slope adequately
when extrapolating trends into the future. Therefore, we include weights in
the fitting of trends which fade out exponentially going backwards in time.

In practice, the simultaneous modeling of mortality for several popula-
tions is inevitable as basically any portfolio of contracts consists of at least
two populations: males and females of the same geographical region/country.
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Figure 1: Period life expectancies at birth of various populations

Often, also portfolios from different countries are combined which automat-
ically adds another two populations for each additional country. Therefore,
after a full description of our one-population model, we extend it to a multi-
population model. We ensure consistency between the mortality evolutions
of different population by modeling a common stochastic (long-term) mor-
tality trend for all populations. Differences between the common trend and
the population specific mortality evolutions are described by additional sta-
tionary and correlated processes.

Under Solvency II, risk is specified as the 99.5% Value-at-Risk and in the
SST, it is the 99% Expected Shortfall. Thus, in both cases only the most
extreme model outcomes are particularly relevant and therefore a mortality
model has to be specified with a focus on tail events. This refers to the
choice of the stochastic processes and the estimation of their parameters
in particular. Stochastic models, which are based on historical data, are
only extrapolations of the historical evolution. This has two implications for
mortality models: When a model is fitted to a (rather short) period of low
volatility without extreme events, the variation in the simulation outcomes
generated by the model will be rather small, too. We tackle this issue by
introducing a volatility add-on which implies a minimum volatility stochastic
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processes cannot undercut. We also show how volatility add-ons can be
calibrated in practice. The second implication of the extrapolative nature of
a mortality model is that, loosely speaking, mortality models only allow for
structural changes in (best estimate) mortality which have been observed in
the past. They do usually not allow for changes due to unprecedented events
like, e.g. the possible finding of a cure for cancer. However, such an event may
well become reality hence representing a major risk for longevity business.
We show how such events can – based on expert judgment – be incorporated
in a mortality model via so-called mortality/longevity threat scenarios. Such
scenarios can also be used to check the plausibility of a model and/or to
adjust the range of simulation outcomes.

The stochastic modeling of mortality for the computation of solvency cap-
ital requirements has already been discussed by other authors. For instance,
Plat (2010) proposes a stochastic model for mortality reduction factors and
thus takes a different approach to updating the best estimate assumption
at the end of the one-year time horizon. However, he pays less attention
to the plausibility of the realized mortality rates, in particular in a model
run-off. Stevens et al. (2010) derive closed form approximations for the cap-
ital requirement under Solvency II in order to avoid the re-estimation of
the mortality model. But their approximations are based on the model of
Lee and Carter (1992) which is in many cases too simple to fulfill the needs
of a mortality risk model for Solvency II or SST purposes, e.g. its corre-
lation structure is trivial. Hari et al. (2008) and Olivieri (2009) use more
sophisticated mortality models but focus on longevity risk and the impact
of systematic (trend) and non-systematic (random) risk. Moreover, Olivieri
(2009) considers a longer time horizon than the one year prescribed under
Solvency II and the SST hence avoiding the modeling of trend changes. The
same holds for Olivieri and Pitacco (2008a,b). Börger (2010) does consider
longevity risk on a one-year time horizon but focuses on the adequacy of the
scenario approach in the Solvency II standard model. Moreover, all these pa-
pers allude only briefly to the simultaneous modeling for several populations
or the inclusion of expert judgment.

The remainder of this paper is organized as follows: In the following sec-
tion, we introduce our mortality model for one population. We describe the
model structure, the fitting process and the simulation of future mortality
scenarios. Implementations of the respective algorithms are provided in the
Appendix. Moreover, we go into the caveats of calibrating a mortality model
for solvency purposes in detail. In Section 3, we then extend our model to
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a multi-population model. Besides the derivation of a stochastic common
trend, this includes a discussion of how differences between different popula-
tions can be modeled. In the subsequent section, we introduce the notion of
mortality/longevity threat scenarios. Such scenarios can be used to incorpo-
rate further judgment, e.g. on unprecedented events, into a mortality model
and its outcomes. Section 5 contains a detailed discussion and assessment of
all risks inherent in our modeling framework. Finally, Section 6 concludes.

2 Mortality Trend Model
In this section, we introduce a mortality (trend) model which is an extension
of the model proposed by Plat (2009). The extension is necessary for two
reasons: modeling of (extreme) long-term trend deviations and modeling
under the one-year view. Both require changes to the underlying parameter
processes. After a comment on data issues, we show how the model can be
calibrated and used for simulating future mortality evolutions. Algorithms
for the model fitting and simulation are provided in the Appendix.

2.1 Data Availability and Modeling of Deviations
In view of simulation, a mortality model should in principle be calibrated to
the historical mortality evolution of the portfolio-specific population. How-
ever, this is not always possible. A population of insured is often not large
enough to allow for a reliable calibration of a mortality model. Moreover, the
data history may not be sufficiently long or data may not yet be available for
ages for which simulation outcomes are required later on, e.g. old ages when
the portfolio currently only consists of annuities in their deferment period. A
population for which sufficient data is typically available is the general pop-
ulation of a country. However, here one is often faced with a strong bias, i.e.
the level of mortality rates in the general population may differ significantly
from the level observed in the population of insured.

Nevertheless, the mortality evolution of the general population is still
useful for generating mortality scenarios for a population of insured. Even
though the mortality rate levels may differ, their variation is likely to be
similar as one population is a subpopulation of the other.1 Thus, it is ade-

1Note again that we disregard any random or small sample risk in the insurance port-
folio.
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quate to calibrate a mortality model to the historical mortality evolution of
the general population and to adjust the level of mortality rates thereafter.
This can be accomplished by simulating mortality deviations, i.e. deviations
of the mortality rates from their best estimates.

To be more specific, let q̂x,t be the best estimate mortality rates according
to our mortality model for the general population for all ages x and future
years t. For each simulation/scenario s, a realization of future mortality rates
qx,t,s is drawn, and (relative) deviations from the best estimate mortality rates
are then computed as

rx,t,s = qx,t,s
q̂x,t

. (1)

By multiplying these deviations by (a set of) best estimate mortality rates
for the population of insured, q̂(insured)

x,t , mortality scenarios for this population
can finally be obtained.

2.2 Model Structure
We propose to model mortality rates qx,t as

logit qx,t = αx + κ
(1)
t + κ

(2)
t (x− xcenter) + κ

(3)
t (xyoung − x)+ (2)

+ κ
(4)
t (x− xold)+ + γt−x ,

where logit(·) = ln(·/(1−·)) is the logit function and x+ = max{x, 0}. In this
specification, the process κ(1)

t describes the general tendency of the mortality
evolution independent of age. The term κ

(2)
t (x− xcenter) reflects the “slope”

of the logit qx,t or the mortality steepness and the parameter xcenter should
be set somewhere in the middle of the age range under consideration. We
set xcenter = 60 as we consider ages between xmin = 20 and xmax = 105.2
The terms κ(3)

t (xyoung−x)+ and κ(4)
t (x−xold)+ account for a larger volatility

typically observed in the mortality rates of young and old ages where the
number of deaths dx,t is low compared to ages around xcenter. Moreover, the
terms allow for flexibility regarding the correlation between the mortality

2Note that this choice does not imply that only rotations around xcenter = 60 are
simulated but the combination of κ(1) and κ(2), in principle, allows a rotation around
every age x.
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evolutions for different ages. We set xyoung = 55 and xold = 85.3 Possible
cohort effects are represented by the process γt−x and, finally, the parameters
αx account for age-dependent differences in mortality which are not covered
by the other components of Equation (2).

Our model structure is fairly close to the one of Plat (2009). However, we
model the logit of the qx,t instead of the logarithm of the central mortality
rates mx,t. We do this because, firstly, the qx,t are the quantities actually
required for the computation of cashflows and secondly, because the logit
function is the canonical link function in a generalized linear model with
binomial distributions. The latter is very practical for parameter estimation
of the model. Even though the modeling of the log mx,t appears to be more
common in the academic literature (see, e.g. the vast literature on the model
of Lee and Carter (1992)), the logit qx,t have already been modeled by other
authors as well, see, e.g. Cairns et al. (2006). A term of Equation (2) which is
not incorporated in the model of Plat (2009) is the term for old ages. We have
conducted analyses of various populations4 and have found this parameter to
be significant. Without this term the volatility of old ages, where very little
data is available, would be underestimated.

2.3 Parameter Estimation
In the following, we describe how all parameters are estimated. For the
remainder of this paper let historical mortality rates qx,t of a given population
be available for ages x = xmin, . . . , xmax and years t = tmin, . . . , tmax. Instead
of estimating αx together with the remaining parameters we set

αx = 1
tmax − tmin + 1

tmax∑
t=tmin

logit qx,t ,

3Obviously, for a different age range or for some specific population it might be reason-
able to use other values for the parameters xcenter, xyoung, and xold. However, the concept
of separating the ages into young, medium and old ages should be preserved.

4We considered the 37 countries available at the Human Mortality Database,
http://www.mortality.org, (as of 17/11/2010): Australia, Austria, Belarus, Belgium,
Bulgaria, Canada, Chile, Czech Republic, Denmark, Estonia, Finland, France, Germany,
Hungary, Iceland, Ireland, Israel, Italy, Japan, Latvia, Lithuania, Luxembourg, Nether-
lands, New Zealand, Norway, Poland, Portugal, Russia, Slovakia, Slovenia, Spain, Sweden,
Switzerland, Taiwan, UK, US, Ukraine.
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i.e. the mean of the logit qx,t over time. This is mainly done for reasons of
parameter uniqueness and computation time.

For the cohort parameters γt−x we neglect the cexcl = 10 oldest cohorts as
well as the youngest cohorts whose present age is below xcutoff = 45 since there
is too little historical data available to reasonably estimate these parameters.5
Together with the κt-parameters we can set up a predictor matrix M that
has full rank by construction, and formulate the corresponding generalized
linear model with logit link function and binomial distributions. This can be
solved by iteratively reweighted least squares, see Nelder and Wedderburn
(1972).6 Binomial distributions obviously require the number of deaths dx,t
and lives `x,t instead of mortality rates qx,t. The reconciliation takes actual
demographic data of the given population (to be used as actual `x,t) into
account.

The underlying equation of the generalized linear model is

logit(qxmin,tmin)− αxmin

logit(qxmin+1,tmin)− αxmin+1
...

logit(qxmax,tmin)− αxmax

logit(qxmin,tmin+1)− αxmin...
logit(qxmax,tmax)− αxmax


≈M



κ
(1)
tmin

κ
(1)
tmin+1

...
κ

(4)
tmax

γtmin−xmax+cexcl...
γtmax−xcutoff


, (3)

where M is the coefficient matrix induced by Equation (2).
Basically, the fitting process could be stopped at this stage. However, we

apply the following operations to the parameters. Note that these operations
do not modify the response, i.e. the resulting logit qx,t. The idea is to have
parameters κ(1) and κ(2) that possess a clear interpretation and are thus
more handy to monitor, e.g. (the negative of) κ(1) evolves very similar to
life expectancy. To this end, let ϕ1 be the slope of the regression line to αx
for x ∈ {xyoung, . . . , xold}. Note that in the following a ← b denotes that a
gets assigned the value of b, which differs from a = b in the sense that, e.g.
a← a+ 1 is reasonable and increases a by 1. For all x and t set

5Regarding the choice of xcutoff = 45, we have observed that the cohort parameters
become stable over time for current ages roughly above age 45.

6For example, MATLAB’s Statistics Toolbox and the freely available statistical software
R provide ready-to-use implementations.
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κ
(2)
t ← κ

(2)
t + ϕ1 ,

αx ← αx − ϕ1(x− xcenter) ,
ϕ2 = αxcenter ,

αx ← αx − ϕ2 ,

κ
(1)
t ← κ

(1)
t + ϕ2 .

Moreover, we apply an additional re-definition of the parameter αx. The
idea is to have best fitting results at most recent past in order to be able to
forecast near future more accurately. We therefore redefine

αx ←
tmax∑
t=tmin

wt∑
t′ wt′

(
logit qx,t − κ(1)

t − κ(2)
t (x− xcenter)

− κ(3)
t (xyoung − x)+ − κ(4)

t (x− xold)+ − γt−x
)
,

where wt = (1 + 1/h)t are weights to emphasize the near past and fade out
the more distant past, see also Sections 2.4.1 and 2.5 for a discussion of the
choice of the weights and the parameter h, respectively.

2.4 Simulation of Future Mortality Rates
Once all parameters have been estimated the time dependent parameters are
projected into future years tmax + 1, tmax + 2, . . . as follows.

2.4.1 Projection of the κ
(1)
t

Reasonably forecasting κ(1) in the context of the one-year view is crucial. It
is κ(1) that is the most important parameter of the model, where important
is both understood in the sense of the ability to explain historical movements
of mortality rates, and in the sense of economic impacts of trend risk.

Figure 3 shows the historical evolution of the process for some example
populations. Just like for life expectancies (see Figure 1) we observe rather
linear trends with changes of the slope over time. Therefore, it is obvious to
model the future evolution of κ(1) as a linear trend with stochastic drift (and
intercept) and some additional noise around this stochastic trend. Following
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the idea of re-estimating the model parameters in the one-year view, we
re-estimate the linear trend yearly based on a data set which includes an
additional realization of κ(1) for the current year. This approach to simulating
κ(1) can be formulated in two different ways which are either more intuitive
or mathematically elegant.

In the first formulation, we fit a regression line by weighted least squares
to the historical κ(1)

t . This line constitutes the current best estimate trend.
To obtain stochastic forecasts we then add a (normally distributed) random
variable on top of the regression line at tmax + 1. This yields the stochastic
forecast at time tmax + 1. Then we recalculate the regression line based on
the κ(1)

t values up to tmax + 1 and repeat the procedure to obtain forecasts
for times tmax + 2, tmax + 3, . . .

For t = tmin + 2, . . . , tmax let `t : [tmin,∞[−→ R denote the regression line
obtained for κ(1)

tmin , . . . , κ
(1)
t with respect to the introduced weights w. The

general form of these weights wt = (1 + 1/h)t is chosen such that∑
t≤tmax

wt∑
t′≤tmax

wt′
= h ,

i.e. the average number of considered historical years is h. Or, to put it
in another way, the years up to h in the past have a cumulative weight of
about 1− 1/e, i.e. roughly 2/3, while the remaining older years only have a
cumulative weight of about 1/e, i.e. roughly 1/3. The value of h is crucial
since it defines how “fast” best estimates will be readjusted from year to
year. This parameter can be considered as a measure of inertia. A large
value of h means that the new data has a comparably small weight and has
little effect when updating best estimates in year tmax + 1. If h on the other
hand is small it is the other way round.

Let ε(1)
t ∼ N (0, 1) be independent and identically, normally distributed.

For t > tmax we assume

κ
(1)
t = `t−1(t) + ε

(1)
t (σ(1) + σ(1)) ,

where σ(1) denotes the sample standard deviation of the empirical errors
κ

(1)
t − `t−1(t) for t = tmin + 2, · · · , tmax weighted by w∗t = (1 + 1/h∗)t, and σ(1)

is an add-on to ensure a reasonably conservative volatility. In Section 2.5 we
discuss the volatility add-on σ(1) and the weights w∗t in more detail.

In the alternative formulation, an autoregressive time series process is
used for the projection of κ(1). Let n = tmax − tmin + 1 be the number of
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years of historical data. Then the linear trend fitting approach is equal to
applying an AR(n) process7

κ
(1)
t = a1κ

(1)
t−n + · · ·+ anκ

(1)
t−1 + εt,

where aj = (1 + 1/h)j(c1 + c2j) for values c1, c2 that can be expressed in
terms of n and h.

In the literature, the process κ(1) is usually projected as a random walk
with drift. However, our approach of a stochastic linear trend offers several
advantages compared to that formulation. First, our κ(1) process is feasible
for the one-year view and the run-off view at the same time and we have
consistency in the sense that the run-off view is nothing else but the iteration
of the one-year view.8 For a random walk with drift, the whole model has to
be re-estimated in the one-year view which, in general, prohibits consistency
with the run-off view and requires significant additional computation time.

Also for the run-off view alone the stochastic linear trend approach seems
more adequate. The random walk with drift has come under some criticism
for yielding, e.g. in the model of Lee and Carter (1992), rather wide confidence
bounds in the short run and implausibly narrow confidence bounds in the
long run. In Figure 2, we see that our κ(1) process overcomes this issue.
Moreover, if the current slope of the linear trend is positive, for the random
walk with drift, this right away excludes the possibility that there might exist
a natural upper bound for life expectancy because the probability that life
expectancy exceeds any given upper bound tends to 1 as t→∞.

2.4.2 Projection of the κ
(2)
t , κ

(3)
t , and κ

(4)
t

Figure 3 presents historical evolutions of the processes κ(2)
t , κ

(3)
t , and κ

(4)
t

for some example populations. We observe that the processes evolve quite
differently for those populations and it does not seem biologically reasonable
to assume any kind of persistent (linear) trend for the projection of these
processes. Therefore, we project κ(2), κ(3), κ(4) as three-dimensional random
walk. The choice of a random walk also fits the idea of the run-off view being

7To be more precise, equality between the two formulations only holds if a fixed number
n of κ(1) values to determine `t for t > tmax are used, i.e. κ(1)

t−n+1, . . . , κ
(1)
t . However, due

to the weights applied in the fitting of `t this is approximately true for a reasonably large
value of n.

8To be more precise, a constant volatility over time is needed for equivalence.

13



κ
(1)
t for h = 3 κ

(1)
t for h = 4

κ
(1)
t for h = 5 κ

(1)
t for h = 6

Figure 2: Comparing the different approaches for modelling κ(1)
t , i.e. the com-

mon random walk with drift approach (black lines) and the stochastic linear
trend approach (green lines) for different values of the weighting parameter
h from 3 to 6
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Figure 3: Parameters κ(1), κ(2), κ(3), and κ(4) for some example populations
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an iterative application of the one-year view which we discussed for κ(1) in
the previous section.

Additionally, for κ(2) we increase the empirical standard deviation by σ(2),
analogous to κ(1), i.e.

κ
(2)
t = κ

(2)
t−1 + ε

(2)
t (σ(2) + σ(2)) . (4)

An analysis of the historical data of various populations reveals mostly signif-
icant and very similar correlations between the ε(2)

t , ε
(3)
t , and ε(4)

t . Therefore,
we carry over these correlations into the projection. The correlations be-
tween κ(1)

t on the one hand, and κ(2)
t , κ

(3)
t , κ

(4)
t , on the other hand, are mostly

insignificant and vary in sign. We thus interpret them as not persistent and
assume independence between κ

(1)
t and the remaining parameters for the

projections.

2.4.3 Projection of the γt−x

The cohort parameter γt−x is projected into the future as imposed stationary
AR(1) process γt−x = a + bγt−x−1 + N (0, σ2), i.e. b ← min{cdamp, b}, for a
positive constant cdamp < 1,9 and the mean is redefined to be 0, i.e. a ←
0. The actual projection starts at cohorts with present age xcutoff . The
concept is analogous to Plat (2009). Furthermore, in order to avoid a jump
at qx,t from tmax to tmax + 1 for x < xcutoff we linearly fade in these cohort
parameters during xcutoff − xmin years. This obviously raises the question
whether cohort effects have a significant impact for the one-year view at all
and whether they should be included in a model for solvency purposes in the
first place. We believe that the cohort parameters are still important in the
initial parameter estimation because they support the correct identification
of all other parameters.

2.5 Volatility Add-ons and Weighting Parameters
In this section we discuss all additional fixed model parameters, i.e. parame-
ters that have to be calibrated once but are not estimated within each model

9Additionally, for the very unlikely case that b < −cdamp we also use b ←
max{−cdamp, b}. The actual choice of cdamp should be rather close to 1. The effect is
that it takes ln(1/2)/ ln(cdamp) years until future expected cohort parameters halve, e.g.
roughly 23 years for cdamp = 0.97.
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run. This includes the volatility add-ons σ(1) and σ(2) for the κ(1) and κ(2) pro-
cesses as well as the weighting parameters h and h∗ which define the weights
w and w∗. For the modeling of long-term trend deviations the parameter h
is the most important one.

The general procedure how these parameters are calibrated is as follows.

• First, the volatility add-on σ(1) which is added to the (observed) volatil-
ity σ(1) is calibrated to historically observed sudden and extreme changes
in the mortality regime, e.g. a sudden drop of life expectancy after a
period of low volatility.10 Because of the low volatility such a drop
would be considered extremely unlikely, e.g. only with a probability of
1 in a million. Currently, in most industrialized countries volatilities
have been rather low over the last decades.11 The volatility add-on σ(1)

ensures that all historically observed short-term deviations were to be
expected with a reasonably high probability that corresponds to the
size of available historical data, i.e. the more data is available the more
it is likely that it contains possible extreme events.

• After σ(1) has been defined it is mainly the parameter h that determines
how volatile simulated long-term trend deviations are. To be more
precise, while for modeling κ(1) as random walk with linear trend it
would only be σ(1) (and σ(1)) that determine the long-term behavior
of κ(1), for our stochastic linear trend additionally h comes into play.
Figure 2 illustrates the impact of the parameter h. Together with σ(1)

the parameter h ensures that all historically observed long-term trend
deviations were to be expected with a reasonably high probability.

• The volatility add-on σ(2) is calibrated analogously to σ(1). However,
this add-on cannot be set to a very large value because otherwise the
correlation of simulated qx,t between very old and very young ages might
become significantly negative which is not plausible.

10Recall that catastrophe risk still is excluded in our considerations. Extreme shock
events like for example the Spanish Flu hence are not taken into account for the calibration
of σ(1). However, the drop in life expectancy of Russian males during the fall of communism
in the beginning of the 1990’s does not belong to the category of catastrophe risk and thus
we take it into account.

11For instance, Bauer and Kramer (2010) show that volatility in the US was significantly
larger during the first half of the previous century than during the second half.
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• Finally, h∗ determines the weighting of the (observed) volatility σ(1)

over time. A small value means that the very recent volatility is con-
sidered with more weight for the calculation of σ(1).

Note that the four parameters cannot be calibrated independently from
each other. For instance, for a larger volatility add-on σ(1), also a larger value
for h would be required/sufficient in order to allow for comparable trend
changes. Thus, σ(1) obviously impacts the calibration of h. Also, changes
of h and h∗ impact the (observed) volatility σ(1) such that the add-on σ(1)

would have to be calibrated again. However, the calibration of σ(1) is only
very weakly dependent on the other parameters, such that the calibration of
this parameter is the best starting point for a potentially iterative calibration
process. We provide an example.

We propose to define σ(1) such that the most severe short-term/one-year
mortality deviations of basically all industrialized countries12 after World
War II are still covered by the model, the most severe one being the drop of
life expectancy of Russian males in the 1990’s during the fall of communism.
By “covered” we mean that deviations should be close to the 99% quantile
with respect to life expectancy, or nearly equivalent with respect to κ(1). We
use the 99% quantile since this corresponds to events that take place once in
100 years, which is roughly the average number of years of available historical
data, some countries offering a lot more years, some only very few years. For
σ(1) = 0.08, which has to be seen in relation to an observed volatility of
σ(1) ≈ 0.06 in Russia at the beginning of the 1990’s, this criterion is met.

For long-term trend deviations it is Dutch males that provide the most
severe historical example, where in the 1950’s and 1960’s life expectancy was
slightly decreasing and volatility has been rather low, and from the 1970’s on
life expectancy began to increase very rapidly.13 Any model that only uses
historical data from 1950 to 1970 fails to forecast this rapid increase of life
expectancy. But, for example, h = 6 (together with σ(1) = 0.08) still sees this
rapid increase at the 95% quantile with respect to life expectancy in 2006.14

For h = 4 the rapid increase would be at the 90% quantile. In contrast to
calibrating σ(1) such that the maximum observed deviation matches a specific

12We considered the countries available at the Human Mortality Database
13The same effect can be seen in various other male populations, but in terms of unex-

pected trend deviation Dutch males provide the most severe example.
14The same holds with respect to the sum of life expectancies (year by year) from the

1970’s until 2006.
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quantile, where about 100 (independent) historical samples of short-term/
one-year deviations are available, the calibration of h to a specific quantile
is more uncertain because it requires at least, say, 10 years to observe a
trend deviation and hence the number of (independent) historical samples
is substantially lower. Slicing history into intervals of length, say, 10 years
yields 10 samples. The “effective” number of samples might be increased
to, say, 20 samples by partly overlapping intervals and considering different
populations, which leads to the 95% quantile. However, given the still small
sample number expert judgment is required, see also discussion in Section 5.

Figures 4 and 5 show the simulated short-term and long-term deviations.
Similarly, σ(2) can be calibrated from the Russian males scenario. A

value of σ(2) = 0.0005 (compared to an observed volatility of σ(2) ≈ 0.0015)
is sufficient and at the same time the correlation between very young and
very old ages stays positive or becomes only very slightly negative for all
populations available from the Human Mortality Database.

Finally, for h∗ we propose a large value, say from 30 on, or even w∗ ≡ 1.
If h∗ is small we would implicitly assume that trend risk is time dependent in
the sense that there might be large differences in trend risk within only very
few years in which the volatility changes. Given the long time horizons when
trend risk manifests itself this is counterintuitive. Thus, a large value for h∗,
and also a significantly large value for σ(1) prevent the typical cyclic model
behavior that throughout periods of low volatility the measured/perceived
risk is continuously decreasing until a regime change “surprisingly” blows up
the risk. Note that factors of 2 and more between observed volatilities of
different regimes can be found in history.

Figure 6 shows some example backtesting results, i.e. life expectancies,
some specific qx,t and parameters, for US males where the model uses data
from 1950 to 1990 and forecasts up to 2006.

3 Simultaneous Modeling of Several Popula-
tions

So far, we have only considered mortality trend deviations of one specific pop-
ulation. In practice, however, one has to model deviations for at least two
populations simultaneously: males and females of the same region/country.
Moreover, portfolios for populations from different countries are often com-
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Figure 4: Backtesting on historical mortality rates of Russian males, using
data from 1959 to 1992, forecasting up to year 2006. The color red shows
historical life expectancies at birth from 1959 to 2006, dark blue are best esti-
mates as calculated from data up to year 1992, green are 1000 realizations of
the run-off view, light blue are the corresponding one-year view realizations.
The upper plot shows outputs with the common random walk approach for
κ(1) without volatility add-ons σ(1) = 0.08 (and σ(2) = 0.0005, h = 6), the
lower one includes the add-ons and uses the proposed process for κ(1)
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Figure 5: Backtesting on historical mortality rates of Dutch males, using data
from 1950 to 1972, forecasting up to year 2006. The color red shows historical
life expectancies at birth from 1950 to 2006, dark blue are best estimates as
calculated from data up to year 1972, green are 1000 realizations of the run-
off view, light blue are the corresponding one-year view realizations. The
upper plot shows outputs with the common random walk approach for κ(1)

without volatility add-ons σ(1) = 0.08 (and σ(2) = 0.0005, h = 6), the lower
one includes the add-ons and uses the proposed process for κ(1)

21



1950 1960 1970 1980 1990 2000
-5.5

-5

-4.5

-4

-3.5

1950 1960 1970 1980 1990 2000
0.06

0.08

0.1

0.12

1950 1960 1970 1980 1990 2000
-0.02

0

0.02

0.04

1950 1960 1970 1980 1990 2000
-0.04

-0.02

0

0.02

0.04

1860 1880 1900 1920 1940 1960 1980
-0.2

-0.1

0

0.1

0.2

20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

logit qx,2006 life expectancy

q30,t q60,t

q75,t q90,t

κ
(1)
t κ

(2)
t

κ
(3)
t κ

(4)
t

γt−x αx

Figure 6: Backtesting on historical mortality rates of US males, using data
from 1950 to 1990, forecasting up to year 2006. The color red denotes his-
torical data, dark blue are best estimates, green are 1000 realizations of the
run-off view, light blue are the corresponding one-year view realizations
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bined to exploit diversification effects. Thus, an extension of the model from
the previous section is indispensable. Note also that, even if mortality sce-
narios for only one or two populations are required, it is generally worthwhile
to consider other populations in the process as well. As Jarner and Kryger
(2008) show these populations can provide additional information and thus
improve forecasts quite substantially and reduce uncertainty of forecasts.

Modeling only next year’s mortality rates for several populations (without
considering the years after) is easily done via the sample correlation matrices
of the innovations of κ(1)

t,p and κ
(2)
t,p where p defines a population.15 However,

these correlations are not necessarily suitable for trend deviations. The cor-
relations of the innovations are usually quite low and hence the resulting
mortality trend deviations would carry over the weak dependency (see also
Plat (2010) and Coughlan et al. (2010)). But this clearly contradicts the
historically observed strong parallelism of mortality evolutions, see Figure 1.

To account for this, in this section we introduce a method that is a special
case of cointegration and an error correction model, respectively. Similar
concepts have been introduced in Li and Lee (2005) and Jarner and Dengsøe
(2009).

3.1 Modeling Differences to Common Trend
Let P be a set of populations p, e.g. as given in Figure 1. For each popu-
lation p we obtain estimated parameters αx,p, κ(1)

t,p , κ
(2)
t,p , κ

(3)
t,p , κ

(4)
t,p , γt−x,p. Ad-

ditionally, by using the combined mortality rates of all populations in P ,
i.e.

qx,t,P =
∑

p∈P Spqx,t,p∑
p∈P Sp

,

where qx,t,p denote mortality rates of population p and Sp is its population
size, we obtain corresponding parameters αx,P , κ(1)

t,P , κ
(2)
t,P , κ

(3)
t,P , κ

(4)
t,P , γt−x,P of

the combined/total population. While for the total population the same
projection of these parameters into the future as already introduced in the
previous sections is used, the projections for each specific population differ.
Consider the differences

15Across populations we only consider the correlations between the most important
parameters, i.e. κ(1)

t,p and κ(2)
t,p . However, the correlation between κ(2)

t,p , κ
(3)
t,p , κ

(4)
t,p of the same

population also induces non-trivial correlations between κ(3)
t,p , κ

(4)
t,p of different populations.
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Figure 7: Differences κ(1)
t,p − κ

(1)
t,P for various populations p. The evolutions

of κ(1) are very similar to life expectancy. The maximum difference of about
1.5 between Japanese females and Portugal males in 2006 corresponds to a
gap in life expectancy of about 10 years

κ
(1)
t,p − κ(1)

t,P ,

which are shown in Figure 7. Obviously, the κ(1)
t,p of a population p might

deviate from the κ(1)
t,P quite substantially, but on the long-term we can expect

that the differences will not become arbitrarily large, see also Jarner and
Kryger (2008). The aim of the following is to estimate how large the differ-
ences might become, what the expected long-term difference is, and how fast
convergence to the long-term difference could be expected. We model the
differences as AR(1) processes

κ
(1)
t,p = κ

(1)
t,P + ap + bp(κ(1)

t−1,p − κ(1)
t−1,P ) + εt,p , (5)

where εt,p are N (0, σp) distributed and serially independent. Across popu-
lations we allow for dependencies via the sample correlation matrix of the
εt,p.
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The typical size of the difference κ(1)
t,p−κ(1)

t,P is defined by the parameters bp
and σp, ap/(1− bp) defines the expected long-term difference, and bp defines
how fast the expected long-term difference is approached.

Note that this can be considered as a special case of cointegration (see,
e.g. Engle and Granger (1987)), where we explicitly use the population sizes
Sp for each population as well as the (negative of the) total population size
as cointegration vector. Furthermore, all coefficients corresponding to popu-
lations’ year-to-year differences are zero.

We mention some refinements of the estimators ap, bp, σp that should be
used. Having a too small dataset for example might yield an estimator bp > 1
(or even bp < −1) such that (best estimate) forecasts diverge. An upper
bound cdamp < 1 should be used. Furthermore, the expected long-term dif-
ference ap/(1 − bp) should be monitored, obviously in particular if bp has
been modified beforehand, ap also has to be modified. Several methods, e.g.
a (weighted) average of the differences κ(1)

t,p − κ(1)
t,P can be used to determine

various values for ap/(1− bp). But eventually, since the data basis for these
kind of long-term assumptions is very small, expert judgment is necessary. In
case P contains populations with very different trend evolutions, e.g. Russia
and some Eastern European populations vs. US and Western European pop-
ulations, where the latter show very constant improvements while the former
remain pretty much at the same level, it becomes even more uncertain what
the expected long-term differences are. Again, expert judgment is needed in
such cases.

In Table 1 we present estimated long-term differences based on 4 different
methods using historical data from 1950 to 2006:

1. Directly use the estimated value ap/(1− bp).
2. Use (unweighted) average of the differences.

3. Use w-weighted average of the differences, i.e. weighted by w.

4. Extrapolate the current linear trend (w-weighted linear regression) of
the differences 5 years into the future.

The first method might right away be appropriate if enough data is available
but note that usually this is not the case. For example, currently there
appears to be a linear trend in the evolution of the differences of Japanese
females. Here, only lots of additional future years might reveal the “true
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Table 1: Expected long-term differences κ(1)
t,p − κ(1)

t,P based on 4 methods as
described in the Section 3.1. The set P contains the populations listed in
Figure 7

Population 1. 2. 3. 4.
US males 0.339 0.394 0.347 0.343

US females -0.314 -0.251 -0.144 -0.037
Japan males -0.067 -0.036 -0.064 -0.053

Japan females -1.298 -0.726 -0.940 -1.009
Australia males 0.629 0.472 0.223 0.045

Australia females -0.488 -0.470 -0.550 -0.619
Dutch males 0.087 0.056 0.090 0.048

Dutch females 0.257 -0.542 -0.327 -0.272
Swedish males -0.200 -0.212 -0.238 -0.298

Swedish females -0.762 -0.806 -0.717 -0.682
UK males 0.653 0.489 0.346 0.241

UK females -0.296 -0.300 -0.304 -0.331

behavior”. A continuation of the linear trend on the long-term seems very
unlikely. Thus, the fourth method seems most appropriate for Japanese
females. For UK females, where the differences remain pretty much constant
over time, the 4 methods produce very similar results.

Also, to avoid the immediate start of reversion of the process to its mean
(in the case of best estimate forecasts) the current short-term linear trend
might be continued for some years until the process reverts to its mean.

Algorithm 4 in the Appendix presents the multi-population model.

3.2 Recalibration of the Model to Common Trend
In Section 2.5 we calibrated the parameters σ(1) and h by the principle that
σ(1) takes into account all historically observed short-term deviations, and h
takes into account historically observed long-term trend deviations.

In this section we discuss how these parameters have to be modified for
the multi-populations model, i.e. the extension of the model to several pop-
ulations as described in the previous section.

If we apply the ideas of Section 2.5 to the total population we come across
the very same years where extreme scenarios can be found. The short-term
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mortality deviations of Russian males are also present for Ukrainian males
and other populations, such that these deviations are carried over to the
common trend in a weaker form. For the common trend using historical data
from year 1959 on leaves 24 of the 37 countries available at the Human Mor-
tality Database.16 This leaves around 50 years of historical data, such that
σ(1) = 0.02 (while σ(1) = 0.015) shows the deviations during the beginning
of the 1990’s at the 98% quantile.

For the calibration of h we observe the same “inflection point” in the
common trend in the beginning of the 1970’s but in a weaker form. A value
of h between 4 and 5 would see the deviations between the 90% and 95%
quantile. These values should be understood as an example how the model
can be calibrated, see discussion in Section 5.

If we compare the multi-populations model (with h = 4 and σ(1) = 0.02)
with the single-population model (with h = 6 and σ(1) = 0.08) we typically
observe improved forecasts while at the same time the uncertainty of forecasts
is slightly reduced, see Figure 8 for a typical example.

4 Mortality/Longevity Threat Scenarios
For the computation of risk measures such as the 99.5% Value-at-Risk or
the 99% Expected Shortfall, we are particularly interested in tail mortal-
ity/longevity scenarios. However, mortality models are typically calibrated
to data series which rarely contain such extreme scenarios. Thus, a fair
amount of uncertainty remains whether tail scenarios generated by a mor-
tality model are adequate and sufficiently severe. Therefore, we recommend
using epidemiological or demographic expert judgment to check the appro-
priateness of extreme model outcomes and – if necessary – to modify the
model. Such expert judgment can be implemented as unlikely but possible
severe scenarios which we refer to as mortality/longevity threat scenarios.
Examples for such threat scenarios are the mortality or longevity stress sce-
narios in the Solvency II standard model, even though their adequacy has
been questioned (cf. Börger (2010)).

Given some specific threat scenario, one needs to answer the question
16From the 37 countries available at the Human Mortality Database for the 5 countries

Chile, Israel, Luxembourg, Slovenia, Taiwan there is no historical data available back
until 1959. Furthermore, for the countries Belarus, Estonia, Germany, Latvia, Lithuania,
Poland, Russia, Ukraine there is no data available back until 1950.
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Figure 8: Comparing outcomes of the multi-populations model (above, 4.
method, h = 4 and σ(1) = 0.02) to the single-populations model (below,
h = 6 and σ(1) = 0.08) for Japanese males
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Figure 9: Parameters κ(1) of some populations p and the total population P

whether the scenarios from the stochastic model should already cover the
threat scenario in terms of severeness. If this should be the case but is not,
the model needs to be modified. For instance, larger volatility add-ons or
a smaller weighting parameter h might be calibrated to the threat scenario
instead of the historical data.

In case the calibration of the stochastic model seems appropriate the
threat scenario can still be used to enrich the model outcomes, e.g. if the
stochastic model’s structure does not permit the generation of such a sce-
nario. If the risk measure is the Expected Shortfall, the threat scenario could
simply be added to the set of scenarios generated by the mortality model.
Obviously, here the number of threat scenarios, i.e. the probability assigned
to each threat scenario is crucial.

If risk is measured by the Value-at-Risk, the simple inclusion of a threat
scenario into the set of scenarios from the stochastic model does not seem
a valid approach. Threat scenarios – no matter how severe they may be
compared to the scenarios from the stochastic model – only would shift the
Value-at-Risk at 99.5% very slightly (as long as their occurrence probability
is lower than 0.5%). Thus, in order to assign appropriate weight to the
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threat scenario it seems more reasonable to increase the volatility add-ons or
decrease the parameter h until the most severe scenarios from the model are
similar to the desired threat scenarios.

5 Remaining Risks
When modeling mortality or longevity risk one thing is for sure, nothing is
absolutely certain. No matter how sophisticated a mortality model is, there
are always some risks left which can roughly be divided into two classes,
risks linked to the mortality model itself and risks that arise from a certain
application of the model. In this section, we summarize these risks for our
modeling framework and discuss their magnitude and relevance.

The most relevant risk in our framework certainly is the parameter risk
contained in the weighting parameter h. This parameter determines the
magnitude of potential changes in the long-term mortality trend within one
year. Therefore, special attention has to be paid to the calibration of this
parameter. Slightly less crucial but still important are the volatility add-
ons σ(1) and σ(2) as well as the volatility weighting parameter h∗. Also
these parameters have to be chosen carefully. In comparison, we regard the
uncertainty around all other parameters as less critical.

We consider the assumption that simulated realizations of next year’s
mortality rates determine the changes in the future mortality trend to be the
main modeling risk as it may be very different from reality. For instance, if
a cure for cancer was found in a year with a strong flu wave the long-term
mortality trend and the realized mortality rates should move in opposite
directions. Such situations will not be captured by the model proposed in
this paper. However, usually, changes in the mortality trend have a much
more significant impact on capital requirements than the annual random
variation of mortality rates (excluding short-term shock events). Therefore,
we consider this risk not to be material.

One of the important application related risks is the modeling of depen-
dencies between different populations. Rather parallel mortality evolutions
have been observed in the past for all industrialized countries but this does
not have to hold true for the future. In the case of mortality or longevity
risk only, a strong trend dependence as implemented in our multi-population
model is a conservative assumption. If mortality and longevity risk are com-
bined for the different populations with diverging long-term trends this would
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be critical. Still, such a scenario can be accounted for by an appropriate mor-
tality/longevity threat scenario.

Basis risk may be seen in the use of mortality data for the general pop-
ulation when assessing mortality or longevity risk in a portfolio of insured.
Even if the model described the future mortality evolution of the general
population perfectly it is uncertain whether the adoption of mortality devi-
ations to a population of insured would be adequate. However, we consider
this risk to be limited because the insured are a subpopulation of the general
population and thus, it is unlikely that mortality trends in the tail of the dis-
tribution are different for both populations. Therefore, we think it would be
inappropriate to assume that insured mortality could diverge from general
population mortality until infinity (see also Cairns et al. (2010)). Conse-
quently, the long-term mortality trend of the insured should be very similar
to the one for the general population and thus, we regard the adoption of
mortality deviations for the general population to be appropriate.

Another caveat arises from the delayed availability of data. In nearly
every country, mortality rates are currently only available with a time lag of
at least two years. For the purpose of only modelling deviations from best
estimates we propose to shift the historical data up to the present year. While
this obviously introduces a shift to the absolute values of simulated future
mortality rates, the relative deviations remain mostly unaffected. Recall that
the weighting parameter h∗ is supposed to be large such that a time lag of
only a few years does not substantially change the measured volatilities.

Finally, we are making the assumption that mortality trends or tables are
updated annually. In practice, this is usually not the case. Trend assumptions
get updated only after some years of providing new information have passed
hence leading to larger adjustments than have been allowed for in the model.
However, we see this as a shortcoming of out-of-date mortality tables and
hence, it should be accounted for by loadings in the mortality tables.

6 Conclusion
A comprehensive risk model for mortality and longevity meeting the Solvency
II and SST criteria requires an adequate stochastic mortality model. In
particular the one-year time horizon and a focus on extreme trend deviations
deserve special attention. An adequate stochastic model needs not only fulfill
the specific Solvency II and SST requirements but has to be efficient and
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sufficiently simple to maintain as well.
In this paper, we proposed, calibrated, and applied a mortality model

which meets these criteria. It covers a wide range of ages which makes it suit-
able for determining both mortality and longevity risk capital. Furthermore,
it includes cohort effects and has five stochastic drivers hence offering a great
variability in the mortality scenarios it generates. A correlation structure be-
tween different ages has been implemented which makes the model applicable
to a simultaneous assessment of mortality and longevity risk. Moreover, we
discussed why margins need to be incorporated in the model and why weights
have to be applied in the fitting of several model parameters. We also showed
how these margins and weights can be specified and calibrated based on his-
torical data of rather extreme mortality events/evolutions.

In order to respect the one-year time horizon, we followed the idea of
a yearly re-estimation of the model. However, we specified the stochastic
processes in our model such that the re-estimation is done implicitly, i.e. a full
re-estimation of the model is not required which reduces computational time
significantly. The model run-off is then obtained as an iterative application
of the one-year view and we outlined the advantages of our specification of
the stochastic trend process compared to the commonly used random walk
with drift process.

A highly relevant issue from a practical point of view is the simultane-
ous mortality modeling for several populations. Therefore, we extended our
model to a multi-population model where the mortality evolution for each in-
dividual population is driven by a combination of changes in a common trend
and random fluctuations around this common trend. We showed that, even if
risk is to be quantified for only one population, multi-population modeling is
worthwhile. The additional data from other populations helps in determining
the long-term mortality trend and thus typically reduces uncertainty.

Finally, we explained how expert judgment in form of mortality/longevity
threat scenarios can be used to check the plausibility of a mortality model
and the scenarios it generates. Moreover, these threat scenarios can also
be applied to enrich the simulations by scenarios which the structure of the
stochastic model does not allow for.
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A Algorithms
Algorithms 1 to 5 present the model described in this paper in full detail.
When using 50 years of historical data an implementation of these algorithms
typically results in running times of a few seconds for the single-population
model and a few minutes for the multi-populations model with 50 popula-
tions.



Algorithm 1: Main algorithm to compute stochastic future mortality
rates of one population. The subroutines for fitting and forecasting are
given as Algorithms 2 and 3

Input: Historical mortality rates qx,t of a given population for
x = xmin, . . . , xmax, t = tmin, . . . , tmax, year tfc > tmax up to
which forecasts are generated, argument view to calculate
one-year view or run-off view

Output: ns many realizations of future mortality rates qx,t,s (one-year
view/run-off view) and future best estimate mortality rates
q̂x,t for x = xmin, . . . , xmax, t = tmax + 1, . . . , tfc and
s = 1, . . . , ns

Main(q, tfc, view) begin
define function fv : (x, t) 7→ logit−1

(
αx + κ

(1)
t + κ

(2)
t (x− xcenter)

+κ(3)
t (xyoung − x)+ + κ

(4)
t (x− xold)+ + γt−x

)
, where v denotes the

parameters α, κ(1), κ(2), κ(3), κ(4), γ;
v̂ = (α̂, κ̂(1), κ̂(2), κ̂(3), κ̂(4), γ̂)←Fit(q);
for s = 1, . . . , ns do

foreach x and t ≤ tmax do qx,t,s ← qx,t;
v ←Forecast(v̂, tfc, view);
foreach x and t > tmax do qx,t,s ← fv(x, t);

v̂ ←Forecast(v̂, tfc, det);
foreach x and t > tmax do q̂x,t ← fv̂(x, t);

end



Algorithm 2: Parameter fitting
Input: Mortality rates qx,t for x = xmin, . . . , xmax, t = tmin, . . . , tmax

(these age and year ranges are assumed to be implicitly
defined by the qx,t received as an argument)

Output: Estimated parameters α, κ(1), κ(2), κ(3), κ(4), γ

Fit(q) begin
nx ← xmax − xmin + 1, nt ← tmax − tmin + 1;
nv ← nx + 5nt − 1− cexcl − (xcutoff − xmin);
foreach x do αx ← n−1

t

∑tmax
t=tmin

logit qx,t;
set r ∈ Rnxnt ,M ∈ Rnxnt×nv , v ∈ Rnv according to Equation (3), i.e.
response vector r (with offset induced by αx), predictor matrix M ,
and parameter vector v;
solve the corresponding generalized linear model r ≈Mv for v by
iterative reweighted least squares to obtain parameters
κ

(1)
t , κ

(2)
t , κ

(3)
t , κ

(4)
t and γt−x for each age x and year t;

ϕ1 ← slope of regression line to αx for x ∈ {xyoung, . . . , xold};
foreach t do κ

(2)
t ← κ

(2)
t + ϕ1;

foreach t do κ
(1)
t ← κ

(1)
t + αxcenter ;

foreach x do
αx ←

(∑tmax
t′=tmin

wt′
)−1∑tmax

t=tmin
wt

(
logit(qx,t)− fv(x, t) + αx

)
;

end



Algorithm 3: Parameter forecasting
Input: Parameters α, κ(1), κ(2), κ(3), κ(4), γ, year tfc > tmax up to which

forecasts are generated (note that tmax is assumed to be
implicitly defined by the κ vectors), and an argument
det,one-year or run-off to specify deterministic, one-year view
or run-off view outputs

Output: One realization of parameter forecasts
Forecast(α, κ(1), κ(2), κ(3), κ(4), γ, tfc, det/stoch) begin

define function fv : (x, t) 7→ αx + κ
(1)
t + κ

(2)
t (x− xcenter)

+κ(3)
t (xyoung − x)+ + κ

(4)
t (x− xold)+ + γt−x;

`t ← regression line to κ(1)
tmin , . . . , κ

(1)
t for t = tmin + 1, . . . , tmax with

respect to weights w;
σ(1) ← sample standard deviation of the errors `t−1(t)− κ(1)

t for
t = tmin + 2, . . . , tmax weighted by w∗;
estimate parameters a(γ), b(γ), σ(γ) of
γt−x = a(γ) + b(γ)γt−x−1 +N (0, σ(γ)) (truncation zeros are ignored);
σ(2) ← sample standard deviation of κ(2)

t − κ(2)
t−1;

C ← covariance matrix of the three innovation vectors
κ

(2)
t − κ(2)

t−1, κ
(3)
t − κ(3)

t−1, κ
(4)
t − κ(4)

t−1;
D ← diag(1 + (σ(2))2/

√
C1,1, 1, 1);

C ← Cholesky decomposition of DCD;
if deterministic outputs are requested then

for t = tmax + 1, . . . , tfc do
κ

(1)
t ← `tmax(t), κ(2)

t ← κ
(2)
t−1, κ(3)

t ← κ
(3)
t−1;

κ
(4)
t ← κ

(4)
t−1, γt−xmin ← 0;

else
for t = tmax + 1, . . . , tfc do

if t = tmax + 1 or run-off view is requested then draw ε(1),
ε(2), ε(3), ε(4) i.i. from N (0, 1) else ε(1), ε(2), ε(3), ε(4) ← 0;
(ε(2), ε(3), ε(4))← (ε(2), ε(3), ε(4))C;
κ

(1)
t = `t−1(t) + ε(1)(σ(1) + σ(1));
κ

(2)
t ← κ

(2)
t−1 + ε(2), κ(3)

t ← κ
(3)
t−1 + ε(3), κ(4)

t ← κ
(4)
t−1 + ε(4);

`t ← regression line to κ(1)
tmin , . . . , κ

(1)
t with respect to w;

for t = tmax + 1− xcutoff + xmin, . . . , tfc do
if run-off view is requested then draw ε(γ) from N (0, 1)
else ε(γ) ← 0 γt−xmin ← min{b(γ), 1}γt−1−min + ε(γ)σ(γ)

(note that the γ actually are linearly faded in within
xcutoff − xmin years to avoid a jump at tmax – also in the
deterministic case – we omit the corresponding assignments
for better readability);

end



Algorithm 4: Main algorithm to simultaneously compute stochastic
future mortality rates of several populations

Input: Historical mortality rates qx,t,p of given populations p ∈ P for
x = xmin, . . . , xmax, t = tmin, . . . , tmax, year tfc > tmax up to
which forecasts are generated, argument view to calculate
one-year view or run-off view

Output: Realizations of future mortality rates qx,t,p,s and future best
estimate mortality rates q̂x,t,p for p ∈ P, x = xmin, . . . , xmax,
t = tmax + 1, . . . , tfc and s = 1, . . . , ns

Main(q, tfc, view) begin
set function fv : (x, t) 7→ logit−1

(
αx + κ

(1)
t + κ

(2)
t (x− xcenter)

+κ(3)
t (xyoung − x)+ + κ

(4)
t (x− xold)+ + γt−x

)
;

q·,·,P ← combined mortality rates of all p ∈ P ;
v̂P = (α̂·,P , κ̂(1)

·,P , κ̂
(2)
·,P , κ̂

(3)
·,P , κ̂

(4)
·,P , γ̂·,P )←Fit(q·,·,P);

foreach p ∈ P do
v̂p = (α̂·,p, κ̂(1)

·,p , κ̂
(2)
·,p , κ̂

(3)
·,p , κ̂

(4)
·,p , γ̂·,p)←Fit(q·,·,p);

for s = 1, . . . , ns do
foreach x and t ≤ tmax do qx,t,P,s ← qx,t,P ;
foreach p ∈ P, x and t ≤ tmax do qx,t,p,s ← qx,t,p;
vP ←Forecast(v̂P , tfc, view);
(vp)p∈P ←Multi-forecast((v̂p)p∈P , vP , tfc, view);
foreach x, p and t > tmax do qx,t,p,s ← fvp(x, t);

(v̂p)p∈P ←Multi-forecast((v̂p)p∈P , v̂P , tfc, det);
foreach x, p and t > tmax do q̂x,t,p ← fv̂p(x, t);

end



Algorithm 5: Parameter forecasting for several populations
Input: Analogous to Algorithm 3 for each population p and P
Output: One realization of parameter forecasts for each population p
Multi-forecast((vp)p∈P , vP , tfc, det/stoch) begin

C(1) ← Cholesky decomposition of corr
(
κ

(1)
t,p − `t−1,p(t)

)
, i.e. the

correlation matrix of κ(1)
t,p − `t−1,p(t) across populations;

C(2) ← Cholesky decomposition of corr
(
κ

(2)
t,p − κ(2)

t−1,p

)
;

foreach p ∈ P do
estimate parameters a(1)

p , b
(1)
p , σ

(1)
p of κ(1)

t,p = κ
(1)
t,P + a

(1)
p

+b(1)
p (κ(1)

t−1,p − κ(1)
t−1,P ) +N (0, σ(1)

p ) (modified according to
Section 2.5 if necessary);
estimate parameters a(γ)

p , b
(γ)
p , σ

(γ)
p of

γt−x,p = a
(γ)
p + b

(γ)
p γt−1−x,p +N (0, σ(γ)

p );
σ

(2)
p ← sample standard deviation of κ(2)

t,p − κ(2)
t−1,p;

Cp ← covariance matrix of the three innovation vectors
κ

(2)
t,p − κ(2)

t−1,p, κ
(3)
t,p − κ(3)

t−1,p, κ
(4)
t,p − κ(4)

t−1,p;
D ← diag(1 + (σ(2)

p )2/
√
Cp,1,1, 1, 1);

Cp ← Cholesky decomposition of DCpD;
if deterministic outputs are requested then

for t = tmax + 1, . . . , tfc do
κ

(1)
t,p ← κ

(1)
t,P + a

(1)
p + b

(1)
p (κ(1)

t−1,p − κ(1)
t−1,P ), κ(2)

t,p ← κ
(2)
t−1,p;

κ
(3)
t,p ← κ

(3)
t−1,p, κ

(4)
t,p ← κ

(4)
t−1,p, γt−xmin,p ← 0;

else
for t = tmax + 1, . . . , tfc do

draw (ε(1)
p , ε

(2)
p )p∈P i.i. (0, 1)-normally distributed;

(ε(1)
p )p∈P ← (ε(1)

p )p∈PC(1), (ε(2)
p )p∈P ← (ε(2)

p )p∈PC(2), where
(ε(1)
p )p∈P denotes the row vector of ε(1)

p by populations;
foreach p ∈ P do

draw ε(3), ε(4) i.i. (0, 1)-normally distributed;
(ε(2)
p , ε(3), ε(4))← (ε(2)

p , ε(3), ε(4))Cp;
κ

(1)
t,p ← κ

(1)
t,P + a

(1)
p + b

(1)
p (κ(1)

t−1,p − κ(1)
t−1,P ) + ε

(1)
p

κ
(2)
t,p ← κ

(2)
t−1,p + ε

(2)
p , κ(3)

t,p ← κ
(3)
t−1,p + ε(3),

κ
(4)
t,p ← κ

(4)
t−1,p + ε(4);

for t = tmax + 1− xcutoff + xmin, . . . , tfc do
draw ε(γ) from N (0, 1);
γt−xmin ← min{b(γ), 0.97}γt−1−xmin + ε(γ)σ(γ);

end




