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Abstract

We introduce an estimation method for multivariate Lévy processes, that can be used to model the development
of different stock prices simultaneously. The method is based on historical observations that are available in discrete
form. We choose a high frequency framework with a time horizon that tends to infinity. We provide estimators for the
covariance matrix of the diffusion part, for the drift vector and for a specific transformation of the Lévy measure.
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1. Introduction

In financial mathematics stochastic processes are used to describe stock price developments. The increments of
the logarithmic stock price are called log returns and are used for statistical investigations. The classical approach
in the famous Black-Scholes model, introduced in Black and Scholes (1973), is to use just a Brownian motion to
describe the logarithmic price development, so that the log returns are normally distributed. But various empirical
studies revealed that this approach does not always match to the real data (cf. Mandelbrot, 1963; Cont, 2001). In
particular the log returns of most financial data are not normally distributed, since they are skewed and have more
probability mass in the tails (cf. Schoutens, 2003, Chapter 4).

One possibility to improve the modeling is using a Lévy process instead of the Brownian motion. Lévy processes
are a natural generalization of the Brownian motion and form a class of stochastic processes that have stationary and
independent increments and are stochastically continuous. They are a combination of a Brownian motion and a pure
jump process. According to Schoutens (2003, p.43), Lévy models are much more flexible, since they can take the
skewness and the excess kurtosis into account. The jump process can be used to model seldom and sudden large
movements of the stock price. These asymmetric jumps can cause asymmetric and heavy tails in the distribution of
the log returns. In most cases the distribution of Lévy processes is not easy to handle, because it is not given in a
closed form. However, it is possible to work with the characteristic function, since it can be explicitly represented and
only depends on the so called Lévy triplet. The Lévy triplet consists of the variance of the Brownian motion, a drift
term and the so called Lévy measure that describes the jump behavior.

An important task is to estimate the Lévy triplet out of historical data. Usually, in Finance the data are only
available at finitely many observation points. This fact is the main issue of the estimation. To recognize the jumps in
the stock price development, it would be necessary to observe the process continuously. That means, we have a so
called ill-posed inverse problem, which is a situation, where completely different input parameters lead to output data
that look almost the same. Hence, it is difficult to apply standard methods like maximum likelihood procedures (cf.
Honoré (1998), Cont and Tankov (2004, Chapter 7.2.1), Aït-Sahalia (2004))

In the recent years two different frameworks for the estimation of stochastic processes have been established,
low frequency and high frequency data. In the context of asymptotic statistics low frequency means that the distance
between two estimation points is asymptotically fixed. So an increasing sample size only leads to an increasing time
horizon. For Lévy processes this means that a classical statistical situation with i.i.d. samples, which are independent
of the sample size, is existent (because of the stationary and independent increments). E.g. in Neumann and ReiSS
(2009), Gugushvili (2009) and Riesner (2006) method for univariate processes are presented using the low frequency
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framework. The other framework that has been established is the high frequency setting. In the context of asymptotical
statistics high frequency means that the distance between two observation points asymptotically tends to zero. The
advantage of this approach is that it is easier to distinguish asymptotically between diffusion and jumps. The drawback
is that the framework is outside the classical statistical situation. The increments are i.i.d., however they depend on
the sample size n, so a triangular array is of random variables is given.

In Gegler and Stadtmüller (2010) we have introduced an estimation method for univariate Lévy processes based
on the high frequency framework. However, in Finance the development of different stock prices and their interactions
are often considered simultaneously. Portfolios usually depend on different assets and a lot of options have more than
one underlying. So we want to extend this method to multivariate Lévy processes. In Gegler and Stadtmüller (2010)
the strategy is to use a threshold to distinguish between diffusion and jumps. In the multivariate case we use a critical
region, instead. If an increment is located outside the critical region we consider it as a jump, if it is located within
the critical region we assign it to the continuous part. Then, we estimated the diffusion and jump characteristics
separately. The critical region has the form of an ellipsoid, since the level curve of density of the normal distribution
forms an ellipsoid, too.

As far as we know, in literature the estimation of the complete characteristics of a general multivariate Lévy
process based on high frequency data has not been considered yet. In Gobbi and Mancini (2010, 2007) related
problems are considered. A method is introduced to separate the integrated covariance of the diffusion from the
co-jumps. In Barndorff-Nielsen and Shephard (2004a,b) the concept of realized bipower covariation is introduced
for multivariate semimartingales. In Aït-Sahalia and Jacod (2007); Barndorff-Nielsen et al. (2006); Jacod (2008);
Woerner (2006); Figueroa-López (2009); Shimizu (2006); Mancini and Renò (2011); Mancini (2009, 2008, 2004,
2003, 2001) estimation methods are introduced that deal with univariate processes based on high frequency data (see
also Gegler and Stadtmüller, 2010).

In Section 2 the framework is given. In Section 3 the estimation method is introduced. The strategy is to develop
estimators under the assumption that the exact jumps and the continuous part are known. Then, we show that using
the critical region instead of this assumption leads to estimators that behave asymptotically very similar. In Section 4
we check the finite sample properties of the estimators by simulation study.

2. The framework

We use a suitable probability space (Ω,F,P). On this probability space we define an Rd−valued Lévy process
{Lt, t ≥ 0}. We assume E [|L1|] < ∞. Then, the characteristic function is given by the following version of the Lévy
Khinchin representation

φLt (u) = exp
(
t
(
−

1
2

uT Cu + iuTγ +

∫
Rd

(
exp(iuT x) − 1 − iuT x

)
ν(dx)

))
, t ≥ 0,

where (C, γ, ν) is the Lévy triplet. (see e.g. Sato (2007, Theorem 8.1)). We provide estimators for C, γ and, if
E

[
|L1|

2l
]
< ∞, for the following finite transformation of the Lévy measure

µ(z) = µA,l(z) :=
∫
{x≤z}

(xT A x)l ν(dx),

where l ∈ N, A ∈ Rd×d, A , 0 and z ∈ R
d
.

By the Lévy-Itô decomposition (e.g. see Sato (2007, Theorem 19.2)) we have

Lt = C Lt + J Lt t ≥ 0,

where {C Lt, t ≥ t} is a nonstandard Wiener process with covariance matrix C and drift γ +
∫
Rd x(1 − 1(||x|| ≤ 1))ν(dx)

(|| · || denotes the supremum norm). The process {J Lt, t ≥ t} is a pure jump Lévy process with characteristics (0, 0, ν).
The Lévy process can be used to describe a logarithmic stock price development. We do not require that the Lévy

measure ν is absolute continuous in the multivariate framework. However, we require that the Lévy measures ν̃i of the
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corresponding univariate component Lévy processes {Lt,i, t ≥ 0} are absolute continuous with densities fi. In addition
we require that, for all ε > 0, there exists κε > 0 such that

fi(x) < κε, x ∈ (−ε, ε)c. (1)

Keep in mind that ν̃i is different to the margins νi of the Lévy measure ν (cf. Sato (2007, Proposition 11.10)).
Furthermore, to avoid technical issues, we assume that the covariance matrix C is not singular. We impose that we
can observe the process at high frequent, equidistant time points

tk := h k, k = 1, . . . , n, h := κn−α, (2)

where α ∈ (0, 1] , κ > 0. The time horizon is given by T = 1
κ
n1−α. For simplification in the following we set w.l.o.g.

κ = 1. In most cases we assume α ∈ (1/2, 1] to ensure that T → ∞ and h/T → 0. If we estimate the covariance
matrix C, we will also allow α = 1. Next we define the increments of the process at this time points.

Xh,k := Lk h − L(k−1) h k = 1, . . . , n.

3. Estimation method

Our strategy to develop estimators is as follows. First, we think about an estimator for the covariance matrix C
under the unrealistic assumption that we know the increments of the diffusion part of the process which are defined as
follows

C Xh,k := C Lk h −
C L(k−1) h k = 1, . . . , n,

where the C Lt is the nonstandard Wiener process from above that turns out by the Lévy-Itô decomposition. We call
the estimator that is based under this unrealistic assumption pre-estimator and define it as follows

Ĉpre :=
1
T

n∑
k=1

C Xh,k
C XT

h,k.

Theorem 1(i) shows that this estimator is consistent. Analogously, we develop an pre-estimator for µ(z) under the
unrealistic assumption that we can observe the process continuously. That means we know the exact jump times and
sizes {∆Lt, t ∈ [0,T ]}, where ∆Lt := Lt − lims→t− Ls. This pre-estimator is defined as follows

µ̂pre(z) = µ̂A,l,pre(z) :=
1
T

∑
0≤t≤T

(
∆LT

t A∆Lt

)l
1(∆Lt ≤ z) z ∈ R

d
.

Theorem 1(ii) shows the asymptotic properties of this estimator. Since µ̂pre(z) depends on z ∈ Rd we interpret it as a
random field in z and give a limit field.

Theorem 1. (i) Let 1/2 < α ≤ 1 in (2). Then, as n→ ∞,

Ĉpre
P
−→ C.

(ii) Let l ∈ N and E[|L1|
4l] < ∞. Define ~g : [0, 1]d → R

d
, ~g(y) =

(
g
(
y(1)

)
, . . . , g

(
y(d)

))T
, where g : [0, 1] → R is a

strictly increasing and bijective function. Then, as T → ∞,

√
T

(̂
µpre ◦ ~g − µ ◦ ~g

) D
−→ G,

where D denotes weak convergence in the generalized Skorohod space D[0, 1]d (cf. Bickel and Wichura, 1971). G is
a Gaussian process over [0, 1]d with

E
[
G(y)

]
= 0, Cov

[
G(y1),G(y2)

]
=

∫
{x(1)≤ g(y(1)

1 ∧y(1)
2 ),...,x(d)≤ g(y(d)

1 ∧y(d)
2 )}

(xT Ax)2lν(dx), y, y1, y2 ∈ [0, 1]d.
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Proof. (i) Because of the normal distribution it can be easily verified that E(Ĉpre −C)2 → 0.

(ii) For z ∈ R
d

we have

µ̂pre(z) =
1
T

∑
0<t≤T

(∆LT
t A∆Lt)l1(∆Lt ≤ z) =

1
T

T∑
k=1

∑
k−1<t≤k

(∆LT
t A∆Lt)l1(∆Lt ≤ z).

Since the random variables
∑

k−1<t≤k(∆LT
t A∆Lt)l1(∆Lt ≤ z) are i.i.d. the Central Limit theorem can be applied to

obtain
√

T
(̂
µpre(z1) − µ(z1), . . . , µ̂pre(zm) − µ(zm)

)T d
−→ Z ∼ N(0,Σ),

where

Σi, j :=
∫
{x(1)≤z(1)

i ∧z(1)
j ,...,x

(d)≤z(d)
i ∧z(d)

j }

(xT Ax)2lν(dx).

The statement follows from Heinrich and Schmidt (1985, Lemma 3).

However, in reality we do not know the increments of the diffusion part of the process and cannot observe the
process continuously. To disentangle jumps from diffusion, we choose the following approach. We introduce a
critical region Bn ⊂ Rd. If we have Xk,h < Bn, we consider Xk,h as a jump. If we have Xk,h ∈ Bn, we assign Xk,h to the
continuous part. For all n we define

Bn(D, β) := {x ∈ Rd : xT D−1
n x ≤ βb2

n},

where D is a symmetric d × d−matrix, β > 0 and bn :=
√

2 h log n. We call a sequence of random sets {Bn, n ∈ N} a
sequence of critical regions, if there exists 1 < β′ < β′′ < ∞ such that

Bn(C, β′) ⊆ Bn[ω] ⊆ Bn(I, β′′),

for all n ∈ N and ω ∈ Ω (I is the identity matrix). An element Bn of the sequence is called critical region. For β > 1,
we call {Bn = Bn(C, β), n ∈ N} a sequence of true critical regions. In the following we assume w.l.o.g. that Bn is
deterministic to avoid technical overload. Important for the proofs are the bounds Bn(C, β′) and Bn(I, β′′). The critical
set Bn is chosen in such a way that it contains asymptotically the diffusion increments. This is shown in Lemma 1.
The true critical regions form ellipsoids in Rd. We choose that definition, since the level curve of the density of the
multivariate normal distribution forms an ellipsoid, too.

The estimators for C and µ(z) that use the critical region are defined as follows

Ĉ :=
1
T

n∑
k=1

Xh,kXT
h,k1(Xh,k ∈ Bn)

µ̂(z) = µ̂A,l(z) :=
1
T

n∑
k=1

(XT
h,kAXh,k)l1(Xh,k < Bn, Xh,k ≤ z), z ∈ R

d
.

The next theorems give the asymptotic properties. For Ĉ only consistency can be shown. In general we only
obtain consistency for µ̂(z), too. However, we obtain better rates, if

fi(x) = O(x−3), x→ 0, for all i ∈ {1, . . . , d}, (3)

where fi is the density of the of the Lévy measure ν̃i of the univariate component Lévy process {Lt,i, t ≥ 0}.

Theorem 2. Let 1/2 < α ≤ 1 in (2). Then, as n→ ∞,

Ĉ − Ĉpre
P
−→ 0 and hence Ĉ −C

P
−→ 0.
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Proof. We have

1
T

n∑
k=1

Xh,kXT
h,k1(Xh,k ∈ Bn) − Ĉpre =

1
T

n∑
k=1

C Xh,k
C XT

h,k1(Xh,k < Bn) (4)

+
1
T

n∑
k=1

J Xh,k
J XT

h,k1(Xh,k ∈ Bn) (5)

+
1
T

n∑
k=1

C Xh,k
J XT

h,k1(Xh,k ∈ Bn) (6)

+
1
T

n∑
k=1

J Xh,k
C XT

h,k1(Xh,k ∈ Bn). (7)

We only consider the diagonal elements of the square matrices in (4) and (5). In Lemma 5 and Lemma 6 it is shown
that they converges to zero in probability. For the entries of the matrix in (6) and (7), by the Cauchy Schwartz
inequality we have

1
T

n∑
k=1

|C Xh,k,i1 ||
J Xh,k,i2 |1(Xh,k ∈ Bn) ≤

√√
1
T

n∑
k=1

C X2
h,k,i1

√√
1
T

n∑
k=1

J X2
h,k,i2

1(Xh,k ∈ Bn),

where i1, i2 ∈ {1, . . . , d}. By Lemma 12 the expectation of the first factor is uniform bounded and by Lemma 6 the
second factor converges to zero in probability.

Theorem 3. (i) Let 1/2 < α < 1 in (2), l ∈ N and and assume E[|L1|
4l] < ∞. Then, as n→ ∞,

sup
z∈Rd

∣∣∣̂µpre(z) − µ(z)
∣∣∣ P
−→ 0 and hence sup

z∈Rd

∣∣∣̂µ(z) − µ(z)
∣∣∣ P
−→ 0 .

(ii) Let 1/2 < α < 1 in (2). We choose

r ∈
{

[0 ∨ 1/2 − 2α/3 , α/3) i f α ≤ 3/5
[0 ∨ 1/2 − 2α/3 , (1 − α)/2) i f α > 3/5 ,

define l := b3r/(α − 3r)c + 2 and p := blα/(α − 3r) + 1c/l and require E[|L1|
2l(2∨p)] and that (3) is satisfied. Then, as

n→ ∞,

nr sup
z∈Rd

∣∣∣̂µ(z) − µ(z)
∣∣∣ P
−→ 0 and hence nr sup

z∈Rd

∣∣∣̂µ(z) − µ(z)
∣∣∣ P
−→ 0 .

(iii) Let 3/5 < α < 1 in (2). We define l := b1 − α/(5α/3 − 1)c + 2 and p := b2l/(5 − 3/α) + 1c/l and require
E

[
|L1|

2l(2∨p)
]
< ∞ and that (3) is satisfied. Then, as n→ ∞

√
T sup

z∈Rd

∣∣∣̂µ(z) − µ(z)
∣∣∣ P
−→ 0 .

Hence, for ~g : [0, 1]d → R
d
, ~g(y) =

(
g
(
y(1)

)
, . . . , g

(
y(d)

))T
, where g : [0, 1]→ R is a strictly increasing and bijective

function, we have, as n→ ∞
√

T
(̂
µ ◦ ~g − µ ◦ ~g

) D
−→ G,

where G is a Gaussian process over [0, 1]d with

E
[
G(y)

]
= 0, Cov

[
G(y1),G(y2)

]
=

∫
{x(1)≤g(y(1)

1 ∧y(1)
2 ),...,x(d)≤g(y(d)

1 ∧y(d)
2 )}

(xT Ax)2lν(dx), y, y1, y2 ∈ [0, 1]d.
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Proof. We use the given r in (ii) and set r = 0 in (i) and r = (1 − α)/2 in (iii). We use Theorem 1(ii), so we only have
to prove

nr sup
z∈Rd

∣∣∣∣∣∣∣ 1
T

n∑
k=1

(
XT

h,kAXh,k

)l
1(Xh,k < Bn, Xh,k ≤ z) − µpre(z)

∣∣∣∣∣∣∣
= nr sup

z∈Rd

∣∣∣∣∣∣ 1
T

n∑
k=1

(
XT

h,kAXh,k

)l
1(Xh,k < Bn, Xh,k ≤ z) −

1
T

∑
0≤t≤T

(
∆LT

t A∆Lt

)l
1(∆Lt ≤ z)

∣∣∣∣∣∣
nr sup

z∈Rd

∣∣∣∣∣∣ 1
T

n∑
k=1

(
J XT

h,kAJ Xh,k + 2J XT
h,kAC Xh,k + C XT

h,kAC Xh,k

)l
1(Xh,k < Bn, Xh,k ≤ z)

−
1
T

∑
0≤t≤T

(
∆LT

t A∆Lt

)l
1(∆Lt ≤ z)

∣∣∣∣∣∣ P
−→ 0.

By Lemma 10 (iii), we obtain an upper bound that is up to a positive constant equal to

nr sup
z∈Rd

∣∣∣∣∣∣ 1
T

n∑
k=1

(
J XT

h,kAJ Xh,k

)l
1(Xh,k < Bn, Xh,k ≤ z) −

1
T

∑
0≤t≤T

(
∆LT

t A∆Lt

)l
1(∆Lt ≤ z)

∣∣∣∣∣∣ (8)

+ nr 1
T

l∑
m=1

n∑
k=1

(
J XT

h,kAJ Xh,k

)l−m ∣∣∣C XT
h,kAJ Xh,k

∣∣∣m 1(Xh,k < Bn) (9)

+ nr 1
T

l∑
m=1

n∑
k=1

(
J XT

h,kAJ Xh,k

)l−m ∣∣∣J XT
h,kAC Xh,k

∣∣∣m 1(Xh,k < Bn) (10)

+ nr 1
T

l∑
m=1

n∑
k=1

(
J XT

h,kAJ Xh,k

)l−m (
C XT

h,kAC Xh,k

)m
1(Xh,k < Bn). (11)

The term in (8) is considered in Lemma 8(i) for (i) and 8(ii) for (ii) and (iii). There we use Proposition 2. For (9) and
(10) we use the following upper bound

max
i1,i2∈{1,...,d}

|Ai1,i2 | · nr 1
T

l∑
m=1

n∑
k=1

 d∑
i1,i2=1

|J Xh,k,i1 ||
J Xh,k,i2 |


l−m

2

 d∑
i1,i2=1

|C Xh,k,i1 ||
J Xh,k,i2 |


m

1(Xh,k < Bn).

We apply Lemma 10(ii) and 10(i) and obtain an upper bound that is up to a positive constant equal to

nr max
i1,i2∈{1,...,d}

|Ai1,i2 | ·
1
T

l∑
m=1

n∑
k=1

d∑
i1,i2,i3=1

|J Xh,k,i1 |
2l−2m|J Xh,k,i2 |

m|C Xh,k,i3 |
m1(Xh,k < Bn).

That term tends to zero by Lemma 4. For (11) we have analogously

2 nr max
i1,i2∈{1,...,d}

|Ai, j|
1
T

l∑
m=1

n∑
k=1

d∑
i1,i2=1

|J Xh,k,i1 |
2l−2m|C Xh,k,i2 |

2m1(Xh,k < Bn).

This term tends zero by Lemma 5 for l = 1,m = 1, Lemma 12(i) for l > 1,m = l and Lemma 4 for all other
summands.

For the estimation of γ, the critical region is not needed. The estimator is defined as follows

γ̂ :=
1
T

n∑
k=1

Xh,k

and the asymptotic properties are given in the next theorem.
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Theorem 4. Let 0 < α < 1 in (2). Then, as n→ ∞,

γ̂
a.s.
−→ γ and

√
T

(̂
γ − γ

) d
−→ Z ∼ N

(
0,C +

∫
Rd

xxTν(dx)
)
.

Proof. We assume w.l.o.g. T ∈ N, then,

γ̂ :=
1
T

n∑
k=1

Xh,k =
1
T

LT =
1
T

T∑
k=1

X1,k.

The random variables X1,k, k = 1, . . . , n are i.i.d.. So we can apply the Strong Law of Large Numbers and the Central
Limit theorem.

4. Simulation study

In this section we check the finite sample properties of the estimators by simulation study. Before we can start we
have to handle a practical issue. The problem is that the definition of the critical region Bn depends on the unknown
covariance C. We solve this problem by using the estimator Ĉ, instead. However, the estimator depends in turn on
the critical region. This leads to an iteration method. So for β > 1 we define B̂n,0(β) := Rd and, for all i ∈ N,
B̂n,i(β) := Bn(Ĉ(B̂n,i−1(β)), β) and B̂∗n(β) := limi→∞ B̂n,i(β). It can be shown that for all ε > 0, P((1 − ε)Bn(C, β) ⊆
B̂∗n(β) ⊆ (1 + ε)Bn(C, β)) → 1, n → ∞. That means B̂∗n(β) and Bn(C, β) are very similar. The parameter β > 1 is
chosen very close to 1.

We use the bivariate Merton model, introduced in Merton (1976), to generate bi-dimensional log returns. The
setting is similar to Aït-Sahalia (2004) and Gegler and Stadtmüller (2010). We use n = 1000 and h = 1/252 (daily
data) and set the parameters to

C :=
(
0.09 0.03
0.03 0.04

)
, γ :=

(
0.035
0.025

)
, η :=

(
0.01 −0.005
−0.005 0.01

)
, β :=

(
0
0

)
, and λ = 10.

where η and β control the normally distributed jumps and λ is the jump intensity. We give estimators for C, and the
term

qcv :=
∫
R2

x1 x2 ν(dx) = µ1,A, A =

(
0 1
0 0

)
.

This quantity is equal to the expectation of the quadratic covariation of the jump part of the Lévy process in a time
interval [0, 1]. The true value in this scenario is 0.05. We perform 2000 runs and give the result in Table 1. We realize
that the the bias and the variance of all estimators are very small.

n = 1000 Ĉ1,1 Ĉ2,2 Ĉ1,2 q̂cv
True 0.0900 0.0400 0.0300 -0.0500
Mean 0.0884 0.0394 0.0294 -0.0491
Stdev 0.0042 0.0019 0.0022 0.0203
MSE 0.0000 0.0000 0.0000 0.0004
Min 0.0757 0.0336 0.0227 -0.1376
0.25-q. 0.0854 0.0380 0.0279 -0.0617
Median 0.0883 0.0394 0.0293 -0.0477
0.75-q. 0.0912 0.0407 0.0309 -0.0344
Max 0.1045 0.0463 0.0386 0.0057

Table 1: Simulation result using the bivariate Merton model
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Appendix A. Technical details

Lemma 1. Let {C Xh,k, k = 1, . . . , n} be the increments of a Wiener process with covariance matrix C and drift γ and
let α ∈ (1/2, 1] in (2). Define

M(n)
1 := {∃k ∈ {1, . . . , n}, s.t. C Xh,k < Bn},

then, as n→ ∞,
P(M(n)

1 ) −→ 0.

Proof. We use the increments of the centered Wiener process C′Lt = C Lt − t(γ +
∫
Rd x(1 − 1(||x|| ≤ 1))ν(dx)) and have

P(C Xh,1 < Bn) = P(C′Xh,1 + h(γ +

∫
Rd

x(1 − 1(||x|| ≤ 1))ν(dx)) < Bn)

≤ P(C′Xh,1 + h(γ +

∫
Rd

x(1 − 1(||x|| ≤ 1))ν(dx)) < Bn(C, β′))

= P(C′Xh,1 + h(γ +

∫
Rd

x(1 − 1(||x|| ≤ 1))ν(dx)) < {x : xT C−1x ≤ β′ b2
n})

= P(C′Xh,1 < {x : (x − h(γ +

∫
Rd

x(1 − 1(||x|| ≤ 1))ν(dx)))T C−1(x − h(γ +

∫
Rd

x(1 − 1(||x|| ≤ 1))ν(dx))) ≤ β′ b2
n}).

Because b2
n = 2h log n, there exists a β̃′ ∈ (1, β′) such that an upper bound is given by

P(C′Xh,1 < {x : xT C−1 x ≤ β̃′ b2
n}) = P(C′XT

h,1 C−1 C′Xh,1 > β̃′ b2
n) = P(C′XT

1,1 C−1 C′X1,1 > β̃′ 2 log n),

where we have use the selfsimilarity property of the Wiener process (see e.g. Sato, 2007, Theorem. 5.4). The term
C′XT

1,1 C−1 C′X1,1 is χ2
d−distributed. Thus, the probability form above is equal to∫ ∞

β̃′2 log n

td/2−1e−t/2

2d/2(γ +
∫
Rd x(1 − 1(||x|| ≤ 1))ν(dx))(d/2)

dt

and there exists a ξ ∈ (1/β̃, 1) such that an upper bound is given by∫ ∞

β̃′ 2 log n
exp

(
−ξt
2

)
dt =

2
ξ

exp
(
−ξβ̃′ log n

)
=

2
ξ

n−ξβ̃
′

.

By the Binomial distribution and Bernoulli’s inequality we have

P(M(n)
1 ) = 1 −

(
1 − P(C Xh,1 < Bn)

)n
≤ nP(C Xh,1 < Bn) ≤

2
ξ

n1−ξβ̃′ → 0.

Definition 1. (i) Let 0 < t1 ≤ t2 < ∞, B ∈ B(Rd) and z1, z2 ∈ R
d
. We define

N(t1,t2](B) :=
∑

t1<t≤t2

1(∆Lt ∈ B, ∆Lt , 0)

N(t1,t2](z1, z2) := N(t1,t2]({x ∈ Rd : z1 ≤ x ≤ z2})
N(t1,t2](z1) := N(t1,t2](−∞, z1),
Nt1 (·) := N(−∞,t1](·).

(ii) Let 0 < t1 ≤ t2 < ∞, i ∈ {1, . . . , d} and B ∈ B(R). We denote

N(t1,t2],i(B) :=
∑

t1<t≤t2

1(∆Lt,i ∈ B, ∆Lt,i , 0).

For z1, z2 ∈ R, the quantities N(t1,t2],i(z1, z2), N(t1,t2],i(z1) and Nt1,i(·) are defined analogously to (i).

8



Lemma 2. Let α ∈ (1/2, 1] in (2). Define with some un > 0

M(n)
2 (un) :=

{
∃k ∈ {1, ..., n} s.t.N(k−1)h,kh

(
{x ∈ Rd : ||x|| ≥ un}

)
> 1

}
.

(i) Assume that n1−2αν2({x ∈ Rd : ||x|| ≥ ξn}
)
→ 0 (n→ ∞). Then, as n→ ∞,

P
(
M(n)

2 (ξn)
)
−→ 0.

(ii) Assume that n1−2α/ξ4
n → 0, n→ ∞ and that (3) is satisfied. Then, as n→ ∞,

P
(
M(n)

2 (ξn)
)
−→ 0.

(iii) Let ξ > 0 be a constant, then, as n→ ∞,

P
(
M(n)

2 (ξ)
)
−→ 0.

Proof. Ad (i), we have

P
(
M(n)

2

)
≤ n(1 − exp(−ν({x ∈ Rd : ||x|| ≥ ξn})h)(1 + ν({x ∈ Rd : ||x|| ≥ ξn})h))

≤ n(1 − (1 − ν({x ∈ Rd : ||x|| ≥ ξn}))h)(1 + ν({x ∈ Rd : ||x|| ≥ ξn})h) = n h2ν2({x ∈ Rd : ||x|| ≥ ξn}) −→ 0.

Ad (ii), because of (3) there exists a κ > 0 such that

n h2ν2({x ∈ Rd : ||x|| ≥ ξn}
)
≤ n h2

 d∑
i=1

ν̃i((−ξn, ξn)c)


2

≤ n h2

 d∑
i=1

∫
(−ξn,ξn)c

fi(x)dx


2

≤ κ n h2
(∫

(−ξn,ξn)c

1
x3 dx

)2

= κ n h2(1/ξ2
n)2 −→ 0.

Ad (iii), analogously to (i) and (ii).

Definition 2. Let {Lt, t ≥ 0} be a Lévy process with triplet (C, γ, ν) and J the corresponding Poisson measure (see
e.g. Sato (2007, Theorem 19.2)).
(i) The large jump part is defined by

CPLt(ω)[ξ1, ξ2] :=
∫ t

0

∫
ξ1<||x||≤ξ2

x J((ds, dx), ω)

and contains all jumps with size in (ξ1, ξ2], where ξ1, ξ2 ∈ [0,∞] in case of
∫
||x||≤1 ||x||ν(dx) < ∞ and ξ1, ξ2 ∈ (0,∞] in

case
∫
||x||≤1 ||x||ν(dx) = ∞. Denote CPLt[ξ] := CPLt[ξ,∞] and in case

∫
||x||≤1 ||x||ν(dx) < ∞, CPLt := CPLt[0].

(ii) The small jump part is defined by

sJ Lt(ω)[ξ1, ξ2] :=
∫ t

0

∫
ξ1≤||x||≤ξ2

(x J((ds, dx), ω) − x ds ν(dx))

and contains all jumps with size in (ξ1, ξ2] and the corresponding compensating drift term, where ξ1, ξ2 ∈ [0,∞]
in case of

∫
||x||>1 ||x||ν(dx) < ∞ and ξ1, ξ2 ∈ [0,∞) in case of

∫
||x||>1 ||x||ν(dx) = ∞. Define sJ Lt[ξ] := sJ Lt[0, ξ] and

sJ Lt := sJ Lt[1].
(iii) The compensating drift term is defined by

γc
t [ξ1, ξ2] := t

∫
ξ1≤||x||≤ξ2

x ν(dx)

and compensates the jumps with size in (ξ1, ξ2], where ξ1, ξ2 ∈ [0,∞] in case of
∫
||x||≤1 ||x||ν(dx) < ∞,

∫
||x||>1 ||x||ν(dx) <

∞ and ξ1, ξ2 ∈ [0,∞) in case of
∫
||x||≤1 ||x||ν(dx) < ∞,

∫
||x||>1 ||x||ν(dx) = ∞ and ξ1, ξ2 ∈ (0,∞] in case of

∫
||x||≤1 ||x||ν(dx) =

9



∞,
∫
||x||>1 ||x||ν(dx) < ∞ and ξ1, ξ2 ∈ (0,∞) in case of

∫
||x||≤1 ||x||ν(dx) = ∞,

∫
||x||>1 ||x||ν(dx) = ∞.

(iv) The large jump parts of the component processes are defined by

CPi Lt(ω)[ξ1, ξ2] :=
∫ t

0

∫
ξ1<|xi |≤ξ2

x J((ds, dx), ω), i ∈ {1, · · · , d}.

Please note the difference to the component of the large jump part that is denoted by CPLt,i[ξ1, ξ2]. The quantities
sJi Lt(ω)[ξ1, ξ2] and γci

t [ξ1, ξ2] are defined analogously.
(v) The increments of the corresponding processes are denoted by

{CPXh,k[ξ1, ξ2], k = {1, · · · , d}}, {sJ Xh,k[ξ1, ξ2], k = {1, · · · , d}},

{CPi Xh,k[ξ1, ξ2], k = {1, · · · , d}}, {sJi Xh,k[ξ1, ξ2], k = {1, · · · , d}}.

Lemma 3. Let α ∈ (1/2, 1] in (2) and κ1, κ2 > 0. We define

M(n)
2 (ξn, ξ

′
n, χ, i) :=

{
∃z ∈ R\(−ξn, ξn) : NT,i(z − κ1ξ

′
n, z + κ1ξ

′
n) ≥ κ2nχ

}
.

(i) Let 0 < ρ < α/2 − 1/4 and ξ′n := n−ρ. Then, there exists a sequence ξn → 0 such that, as n→ ∞,

ξ′n
ξn
→ 0,

√
nhν

(
{x ∈ Rd : ||x|| ≥ ξn}

)
ξ′n

2 → 0, P
(
M(n)

2 (ξn, ξ
′
n, 1 − α, i)

)
→ 0, ∀i ∈ {1, ..., d}.

(ii) Let (3) be satisfied, choose

r ∈
{

[0 ∨ 1/2 − 2α/3, α/3) i f α ≤ 3/5
[0 ∨ 1/2 − 2α/3, (1 − α)/2] i f α > 3/5

and define ξn := n(3r−α)/6log(n) and ξ′n := n(r−α)/2log(n). Let θ ∈ [r, α/3), then, as n→ ∞,

P
(
M(n)

2 (ξn, ξ
′
n, 1 − α − θ, i)

)
−→ 0, ∀i ∈ {1, ..., d}.

Proof. We set w.l.o.g. κ1 = κ2 = 1 and assume nχ ∈ N.
Ad (i), for all positive zero sequences ξn and ξ′n satisfying ξ′n/ξn → 0 we define

A(n)
m :=

{
NT,i

(
(2(m − 1) ξ′n, 2(m + 1) ξ′n] \ (−ξn/2, ξn/2)c )

≥ nχ
}

and obtain M(n)
2 ⊂

⋃
m∈Z

A(n)
m .

We have

P
(
A(n)

m

)
=

∞∑
k=nχ

exp
(
−ν̃i

(
(2(m − 1) ξ′n, 2(m + 1) ξ′n] \ (−ξn/2, ξn/2)c )

n1−α
)
·

·

(̃
νi

(
(2(m − 1) ξ′n, 2(m + 1) ξ′n] \ (−ξn/2, ξn/2)c )

n1−α
)k

k!

≤

(̃
νi

(
(2(m − 1) ξ′n, 2(m + 1) ξ′n] \ (−ξn/2, ξn/2)c )

n1−α
)nχ

nχ!
.

Since (1), there exits a κξn > 0 such that

ν̃i
(

(2(m − 1) ξ′n, 2(m + 1) ξ′n] \ (−ξn/2, ξn/2)c )
n1−α = n1−α

∫
x∈(2(m−1) ξ′n,2(m+1) ξ′n] \ (−ξn/2,ξn/2)c

fi(x) dx

≤ 4 n1−α max
(2(m−1) ξ′n,2(m+1) ξ′n] \ (−ξn/2,ξn/2)c

fi(x) · ξ′n =: κm,ξn n1−α−ρ ≤ κξn n1−α−ρ.
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Then,

P
(
M(n)

2

)
≤

∑
m∈Z

P(A(n)
m ) ≤

∑
m∈Z

(̃
νi

(
(2(m − 1) ξ′n, 2(m + 1) ξ′n] \ (−ξn/2, ξn/2)c )

n1−α
)nχ

nχ!

=
∑
m∈Z

(̃
νi

(
(2(m − 1) ξ′n, 2(m + 1) ξ′n] \ (−ξn/2, ξn/2)c )

n1−α
)nχ−1

nχ!
ν̃i

(
(2(m − 1) ξ′n, 2(m + 1) ξ′n] \ (−ξn/2, ξn/2)c )

n1−α

≤
∑
m∈Z

(
κξn n1−α−ρ

)nχ−1

nχ!
ν̃i

(
(2(m − 1) ξ′n, 2(m + 1) ξ′n] \ (−ξn/2, ξn/2)c )

n1−α ≤

(
κξn n1−α−ρ

)nχ−1

nχ!
n1−α 2 ν̃i((−ξn/2, ξn/2)c).

For each i ∈ {1, · · · , d} we can find a sequence ξn such that the last term tends to zero by Stirling’s formula. Obviously
we can also find a sequence ξn such that

√
nhν ({x : ||x|| ≥ ξn}) /ξ′n

2 → 0. Then we choose the slowest of all sequences.
Ad (ii), since (3), we have analogously to (i)

ν̃i
(

(2(m − 1) ξ′n, 2(m + 1) ξ′n] \ (−ξn/2, ξn/2)c )
n1−α = n1−α

∫
x∈(2(m−1) ξ′n,2(m+1) ξ′n] \ (−ξn/2,ξn/2)c

fi(x) dx

≤ n1−α
∫

x∈(2(m−1) ξ′n,2(m+1) ξ′n] \ (−ξn/2,ξn/2)c
1/(ξn/2)3 dx ≤ n1−α 4 ξ′n/(ξn/2)3.

Then, analogously to (i),

P
(
M(n)

2

)
≤

(
n1−α 4 ξ′n/(ξn/2)3

)n1−α−r

(n1−α−r)!
n1−α 2 ν̃i((−ξn/2, ξn/2)c)

tends to zero by Stirling’s formula.

Lemma 4. (i) Let 1/2 < α ≤ 1 in (2), i1, i2 ∈ {1, ..., d} and E[|L1|
2] < ∞. Then, as n→ ∞

1
T

n∑
k=1

|J Xh,k,i1 ||
C Xh,k,i2 |1(Xh,k < Bn)

P
−→ 0.

(ii) Let 1/2 < α ≤ 1 in (2), i1, i2, i3 ∈ {1, ..., d}, r ∈ [0, α/2) and j1, j2, j3 ∈ N satisfying j1 + j2 = 1, j3 ≥ 2 or
j1 + j2 ≥ 2, j3 ≥ 1. If E[|L1|

2 j1 ] < ∞ and E[|L1|
2 j2 ] < ∞, then, as n→ ∞,

nr 1
T

n∑
k=1

|J Xh,k,i1 |
j1 |J Xh,k,i2 |

j2 |C Xh,k,i3 |
j3 P
−→ 0.

Proof. Ad (i), by Cauchy Schwartz inequality we obtain an upper bound√√
1
T

n∑
k=1

C X2
h,k,i2

1(Xh,k < Bn)

√√
1
T

n∑
k=1

J X2
h,k,i1

.

The first factor tends to zero in probability by Lemma 5. The expectation of the second term is given by Lemma 12
and is finite and independent of n. Thus, the second term is stochastically bounded.
Ad (ii), we consider the expectation and apply Lemma 12. The cases j1 + j2 = 1, j3 ≥ 2, j1 ≥ 2, j2 = 0, j3 ≥ 1,
j1 = 0, j2 ≥ 2, j3 ≥ 1 follow directly. For j1 ≥ 1, j2 ≥ 1 j3 ≥ 1 we can use Hölder’s inequality and obtain

E
[
|J X j1

h,1,i1
||J X j2

h,1,i2
|
]
≤

√
E

[
J X2 j1

h,1,i1

]
E

[
J X2 j2

h,1,i2

]
= O(h).
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Lemma 5. Let 1/2 < α ≤ 1 in (2) and i ∈ {1, · · · , d}, then, as n→ ∞

1
T

n∑
k=1

C X2
h,k,i1(Xh,k < Bn)

P
−→ 0.

Proof. We have B(C, β′) ⊆ Bn. We choose β̃′ ∈ (1, β′), then

1
T

n∑
k=1

C X2
h,k,i 1(Xh,k < Bn)

=
1
T

n∑
k=1

C X2
h,k,i 1

(
Xh,k < Bn,

C Xh,k ∈ Bn(C, β̃′))
)

+
1
T

n∑
k=1

C X2
h,k,i 1

(
Xh,k < Bn,

C Xh,k < Bn(C, β̃′)
)

The probability that the latter term is different from zero tends to zero by Proposition 1. For the first term there exists
δ > 0 such that an upper bound is given by

1
T

n∑
k=1

C X2
h,k,i 1

(
||J Xh,k || > δbn

)
.

We consider the expectation and obtain

n1−(1−α)E
[
C X2

h,k,i

]
P

(
||J Xh,k || > δbn

)
≤ n1−(1−α)E

[
C X2

h,k,i

] (
P

(
||sJ Xh,k || > δbn

)
+ P

(
||CPXh,k[1]|| > 0

))
≤ n1−(1−α)E

[
C X2

h,k,i

] 
 d∑

i=1

Var
(

sJ Xh,k,i

)
δ2b2

n

 +
(
1 − exp (−ν({x : ||x|| > 1})h)

) .
The term converges to zero by Lemma 12 and by 1 − exp (−ν({x : ||x|| > 1})h) = O(h).

Lemma 6. Let 1/2 < α ≤ 1 in (2) and i ∈ {1, · · · , d}, then, as n→ ∞

1
T

n∑
k=1

J X2
h,k,i1(Xh,k ∈ Bn)

P
−→ 0.

Proof. We have

1
T

n∑
k=1

J X2
h,k,i1(Xh,k ∈ Bn) ≤

1
T

n∑
k=1

J X2
h,k,i1(Xh,k ∈ Bn,

C Xh,k < Bn) +
1
T

n∑
k=1

J X2
h,k,i1(Xh,k ∈ Bn,

C Xh,k ∈ Bn)

The probability that the first term is different from zero converge to zero by Proposition 1. An upper bound for the
second term is given by

1
T

n∑
k=1

J X2
h,k,i1(J Xh,k ∈ 2Bn) ≤

1
T

n∑
k=1

sJ X2
h,k,i1(sJ Xh,k ∈ 2Bn) +

1
T

n∑
k=1

4(β′′bn)21(||CPXh,k[1]|| > 0).

The first term is considered in Lemma 7 and the expectation of the second term is equal to

4
n
T

(β′′bn)2
(
1 − exp

(
−
ν({x : ||x|| > 1})

nα

))
→ 0.

Lemma 7. Let 1/2 < α ≤ 1 in (2), i ∈ {1, ..., d} and let δn be a positive zero sequence. Then, as n→ ∞,

1
T

n∑
k=1

sJ X2
h,k,i1(||sJ Xh,k || < δn)

L1
−→ 0.
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Proof. We can find a sequence δ′n > 0 satisfying δ′n → 0, δ2
n/δ
′
n → 0 and h

(∫
√
δ′n≤||x||≤1

||x||ν(dx)
)2
→ 0. Then the left

hand side of (i) is equal to

1
T

n∑
k=1

sJ X2
h,k,i1

(
||sJ Xh,k || < δn,

∑
(k−1)h<t≤k h

||∆sJ Lt ||
2 ≤ δ′n

)
(A.1)

+
1
T

n∑
k=1

sJ X2
h,k,i1

(
||sJ Xh,k || < δn,

∑
(k−1)h<t≤k h

||∆sJ Lt ||
2 > δ′n

)
. (A.2)

For the expectation of (A.1) an upper bound is given by

n
T
E

[
sJ X2

h,1,i1(||∆sJ Lt || ≤
√
δ′n , ∀t ∈ ((k − 1)h, kh])

]
≤

2 n
T
E

[
sJ X2

h,1,i[0,
√
δ′n]

]
+

2 n
T
E

[
sJ X2

h,1,i[
√
δ′n, 1]1(||∆sJ Lt || ≤

√
δ′n , ∀t ∈ ((k − 1)h, kh])

]
.

By Lemma 12, the first term tends to zero, since

n
T
E

[
sJ X2

h,1,i[0,
√
δ′n]

]
=

n
T

hE
[

sJ X2
1,1,i[0,

√
δ′n]

]
=

∫
||x||≤
√
δ′n

x2
i ν(dx) −→ 0.

The second term consists only of the compensating drift that is equal to

n
T

h2

∫√
δ′n≤||x||≤1

xiν(dx)

2

≤
n
T

h2

∫√
δ′n≤||x||≤1

||x||ν(dx)

2

−→ 0.

For the expectation of (A.2) an upper bound is given by

E

 1
T

n∑
k=1

δ2
n1

 ∑
(k−1)h<t≤k h

||∆sJ Lt ||
2 > δ′n




=
n
T
δ2

n P

 ∑
0<t≤h

||∆sJ Lt ||
2 > δ′n

 ≤ n
T
δ2

n

E
[∑

0<t≤h ||∆
sJ Lt ||

2
]

δ′n
=
δ2

nn
δ′n T
O(h),

where we have used Markov’s Inequality and thus, the convergence follows from the assumption on δ′n.

Lemma 8. (i) Let 1/2 < α ≤ 1 in (2), l ∈ N and E
[
|L1|

4l
]
< ∞. Then, as n→ ∞

sup
z∈Rd

∣∣∣∣∣∣ 1
T

n∑
k=1

(
J XT

h,kAJ Xh,k

)l
1(Xh,k < Bn, Xh,k ≤ z) −

1
T

∑
0≤t≤T

(
∆LT

t A∆Lt

)l
1(∆Lt ≤ z)

∣∣∣∣∣∣ P
−→ 0.

(ii) Let 1/2 < α ≤ 1 in (2), assume (3), choose

r ∈
{

[0 ∨ 1/2 − 2α/3, α/3) i f α ≤ 3/5
[0 ∨ 1/2 − 2α/3, (1 − α)/2] i f α > 3/5 ,

define l := b3r/(α − 3r)c + 2 and p := blα/(α − 3r) + 1c/l and require E[|L1|
2l(2∨p)] < ∞. Then, as n→ ∞,

nr sup
z∈Rd

∣∣∣∣∣∣ 1
T

n∑
k=1

(
J XT

h,kAJ Xh,k

)l
1(Xh,k < Bn, Xh,k ≤ z) −

1
T

∑
0≤t≤T

(
∆LT

t A∆Lt

)l
1(∆Lt ≤ z)

∣∣∣∣∣∣ P
−→ 0.
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Proof. We set r = 0 in (i), in (ii) r is defined. We use the notation

uk :=
(

J XT
h,kAJ Xh,k

)l
, k = 1, · · · , n, v :=

∑
0≤t≤T

(
∆LT

t A∆Lt

)l
1 (∆Lt ≤ z) .

We decompose the term in the indicator function and keep in mind J Xh,k = CPXh,k[ξn] + γc
h,k[ξ, 1] + sJ Xh,k[ξn] and

Bn ⊆ Bn(I, β′′) = {x ∈ Rd : xT x ≤ β′′b2
n}, where bn =

√
2 h log n.

Furthermore we define ~bn := (1, . . . , 1)T bn. In (i) and (ii), respectively, we use the sequences {ξn, n ∈ N} and
{ξ′n, n ∈ N} given in Lemma 3(i) and (ii), respectively. It can easily verified that {ξn, n ∈ N} also satisfies the condition
of Lemma 2(i) and (ii), respectively. We have∣∣∣∣∣∣∣

n∑
k=1

uk1
(
Xh,k < Bn, Xh,k ≤ z

)
− v

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣

n∑
k=1

uk1
(

J Xh,k ≤ z
)
− v

∣∣∣∣∣∣∣ +

n∑
k=1

|uk |1
(

J Xh,k ∈ (z −
√
β′′~bn, z +

√
β′′~bn)

)
+

n∑
k=1

|uk |1
(

J Xh,k ∈ (−2
√
β′′~bn,

√
β′′~bn)

)
+ 2

n∑
k=1

|uk |1
(
C Xh,k < Bn

)
≤

∣∣∣∣∣∣∣
n∑

k=1

uk1
(

J Xh,k ≤ z, ||sJ Xh,k[ξn]|| < ξ′n/2,
∣∣∣∣∣∣γc

h,k[ξn, 1]
∣∣∣∣∣∣ < ξ′n/2) − v

∣∣∣∣∣∣∣
+

n∑
k=1

|uk |1
(

J Xh,k ∈ (z −
√
β′′~bn, z +

√
β′′~bn), ||sJ Xh,k[ξn]|| < ξ′n/2,

∣∣∣∣∣∣γc
h,k[ξn, 1]

∣∣∣∣∣∣ < ξ′n/2)
+

n∑
k=1

|uk |1
(

J Xh,k ∈ (−2
√
β′′~bn,

√
β′′~bn), ||sJ Xh,k[ξn]|| < ξ′n/2,

∣∣∣∣∣∣γc
h,k[ξn, 1]

∣∣∣∣∣∣ < ξ′n/2)
+

n∑
k=1

|uk |1
(∣∣∣∣∣∣γc

h,k[ξn, 1]
∣∣∣∣∣∣ ≥ ξ′n/2) + 1

(
||sJ Xh,k[ξn]|| ≥ ξ′n/2

)
+ 2

n∑
k=1

|uk |1
(
C Xh,k < Bn

)
≤

∣∣∣∣∣∣ n∑
k=1

uk1
(
CPXh,k[ξn] ≤ z, J Xh,k ≤ z, ||sJ Xh,k[ξn]|| < ξ′n/2

)
1

(∣∣∣∣∣∣γc
h,k[ξn, 1]

∣∣∣∣∣∣ < ξ′/2) − v

∣∣∣∣∣∣
+

n∑
k=1

|uk |1
(
CPXh,k[ξn] > z, J Xh,k ≤ z, ||sJ Xh,k[ξn]|| < ξ′n/2,

∣∣∣∣∣∣γc
h,k[ξn, 1]

∣∣∣∣∣∣ < ξ′n/2)
+

n∑
k=1

|uk |1
(
CPXh,k[ξn] ∈ (z − 2ξ′n, z + 2ξ′n)

)
+

n∑
k=1

|uk |1
(∣∣∣∣∣∣CPXh,k[ξn]

∣∣∣∣∣∣ ≤ 2ξ′n
)

+

n∑
k=1

|uk |1
(∣∣∣∣∣∣γc

h,k[ξn, 1]
∣∣∣∣∣∣ ≥ ξ′n/2) +

n∑
k=1

|uk |1
(
||sJ Xh,k[ξn]|| ≥ ξ′n/2

)
+ 2

n∑
k=1

|uk |1
(
C Xh,k < Bn

)
≤

∣∣∣∣∣∣ n∑
k=1

uk1
(
CPXh,k[ξn] ≤ z, ||sJ Xh,k[ξn]|| < ξ′n/2,

∣∣∣∣∣∣γc
h,k[ξn, 1]

∣∣∣∣∣∣ < ξ′n/2) − v

∣∣∣∣∣∣
+

n∑
k=1

|uk |1
(
CPXh,k[ξn] ≤ z, J Xh,k > z, ||sJ Xh,k[ξn]|| < ξ′n/2,

∣∣∣∣∣∣γc
h,k[ξn, 1]

∣∣∣∣∣∣ < ξ′n/2)
+

n∑
k=1

|uk |1
(
CPXh,k[ξn] ∈ (z, z + ξ′n)

)
+

n∑
k=1

|uk |1
(
CPXh,k[ξn] ∈ (z − 2ξ′n, z + 2ξ′n)

)
+

n∑
k=1

|uk |1
(∣∣∣∣∣∣CPXh,k[ξn]

∣∣∣∣∣∣ ≤ 2ξ′n
)

+

n∑
k=1

|uk |1
(∣∣∣∣∣∣γc

h,k[ξn, 1]
∣∣∣∣∣∣ ≥ ξ′n/2) +

n∑
k=1

|uk |1
(
||sJ Xh,k[ξn]|| ≥ ξ′n/2

)
+ 2

n∑
k=1

|uk |1
(
C Xh,k < Bn

)
≤

∣∣∣∣∣∣∣
n∑

k=1

uk1
(
CPXh,k[ξn] ≤ z

)
− v

∣∣∣∣∣∣∣ + 2
n∑

k=1

|uk |1
(
CPXh,k[ξn] ∈ (z − 2ξ′n, z + 2ξ′n)

)
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+

n∑
k=1

|uk |1
(∣∣∣∣∣∣CPXh,k[ξn]

∣∣∣∣∣∣ ≤ 2ξ′n
)

+ 2
n∑

k=1

|uk |1
(∣∣∣∣∣∣γc

h,k[ξn, 1]
∣∣∣∣∣∣ ≥ ξ′n/2)

+ 2
n∑

k=1

|uk |1
(
||sJ Xh,k[ξn]|| ≥ ξ′n/2

)
+ 2

n∑
k=1

|uk |1
(
C Xh,k < Bn

)
.

By inserting this decomposition in our statement it remains to show

1.) nr sup
z∈Rd

∣∣∣∣∣∣ 1
T

n∑
k=1

(
J XT

h,kAJ Xh,k

)l
1(CPXh,k[ξn] ≤ z) −

1
T

∑
0≤t≤T

(
∆LT

t A∆Lt

)l
1(∆Lt ≤ z)

∣∣∣∣∣∣ p
−→ 0,

2.) nr sup
z∈Rd

∣∣∣∣∣∣ 1
T

n∑
k=1

∣∣∣J XT
h,kAJ Xh,k

∣∣∣l (21(CPXh,k[ξn] ∈ (z − 2ξ′n, z + 2ξ′n)) + 1(||CPXh,k[ξn]|| ≤ 2ξ′n)
)∣∣∣∣∣∣ p
−→ 0,

3.) nr 1
T

n∑
k=1

∣∣∣J XT
h,kAJ Xh,k

∣∣∣l 1 (
||γc[ξn, 1]|| ≥ ξ′n/2

) p
−→ 0,

4.) nr 1
T

n∑
k=1

∣∣∣J XT
h,kAJ Xh,k

∣∣∣l 1(||sJ Xh,k[ξn]|| ≥ ξ′n/2)
p
−→ 0,

5.) nr 1
T

n∑
k=1

∣∣∣J XT
h,kAJ Xh,k

∣∣∣l 1(C Xh,k < Bn)
p
−→ 0.

Ad 1.), we have

(J XT
h,k A J Xh,k)l =

(
CPXT

h,k[ξn] A CPXh,k[ξn] +sJ XT
h,k[ξn] A sJ Xh,k[ξn]

+ γc
h[ξn, 1]T A γc

h[ξn, 1] + CPXT
h,k[ξn] A sJ Xh,k[ξn] + sJ XT

h,k[ξn] A CPXh,k[ξn]

+ CPXT
h,k[ξn] A γc

h[ξn, 1] + γc
h[ξn, 1]T A CPXh,k[ξn] + sJ XT

h,k[ξn] A γc
h[ξn, 1] + γc

h[ξn, 1]T A sJ Xh,k[ξn]
)l
.

We use the decomposition in 1.) and use Lemma 10(iii) and Lemma 11. Then there exists a κ > 0 such that the
following upper bound holds true.

nr sup
z∈Rd

∣∣∣∣∣∣ 1
T

n∑
k=1

(
CPXT

h,k[ξn]ACPXh,k[ξn]
)l
1(CPXh,k[ξn] ≤ z) −

1
T

∑
0≤t≤T

(
∆LT

t A∆Lt

)l
1(∆Lt ≤ z)

∣∣∣∣∣∣ (A.3)

+ κ nr 1
T

l∑
m=1

n∑
k=1

|CPXh,k[ξn]|2l−2m(|sJ Xh,k[ξn]||sJ Xh,k[ξn]|)m (A.4)

+ κ nr 1
T

l∑
m=1

n∑
k=1

|CPXh,k[ξn]|2l−2m(|CPXh,k[ξn]||sJ Xh,k[ξn]|)m (A.5)

+ κ nr 1
T

l∑
m=1

n∑
k=1

|CPXh,k[ξn]|2l−2m(|γc
h,k[ξn, 1]||γc

h,k[ξn, 1]|)m (A.6)

+ κ nr 1
T

l∑
m=1

n∑
k=1

|CPXh,k[ξn]|2l−2m(|CPXT
h,k[ξn]||γc

h,k[ξn, 1]|)m (A.7)

+ κ nr 1
T

l∑
m=1

n∑
k=1

|CPXh,k[ξn]|2l−2m(|sJ XT
h,k[ξn]||γc

h,k[ξn, 1]|)m. (A.8)
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Ad (A.3), by Lemma 11 there exists a κ > 0 such that

nrE

 1
T

∑
0≤t≤T

(∆LT
t A∆Lt)l1(||∆Lt || ≤ ξn)


≤ κ nrE

 1
T

∑
0≤t≤T

|∆Lt |
2l1(||∆Lt || ≤ ξn)

 = κ nr
∫
||x||≤ξn

|x|2lν(dx) ≤ κ nr
d∑

i=1

∫
|xi |≤ξn

|xi|
2lνi(dxi).

Thus, in (i) this term tends to zero, because r = 0 and in (ii) we use (3) and obtain an upper bound

nrξ2
n

∫ ξn

−ξn

x2ν(dx)→ 0.

Finally, by Lemma 2 we obtain, for all ε > 0,

P

nr sup
z∈Rd

∣∣∣∣∣∣∣ 1
T

n∑
k=1

(
CPXT

h,k[ξn]ACPXT
h,k[ξn]

)l
1(CPXh,k[ξn] ≤ z) −

1
T

∑
0≤t≤T

(
∆LT

t A∆Lt

)l
1(∆Lt ≤ z, ||∆Lt || > ξn)

∣∣∣∣∣∣∣ > ε


≤ P(M(n)
2 (ξn))→ 0.

The terms (A.4), (A.5), (A.6) and (A.7) are considered in Lemma 9. The term in (A.8) is bounded by (A.4) and (A.6).
Ad 2.), obviously the following upper bound is given by

2 nr sup
z∈Rd

∣∣∣∣∣∣ 1
T

n∑
k=1

|J XT
h,kAJ Xh,k |

l1(CPXh,k[ξn] ∈ (z − 2ξ′n, z + 2ξ′n), CPXh,k[ξn] , 0)

∣∣∣∣∣∣ + 2nr 1
T

n∑
k=1

|sJ XT
h,kAsJ Xh,k |

l.

By Lemma 11, for the second term, an upper bound is given by

2nr 1
T

n∑
k=1

|sJ Xh,k |
2l.

This term is considered in Lemma 9. For the first term we use Hölder’s inequality; in (i) we set p = 2 and in (ii) we
use the given p. Then we obtain 1

T

n∑
k=1

|J XT
h,kAJ Xh,k |

lp

1/p

sup
z∈Rd

(
nr/(1−1/p) 1

T

n∑
k=1

1(CPXh,k[ξn] ∈ (z − 2ξ′n, z + 2ξ′n), CPXh,k[ξn] , 0)
)1−1/p

.

The first term is stochastically bounded, because we can use Lemma 11, Lemma 12 and the given moment condition to
realize that the absolute moment is uniform bounded in n. For the second term we define θ := 0 in (i) and θ := α/3−δ′

in (ii), where δ := blα/(α−3r)+1c/l−α/(α−3r) and δ′ := δ(α2−6α r+9 r2)/(3δ α−9 δ r+9 r) > 0. Thus, θ ∈ (r, α/3).
Then, for all ε > 0,

P
nr sup

z∈Rd

∣∣∣∣∣∣∣ 1
T

n∑
k=1

1(CPXh,k[ξn] ∈ (z − 2ξ′n, z + 2ξ′n), CPXh,k[ξn] , 0)

∣∣∣∣∣∣∣ > ε


≤ P
(
nr sup

z∈Rd

∣∣∣∣∣∣ 1
T

n∑
k=1

1

( d⋂
i=1

{
CPXh,k,i[ξn] ∈ (z(i) − 2ξ′n, z

(i) + 2ξ′n), CPXh,k[ξn] , 0
})∣∣∣∣∣∣ > ε

)

≤ P
(
nr sup

z∈Rd

∣∣∣∣∣∣ 1
T

n∑
k=1

1
(
∃i ∈ {1, ..., d} : CPXh,k,i[ξn] ∈ (z(i) − 2ξ′n, z

(i) + 2ξ′n), CPi Xh,k[ξn] , 0
)∣∣∣∣∣∣ > ε

)

≤ P
(
nr sup

z∈Rd

∣∣∣∣∣∣ 1
T

n∑
k=1

1

( d⋃
i=1

{
CPXh,k,i[ξn] ∈ (z(i) − 2ξ′n, z

(i) + 2ξ′n), CPi Xh,k[ξn] , 0
})∣∣∣∣∣∣ > ε

)
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≤ P
( d∑

i=1

nr sup
z(i)∈R

∣∣∣∣∣∣ 1
T

n∑
k=1

1
(
CPXh,k,i[ξn] ∈ (z(i) − 2ξ′n, z

(i) + 2ξ′n), CPi Xh,k[ξn] , 0
)∣∣∣∣∣∣ > ε

)

≤

d∑
i=1

P
(
nr sup

z(i)∈R

∣∣∣∣∣∣ 1
T

n∑
k=1

1
(
CPXh,k,i[ξn] ∈ (z(i) − 2ξ′n, z

(i) + 2ξ′n), CPi Xh,k[ξn] , 0
)∣∣∣∣∣∣ > ε/d

)

≤ P(M(n)
3 (ξn)) +

d∑
i=1

P(M(n)
2 (ξn, ξ

′
n, 1 − α − θ, i)) −→ 0.

The convergence follows from Lemma 2 and 3.
Ad 3.), in (i) the term is equal to zero for large n because we have

h
∫
ξn≤||x||≤1 ||x||ν(dx)

ξ′n/4
≤

hν((−ξn, ξn)c)
ξ′n/4

≤

√
nhν((−ξn, ξn)c)

ξ′n
2 → 0.

In (ii), by (3) there exists a κ > 0 such that

h
∫
ξn≤||x||≤1 ||x||ν(dx)

ξ′n/4
≤

d∑
i=1

h
∫

(−1,−ξn]∪[ξn,1] |xi |̃νi(dxi)

ξ′n/4
≤

d∑
i=1

κ h
∫

(−1,−ξn]∪[ξn,1] 1/x2
i dxi

ξ′n
≤

κ h
ξn ξ′n

→ 0.

Ad 4.), we use the decomposition of 1.) and only have to show

nr 1
T

n∑
k=1

∣∣∣CPXT
h,k[ξn]ACPXh,k[ξn]

∣∣∣l 1(||sJ Xh,k,i[ξn]|| ≥ ξ′n/2)

≤ nr 1
T

n∑
k=1

∣∣∣CPXT
h,k[ξn]ACPXh,k[ξn]

∣∣∣l  d∑
i=1

1(|sJi Xh,k,i[ξn]| ≥ ξ′n/2)

 .
We use Lemma 11 and Lemma 12 and have for the expectation

nrO(1)· 4
d∑

i=1

Var(cJi Xh,k[ξn])/ξ′n
2 = nrO(1)· 4

d∑
i=1

∫ ξn

−ξn

x2
i ν̃(dxi)/ξ′n

2 = nrh · O(1)/ξ′n
2 → 0.

Ad 5.), the probability that this term is different from zero is considered in Lemma 1.

Lemma 9. We use the setting given in Lemma 8 (i) and (ii) and consider j1, j2 ∈ {0, . . . , 2l} satisfying either j1 >
0, j2 ∈ {1, ..., 2l} or j1 = 0, j2 = 2l. Then, as n→ ∞,

1.) nr 1
T

n∑
k=1

∣∣∣CPXh,k[ξn]
∣∣∣ j1 ∣∣∣sJ Xh,k[ξn]

∣∣∣ j2 P
−→ 0,

2.) nr 1
T

n∑
k=1

∣∣∣CPXh,k[ξn]
∣∣∣ j1 ∣∣∣γc

h,k[ξn, 1]
∣∣∣ j2 P
−→ 0.

Proof. Ad 1.), in the case j1 > 0, j2 ∈ {1, ..., 2l} we have

P
(
nr 1

T

n∑
k=1

∣∣∣CPXh,k[ξn]
∣∣∣ j1 ∣∣∣sJ Xh,k[ξn]

∣∣∣ j2
> ε

)
≤ P

(
nr 1

T

n∑
k=1

∣∣∣CPXh,k[1]
∣∣∣2b( j1+1)/2c

+ N((k−1)h,hk]((−ξn, ξn)c)
∣∣∣sJ Xh,k[ξn]

∣∣∣ j2
> ε

)
(A.9)

+ P
(
M(n)

2 (ξn)
)
, (A.10)
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where Lemma 2 defines the set M(n)
2 (ξn) and proves that (A.10) converges to zero. In (A.9) we have used that on

Ω\M(n)
2 (ξn)c each CPXh,k[ξn] contains at most one jump, that is either larger or smaller than one. We consider the

expectation of the term in (A.9)

nr n
T
E

[(∣∣∣CPXh,k[1]
∣∣∣2b( j1+1)/2c

+ N0,h((−ξn, ξn)c)
)]
E

[∣∣∣sJ Xh,1[ξn]
∣∣∣ j2

]
≤ nr n

T
(O(h) + h ν ({x : ||x|| ≥ ξn}))

√
E

[
sJ X2 j2

h,1 [ξn]
]

≤ O(1) nr−α/2 ν ({x : ||x|| ≥ ξn})

√√√ d∑
i=1

(∫
||x||≤ξn

x2 j2
i ν(dx) + O(h)

)
,

where we have used Lemma 12. In the setting (i) of Lemma 8 this term tends to zero by the conditions of Lemma 3(i),
for setting (ii) we can find an upper bound by using (3)

O(1) nr−α/2
d∑

i=1

ν̃i((−ξn, ξn)c)

√√√ d∑
i=1

∫
||x||≤ξn

x2 j2
i ν(dx) ≤ O(1) nr−α/2

d∑
i=1

∫
|xi |≥ξn

fi(xi)dxi

√√√ d∑
i=1

∫
||x||≤ξn

x2 j2
i ν(dx)

≤ O(1) nr−α/2 ξ−2
n

√√√ d∑
i=1

∫
||x||≤ξn

x2 j2
i ν(dx) −→ 0.

In the case j1 = 0, j2 = 2l there exists by Lemma 10(ii) and Lemma 12(ii) a κ > 0 such that,

nrE

 1
T

n∑
k=1

∣∣∣sJ Xh,k[ξn]
∣∣∣2l

 = nrE

 1
T

n∑
k=1

 d∑
i=1

sJ X2
h,k,i[ξn]


l

≤ κ nr n
T

d∑
i=1

E
[

sJ X2l
h,1,i[ξn]

]
≤ nr n h

T

d∑
i=1

(∫ ξn

−ξn

x2l
i ν̃i(dxi) + O(h)

)
.

This term tends to zero in setting (i), since

n0
∫ ξn

−ξn

x2
i ν̃i(dxi)→ 0

and in setting (ii), because

nr
∫ ξn

−ξn

x2l
i ν̃i(dxi) ≤ nrξ2l−2

n

∫ ξn

−ξn

x2
i ν̃i(dxi)→ 0.

Ad 2.), in setting (i) we have ∣∣∣γc
h[ξn, 1]

∣∣∣ ≤ h
∫
ξn≤||x||≤1

||x||ν(dx) ≤ hν ({x : ||x|| ≥ ξn})

and in setting (ii) we have

∣∣∣γc
h[ξn, 1]

∣∣∣ ≤ h
∫
ξn≤||x||≤1

||x||ν(dx) ≤
d∑

i=1

∫
ξn≤|xi |≤1

|xi |̃νi(dxi) ≤ h/ξn.

So the term in 2.) converges analogously to 1.) to zero by using the conditions on ξn given in Lemma 3.
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Lemma 10. Let r, s ∈ N, n ∈ N, k ∈ {1, · · · , n} and i ∈ {1, · · · , n}. Then, there exists κ(r, s) > 0 such that, for all
ak,i,n ∈ R+, bk,i,n ∈ R+, ck,n ∈ R+, dn ∈ R+ the following inequalities hold true.

(i)
n∑

k=1

ck,n

 r∑
i1,i2=1

ak,i1,nbk,i2,n

s ≤ κ(r, s)
r∑

i1,i2=1

n∑
k=1

ck,nas
k,i,nbs

k,i,n,

(ii)
n∑

k=1

ck,n

 r∑
i1,i2=1

ak,i1,nak,i2,n

s ≤ κ(r, s)
r∑

i=1

n∑
k=1

ck,na2s
k,i,n,

(iii)

∣∣∣∣∣∣∣
n∑

k=1

ck,n

 r∑
i=1

ak,i,n

s

− dn

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣

n∑
k=1

ck,nas
k,1,n − dn

∣∣∣∣∣∣∣ + κ(r, s)
r∑

i=2

s∑
m=1

n∑
k=1

ck,nas−m
k,1,nam

k,i,n.

Proof. Ad (i), because x 7→ xs/r2s is a convex function on R+, we have(∑r
i1,i2=1 ak,i1,nbk,i2,n

r2

)s

≤

∑r
i1,i2=1 as

k,i1,n
bs

k,i2,n

r2s .

Hence,

n∑
k=1

ck,n

 r∑
i1,i2=1

ak,i1,nbk,i2,n

s ≤ r2s−2
n∑

k=1

ck,n

r∑
i1,i2=1

as
k,i1,nbs

k,i2,n.

Ad (ii), we have

n∑
k=1

ck,n

 r∑
i1,i2=1

ak,i1,nak,i2,n

s ≤ n∑
k=1

(
ck,nrs max

i=1,...,r
{a2s

k,i,n}

)
≤ rs

n∑
k=1

ck,n

r∑
i=1

a2s
k,i1,n = κ(r, s)

r∑
i=1

n∑
k=1

ck,na2s
k,i1,n.

Ad (iii), we have∣∣∣∣∣∣∣
n∑

k=1

ck,n

 r∑
i=1

ak,i,n

s

− dn

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
n∑

k=1

ck,n

s∑
m=0

(
s
m

)
as−m

k,1,n

 r∑
i=2

ak,i,n

m

− dn

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
n∑

k=1

ck,nas
k,1,n − dn

∣∣∣∣∣∣∣ +

n∑
k=1

ck,n

s∑
m=1

(
s
m

)
as−m

k,1,n

 r∑
i=2

ak,i,n

m

≤

∣∣∣∣∣∣∣
n∑

k=1

ck,nas
k,1,n − dn

∣∣∣∣∣∣∣ + κ(r, s)
n∑

k=1

ck,n

s∑
m=1

as−m
k,1,n(r − 1)m max

i=2,...,r
{am

k,i,n}

≤

∣∣∣∣∣∣∣
n∑

k=1

ck,nas
k,1,n − dn

∣∣∣∣∣∣∣ + κ(r, s)
n∑

k=1

ck,n

s∑
m=1

as−m
k,1,n

r∑
i=2

am
k,i,n =

∣∣∣∣∣∣∣
n∑

k=1

ck,nas
k,1,n − dn

∣∣∣∣∣∣∣ + κ(r, s)
r∑

i=2

s∑
m=1

n∑
k=1

ck,nas−m
k,1,nam

k,i,n.

Lemma 11. Let A ∈ Rd×d, A = (ai, j)d
i, j=1 and x, y ∈ Rd. Then,

xT Ay ≤ d! max
i, j=1,··· ,d

|ai, j| |x| |y|.

Proof. We denote by Π the set of all permutations of {1, · · · , d}. Define π0 ∈ Π such that the following inequality is
satisfied

∑d
i=1 |xiyπ(i)| ≤

∑d
i=1 |xiyπ0(i)| for all π ∈ Π. Then we use Cauchy-Schwarz inequality and obtain

xT Ay =

d∑
i, j=1

xi ai, j y j ≤ max
i, j=1,··· ,d

|ai, j|

d∑
i, j=1

|xiy j| = max
i, j=1,··· ,d

|ai, j|
∑

i∈{1,...,d},π∈Π

|xiyπ(i)| ≤ d! max
i, j=1,··· ,d

|ai, j|

d∑
i=1

|xiyπ0(i)| ≤ κ|x||y|.
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Lemma 12. Let {Lt, t ≥ 0} be an R−valued Lévy process and {C L′t , t ≥ 0} an R−valued nonstandard Wiener process.
Then, as h→ 0,

(i) E [|Lh|] = O(
√

h),

(ii) E
[
Lh

j
]

= h cn(1) + O(h2) = O(h), j ∈ N, j even,

(iii) E
[
|Lh|

j
]

= O(h), j ∈ N, j ≥ 3, j odd,

(iv) E
[
C L j

h

]
= O(h j/2), j ∈ N, j even,

where we have assumed that E
[
L1

2b( j+1)/2c
]
< ∞ and have denoted by c j(1) the j-th cumulant of L1.

Proof. The connection between cumulants and moments is given by (cf. Lukacs, 1970, p.27)

E
[
L′h

j
]

= c j(h) +

n−1∑
k=1

(
n − 1
k − 1

)
ck(h)E

[
L j−k

h

]
.

So (ii) follows directly. For (i) the Lyapunov inequality can be applied and for (iii) we have

E
[
|Lh|

j
]
≤ E

[
Lh

j−1
]

+ E
[
Lh

j+1
]
.

The cumulants c j(h) of a Wiener process are equal to zero for j ≥ 3, so (iv) follows directly.
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