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Abstract. An index theorem is a tool for computing the change of the index (i.e., the number
of negative eigenvalues) of a symmetric monotone matrix-valued function when its variable
passes through a singularity. In 1995, the first author proved an index theorem in which
a certain critical matrix coefficient is constant. In this paper, we generalize the above index
theorem to the case when this critical matrix may be varying, but its rank, as well as the
rank of some additional matrix, are constant. This includes as a special case the situation
when this matrix has a constant image. We also show that the index theorem does not hold
when the main assumption on constant ranks is violated. Our investigation is motivated by
the oscillation theory of discrete symplectic systems with nonlinear dependence on the spectral
parameter, which was recently developed by the second author and for which we obtain new
oscillation theorems.

1. Motivation

In 1995, the first author proved a result called an “index theorem”, which shows how to
compute the change of the index of a symmetric monotone matrix-valued function when its
variable passes through a singularity, see [16, Theorem 2] or [17, Theorem 3.4.1], and for
comparison also [20, Proposition 2.5]. By the index of a matrix we mean the number of
its negative eigenvalues. This result has been utilized in many applications, in particular in
the oscillation theory of Sturm–Liouville differential equations, linear Hamiltonian systems,
and discrete symplectic systems. The relevant references are [17, Sections 4.2, 5.2, 7.2] and
[5, 9, 18,20].
One of the key assumptions of the index theorem in [16, Theorem 2] is that one of the

considered coefficients is constant, i.e., it does not depend on t. In our main result (Theorem 2.1
below) this would be the matrix R2 ≡ R2(t). This assumption implies certain limitations in the
applications. For example, in [20, Section 6.4] it was observed that the application of the index
theorem in the oscillation theory of discrete symplectic systems forces one of the coefficients of
the system, denoted by Bk(λ) in Section 3, to be independent of the spectral parameter λ. On
the other hand, a subsequent result of the second author in [21] shows that in the scalar case,
i.e., for second order Sturm–Liouville difference equations

∆(rk(λ)∆xk) + qk(λ) xk+1 = 0, k ∈ [0, N − 1]Z, (1.1)

the oscillation theorems in [20, Section 6.1] hold without the restriction on constancy of the
coefficient Bk(λ) = 1/rk(λ). The latter results in [21] were, however, derived without using the
index theorem.
Those investigations in [20, 21] raised the question whether the index theorem could be

derived under some more general assumptions than the constancy of that coefficient. In this
paper we affirmatively answer this question. We prove a general index theorem in which the
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critical matrix coefficient is allowed to be varying with constant rank. Our index theorem
is new even under the special assumption on the constant image of the critical matrix. The
index theorem with the latter assumption then naturally leads to new oscillation theorems for
discrete symplectic systems, whose coefficient Bk(λ) has a constant image in λ, see Section 3.
This includes, in particular, second order Sturm–Liouville difference equations (1.1) considered
in [21], for which we have Bk(λ) = 1/rk(λ), as well as Sturm–Liouville difference equations of
arbitrary even order

n∑
j=0

(−1)j∆j
(
r
[j]
k (λ)∆jyk+n−j

)
= 0, k ∈ [0, N − n]Z, (1.2)

for which have

Bk(λ) = (1, . . . 1, 1)T · (0, . . . , 0, 1) · 1/r[n]k (λ). (1.3)

In both cases we see that the image of Bk(λ) is constant. Therefore, the results of this paper
are important not only as a new theory, but also for applications. Such applications arise e.g.
in control theory, in which Hamiltonian and symplectic systems play an indispensable role.

2. Generalized index theorem

In this paper, we denote by KerA, ImA, rankA, defA, indA, AT , A−1, and A† the kernel,
image, rank, defect (i.e., the dimension of the kernel), index, transpose, inverse, and the Moore–
Penrose generalized inverse (shortly the pseudoinverse) of the matrix A, see [2]. Moreover, the
notation f(0+) and f(0−) stands for the right-hand and left-hand limits of the function f(t) at
t = 0. The statement of the main result of this paper now follows.

Theorem 2.1 (Index theorem). Let X(t), U(t), R1(t), R2(t) be given real m×m-matrix-valued
functions on [0, ε) such that

R1(t)R
T
2 (t) and XT (t)U(t) are symmetric,

rank (R1(t), R2(t)) = rank (XT (t), UT (t)) = m

}
for t ∈ [0, ε), (2.1)

and assume that X(t), U(t), R1(t), R2(t) are continuous at 0, i.e.,

lim
t→0+

R1(t) = R1 := R1(0), lim
t→0+

X(t) = X := X(0),

lim
t→0+

R2(t) = R2 := R2(0), lim
t→0+

U(t) = U := U(0),

 (2.2)

and that X(t) is invertible for t ∈ (0, ε). Moreover, denote

M(t) := R1(t)R
T
2 (t) +R2(t)U(t)X−1(t)RT

2 (t),

Λ(t) := R1(t)X(t) +R2(t)U(t), Λ := Λ(0)

S(t) := X†RT
2 (t), S := S(0),

S∗(t) := RT
2 (t)−XS(t) = (I −XX†)RT

2 (t), S∗ := S∗(0),


(2.3)

and suppose that the functions U(t)X−1(t) and M(t) are monotone on (0, ε) and that

rankR2(t) ≡ rankR2 and rankS∗(t) ≡ rankS∗ =: m− r (2.4)

are constant on [0, ε). Finally, let T ∈ Rm×r be such that

rankT = r, T TT = Ir×r, ImT = KerS∗, and Q := T TΛST ∈ Rr×r. (2.5)
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Then the matrix Q is symmetric, and indM(0+), indM(0−), def Λ(0+) exist with

indM(0+) = indQ+m− rankT + def Λ− def Λ(0+)− defX (2.6)

if M(t) and U(t)X−1(t) are nonincreasing on (0, ε), and

indM(0+) = indQ+m− rankT (2.7)

if M(t) and U(t)X−1(t) are nondecreasing on (0, ε).

Remark 2.2. (i) If R2(t) ≡ R2 is constant on [0, ε) as in [16, Theorem 2] and [20, Proposi-
tion 2.5], then assumption (2.4) is trivially satisfied. Therefore, our Theorem 2.1 is a general-
ization of those results to varying R2(t).
(ii) Note that if ImRT

2 (t) is constant on [0, ε), then (2.4) is also satisfied. Observe that this
constant image assumption does not depend on X, while of course (2.4) depends in general on
R2(t) and also on X. Note that by the rank formula rankAB = rankB − dim (KerA ∩ ImB),
see e.g. [2, Fact 2.10.13(ii)], we have

rankS∗(t) = rankR2(t)− dim (ImX ∩ ImRT
2 (t)).

(iii) Condition (2.4) is optimal in a sense that it cannot be further weakened to a constant rank
of R2(t) alone. More precisely, we provide examples illustrating the fact that the conclusions
of Theorem 2.1 do not hold when the rank of R2(t) changes. Similarly, another example shows
that the conclusions of Theorem 2.1 do not hold either if the constant rank condition is satisfied
by R2(t) but it is violated by S∗(t), or when the rank of R2(t) is constant but the image of
RT

2 (t) changes.
(iv) The analysis of the proof of [16, Theorem 2] or [17, Theorem 3.4.1, pp. 102–104] shows

that the main problem with varying R2(t) resides in the fact that the Moore–Penrose pseudoin-

verse R†
2(t) is not in general continuous at 0. The key to this problem is [7, Theorem 10.5.1],

which says that the Moore–Penrose pseudoinverse of a continuous matrix is continuous if and
only if the matrix has constant rank. In particular, the continuity of R†

2(t) now follows from
assumption (2.4).

Proof of Theorem 2.1. By [7, Theorem 10.5.1] and (2.4), the continuity of R1(t) and R2(t)
implies that S∗(t) → S∗, S(t) → S, V (t) → V as t → 0+ with

r = rankV ≡ rankV (t), ImV (t) = KerS∗(t) for t ∈ [0, ε),

where the m×m matrices V (t) and V are defined by

V (t) := I − [S∗(t)]†S∗(t), V := V (0).

The monotonicity of M(t) on (0, ε) implies that defM(0+) and indM(0+) exist and, since
M(t) = Λ(t)X−1(t)RT

2 (t) on (0, ε), we have by [16, formula (21)] or [17, formula (3.4.8)]

KerM(t) = KerΛT (t)⊕KerRT
2 (t) for all t ∈ (0, ε). (2.8)

It follows from (2.8) that

defM(0+) = def Λ(0+) + defR2 (2.9)

with defR2(t) ≡ defR2 by (2.4). Hence, def Λ(0+) exists as well. Moreover, RT
2 T = (XS +

S∗)T = XST , since S∗T = 0, and therefore,

Q = T TΛST = T T (R1X +R2U)ST = T T (R1R
T
2 + STXTUS)T

is symmetric. Next, by [17, Corollary 3.1.3], we have R1(t) = R2(t)S1(t) + S2(t) for t ∈ [0, ε),
where S1(t) is symmetric, rank (R2(t), S2(t)) = m, KerS2(t) = ImRT

2 (t), i.e., S2(t)R
T
2 (t) = 0,
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for all t ∈ [0, ε). In particular, we may take

S1(t) :=
1
2
RT

1 (t) [R
†
2(t)]

T + 1
2
R†

2(t)R1(t), (2.10)

S2(t) :=
1
2
R1(t) [I −R†

2(t)R2(t)] +
1
2
[I −R2(t)R

†
2(t)]R1(t), (2.11)

as can be verified by direct calculations. Hence, by assumption (2.4), we have S1(t) → S1 :=
S1(0) as t → 0+, and in particular S1(t) is bounded as t → 0+. It now follows from the limit
theorem [15, Theorem 1] or [17, Theorem 3.3.7] by the monotonicity of U(t)X−1(t) that

XT [S1(t) + U(t)X−1(t)]X → XT (S1X + U) as t → 0+,

dT [S1(t) + U(t)X−1(t)] d → ∞ (resp. −∞) as t → 0+ for all d ̸∈ ImX.

}
(2.12)

By rankV (t) ≡ r, there exists R(t) ∈ Rm×r such that S∗(t)T (t) = 0 and

T T (t)T (t) = Ir×r with T (t) := V (t)R(t) for all t ∈ (0, ε). (2.13)

By the Bolzano–Weierstrass theorem, there exists a sequence tk ↘ 0 such that

T := lim
k→∞

T (tk) exists. (2.14)

Then T ∈ Rm×r and S∗ T = 0, T TT = Ir×r, ImT = KerS∗, i.e., it satisfies the requirements in
(2.5) of the theorem.
On the other hand, the matrices, R1, R2, X, U , S, S∗, Λ, T , Q from (2.3), (2.14), (2.5)

are given as in the rank theorem [16, Theorem 1] or [17, Theorem 3.1.8], so that in particular
RT

2 d ∈ ImX if and only if d ∈ ImT . Since RT
2 (t)T (t) = XS(t)T (t), we get

T T (tk)M(tk)T (tk) = T T (tk)S
T (tk)X

T [S1(tk) + U(tk)X
−1(tk)]XS(tk)T (tk) → Q

for k → ∞, by (2.12). Moreover, if d ̸∈ ImT , then x(t) := RT
2 (t) d → RT

2 d ̸∈ ImX as t → 0+,
and it follows from (2.12) and [17, Eq. (3.3.7∗) of Proposition 3.3.10] that dTM(t)d → ∞ (resp.
−∞) as t → 0+ for all d ̸∈ ImT . Hence, we have shown that

T T (tk)M(tk)T (tk) → Q as k → ∞, and

dTM(t) d → ∞ (resp. −∞) as t → 0+ for all d ̸∈ ImT .

}
(2.15)

Let µ1(t), . . . , µm(t) and µ1, . . . , µr be the eigenvalues of M(t) and Q. We will prove:

(i) µi(t) → µi for i ∈ {1, . . . , r} and µi(t) → ∞ for i ∈ {r + 1, . . . ,m} as t → 0+, when
µ1(t) ≤ · · · ≤ µm(t) and µ1 ≤ · · · ≤ µr, and if M(t) and U(t)X−1(t) are nonincreasing,

(ii) µi(t) → µi for i ∈ {1, . . . , r} and µi(t) → −∞ for i ∈ {r + 1, . . . ,m} as t → 0+, when
µ1(t) ≥ · · · ≥ µm(t) and µ1 ≥ · · · ≥ µr, and if M(t) and U(t)X−1(t) are nondecreasing.

Without loss of generality we may consider only the case (i), since for the proof of the case (ii)
we may take −M(t) and −U(t)X−1(t). First observe that by [17, Proposition 3.2.3] the eigen-
values µ1(t), . . . , µm(t) are nonincreasing, because M(t) is nonincreasing on (0, ε). Moreover,
µ1(t), . . . , µr(t) are bounded by (2.15), (2.13), and the minimum-maximum principle (compare
with [17, Proposition 3.2.1]). Hence, the limit

µ′
i := lim

t→0+
µi(t) exists for i ∈ {1, . . . , r} with µ′

1 ≤ · · · ≤ µ′
r. (2.16)

We claim that µ′
i = µi for all i ∈ {1, . . . , r}. Note that [17, Proposition 3.2.6] or [16, Propo-

sition 3] cannot be applied, because the matrix T (t) now depends on t and it is not constant
in general. But we will proceed similarly as in the proof of [17, Proposition 3.2.6]. This is the
crucial new aspect of this proof, because [17, Proposition 3.2.6] becomes in general false for
T = T (t) depending on t. On the other hand, its assertion remains true in our special situation,
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where we do not use the monotonicity of M(t) alone, but also the monotonicity of U(t)X−1(t).
We proceed as follows.
First, let d1, . . . , dr ∈ Rr be orthonormal eigenvectors of Q, i.e., Qdi = µidi for i ∈ {1, . . . , r}.

For these indices and for t ∈ (0, ε) we define the vectors ci(t) := T (t) di. Then c1(t), . . . , cr(t) ∈
Rm are also orthonormal, since T T (t)T (t) = Ir×r for t ∈ (0, ε). From the extremal proper-
ties of the eigenvalues by the minimum-maximum principle [17, Proposition 3.2.1(ii)], from
limk→∞ T T (tk)M(tk)T (tk) = Q by (2.15), and from µ′

i = limk→∞ µi(tk) by (2.16) it follows
that for the given ε > 0 there exists an index N ∈ N such that

µi = max

{
dTQd

∥d∥2
, d ∈ Rr, d ⊥ di+1, . . . , dr

}
≥ max

{
dT T T (tk)M(tk)T (tk) d

∥d∥2
− ε, d ∈ Rr, d ⊥ di+1, . . . , dr

}
= max

{
cTM(tk) c

∥c∥2
− ε, c ∈ Rm, c ⊥ ci+1(tk), . . . , cr(tk), c ∈ ImT (tk)

}
≥ µi(tk)− ε

for all k ≥ N and i ∈ {1, . . . , r}. Hence, it follows that
µi ≥ µ′

i for every i ∈ {1, . . . , r}. (2.17)

The opposite inequality is the crucial part. Therefore, let d1(t), . . . , dr(t) ∈ Rm be orthonor-
mal eigenvectors of M(t) corresponding to the eigenvalues µ1(t), . . . , µr(t), i.e., M(t) di(t) =
µi(t) di(t) for i ∈ {1, . . . , r} and t ∈ (0, ε). Set D(t) := (d1(t), . . . , dr(t)) ∈ Rm×r. Then, by
the Bolzano–Weierstrass theorem, D(τj) → D ∈ Rm×r as j → ∞ for a subsequence {τj} of
{tk} with τj ↘ 0, and with DTD = Ir×r, since DT (t)D(t) ≡ Ir×r on (0, ε). Moreover, by the
definition, DT (t)M(t)D(t) = diag{µ1(t), . . . , µr(t)}, so that

lim
t→0+

DT (t)M(t)D(t) = Q′ := diag{µ′
1, . . . , µ

′
r}. (2.18)

Since DT (t)M(t)D(t) is bounded as t → 0+, we have by [17, Eq. (3.3.7∗)] that

lim
j→∞

RT
2 (τj)D(τj) = RT

2D with ImRT
2D ⊆ ImX,

and therefore ImD ⊆ ImT . Since DTD = T TT = Ir×r, we obtain that

D = TP for some orthogonal matrix P ∈ Rr×r. (2.19)

Since U(t)X−1(t) is nonincreasing and (2.18) holds, we get for fixed k ∈ N (observe that τj ↘ 0
for j → ∞, i.e., we get eventually j ≥ k)

Q′ = diag{µ′
1, . . . , µ

′
r} = lim

j→∞
DT (τj)R2(τj) [S1(τj) + U(τj)X

−1(τj)]R
T
2 (τj)D(τj)

≥ DTR2 [S1 + U(τk)X
−1(τk)]R

T
2D

(2.19)
= P TT T (XS + S∗)T [S1 + U(τk)X

−1(τk)] (XS + S∗)TP

= P TT TSTXT [S1 + U(τk)X
−1(τk)]XSTP

(2.12)→ P TT TST (XTS1X +XTU)STP = P TQP for k → ∞.

Hence, Q′ ≥ P TQP . Since P is orthogonal, the matrices Q and P TQP have the same eigen-
values. Hence, we conclude that

µi ≤ µ′
i for every i ∈ {1, . . . , r}. (2.20)
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Therefore, by (2.16), (2.17), and (2.20) we have that the statement of part (i) holds. Now, our
index theorem follows exactly in the same way as in [16, Theorem 2] or [17, Theorem 3.4.1] by
using the monotonicity of M(t). In particular, if M(t) is nonincreasing, then the number of
negative eigenvalues of M(t) for positive t close to 0 is equal to the number of its eigenvalues
which are negative at 0 plus the number of its eigenvalues which are zero at 0 but which are
negative in the right neighborhood of 0, i.e.,

indM(0+) = indQ+ defQ− defM(0+). (2.21)

On the other hand, if M(t) is nondecreasing, then the number of negative eigenvalues of M(t)
for positive t close to 0 is equal to the number of its eigenvalues which are negative at 0 plus
the number of its eigenvalues which tend to −∞ as t → 0+, i.e.,

indM(0+) = indQ+m− r. (2.22)

Since by the rank theorem [16, Theorem 1] or [17, Theorem 3.1.8] we have

rankQ = 2 rankT + rankΛ + rankR2 − rankX − 2m, (2.23)

and since defQ = r − rankQ, rankT = r, rankΛ = m − def Λ, rankX = m − defX, and
rankR2 = m− defR2, it follows from (2.23) that

defQ = def Λ− rankT + defR2 − defX +m. (2.24)

Hence, combining formulas (2.21), (2.24), and (2.9), we obtain for nonincreasing M(t)

indM(0+) = indQ+ [def Λ− rankT + defR2 − defX +m]− [def Λ(0+) + defR2]

= indQ+m− rankT + def Λ− def Λ(0+)− defX,

while from (2.22) and rankT = r we get for nondecreasing M(t)

indM(0+) = indQ+m− rankT.

This shows that formulas (2.6) and (2.7) hold and the proof is complete. �

The most significant disadvantage of condition (2.4) is that it depends also on the matrix
X = X(0), which makes it “not really” suitable in practical applications. The following special
case of Theorem 2.1 removes this disadvantage, since the crucial assumption is formulated
only in terms of R2(t). Note that the result below is still more general than [16, Theorem 2]
or [20, Proposition 2.5], since it allows R2(t) to be varying.

Corollary 2.3 (Index theorem). With the notation (2.1)– (2.3) and assumptions of Theo-
rem 2.1, suppose that

ImRT
2 (t) ≡ ImRT

2 is constant on [0, ε) (2.25)

instead of (2.4). Then formulas (2.6) and (2.7) hold.

Proof. The result follows from Remark 2.2(ii). �

The gap between the rank conditions (2.4) and the image condition (2.25) will be discussed
in Remark 2.8. Next we present a two-sided index theorem, which follows from Theorem 2.1
by a simple reflection argument t 7→ −t.

Corollary 2.4 (Index theorem). Assume that the relevant quantities X(t), U(t), R1(t), R2(t),
M(t), Λ(t), S(t), S∗(t) and X, Λ, T , Q in Theorem 2.1 are defined on the interval (−ε, ε),
the right-hand limits in (2.2) are replaced by the corresponding limits, X(t) is invertible on
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(−ε, ε)\{0}, and (2.4) holds on (−ε, ε). If U(t)X−1(t) and M(t) are nonincreasing on (−ε, 0)
and on (0, ε), then the equations

indM(0+) = indQ+m− rankT + def Λ− def Λ(0+)− defX, (2.26)

indM(0−) = indQ+m− rankT (2.27)

hold, and moreover

indM(0+)− indM(0−) = def Λ− def Λ(0+)− defX. (2.28)

The above result will be used in the following examples which illustrate the applicability or
nonapplicability of the new index theorem.

Remark 2.5. Analogously to [16, Theorem 2] and [17, Theorem 3.4.1], the new index theorem
in Corollary 2.3 can be formulated under a slightly different assumption than the monotonicity
of M(t) and U(t)X−1(t), namely under the condition that the matrix

S1(t) + U(t)X−1(t) is monotone on (0, ε), (2.29)

where S1(t) is given in (2.10). This follows by the observation that, under the assumption
(2.25), condition (2.29) implies that a matrix congruent (i.e., with the same inertia) to M(t)
is monotone on (0, ε), and then the proof of [16, Theorem 2] can be modified so that it leads
to the same conclusion as in Corollary 2.3. Observe that our proof of Theorem 2.1 with the
weaker assumption (2.4) instead of (2.25) uses the monotonicity of U(t)X−1(t) and also the
same monotonicity of M(t).

Next we provide several examples which illustrate the “optimality” of our new index theorem.
First we show that Theorem 2.1 does not hold when rankR2(t) is not constant.

Example 2.6. Let m = 1 and fix a > 0. For t ∈ [0, ε), where ε := 1/(2a), we consider
the functions R1(t) ≡ R1 = −1, R2(t) = t, U(t) ≡ U = 1, and X(t) ≡ X = 1/a. Then
U(t)X−1(t) ≡ a is constant (hence nonincreasing), M(t) = at2 − t is decreasing on [0, ε), and
the rank of R2(t) is not constant on [0, ε), since R2 = 0. Moreover, Λ(t) = t−1/a is nonzero on
[0, ε), S(t) = at and S∗(t) ≡ S∗ = 0 on [0, ε), and Q = 0, Λ = −1/a, S = 0. Since rankS∗ = 0,
we have r = 1 and T = 1. It follows that indM(0+) = 1 because M(t) < 0 on (0, ε), while
indQ = 0, rankT = 1, def Λ = 0, def Λ(0+) = 0, and defX = 0. This shows that formula (2.6)
of Theorem 2.1 does not hold (1 ̸= 0). Note that in this case the function S1(t) from (2.10) in
the proof of Theorem 2.1 has the form S1(t) = −1/t for t ∈ (0, ε) and S1(0) = 0, i.e., it is not
continuous at 0 as required in the proof.

In the following example we show that the index theorem, i.e., Theorem 2.1 or Corollary 2.4,
does not hold when R2(t) does have constant rank, but the rank of S∗(t) changes. Note that
in this example the image of RT

2 (t) is not constant either.

Example 2.7. Let m = 2 and ε > 0 be given. For α ∈ {−2, 2} and t ∈ (−ε, ε) we define the
2× 2 matrices

R1(t) =

(
0 0√
|t| 1

)
, R2(t) =

(
1 −

√
|t|

0 0

)
, X(t) = diag{α, t},

U(t) ≡ U = I2×2, R1 = diag{0, 1}, R2 = diag{1, 0}, X = diag{α, 0}.
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Then these matrices satisfy the assumptions of Corollary 2.4 with rankR2(t) ≡ 1 constant on
(−ε, ε), but with rankS∗(t) changing at 0. Indeed, from (2.3) we have

M(t) = diag{m(t), 0} with m(t) := 1/α+ sgn t,

Λ(t) =

(
1 −

√
|t|

α
√
|t| t

)
, S∗(t) =

(
0 0

−
√

|t| 0

)
, S(t) ≡ S = diag{1/α, 0},

Λ = diag{1, 0}, S∗ = 0, T = I2×2, Q = diag{1/α, 0}.

It follows that the functions U(t)X−1(t) = diag{1/α, 1/t} and M(t) are nonincreasing on
(−ε, 0) and (0, ε). Moreover, indM(0+) = 0, indM(0−) = 1, r = rankT = 2, def Λ = 1,
def Λ(0+) = 0, and defX = 1. Now, if α = 2, then defQ = 0 and equation (2.26) is satisfied
(0 = 0), while equation (2.27) does not hold (1 ̸= 0). But if α = −2, then defQ = 1 and
equation (2.27) holds (1 = 1), while (2.26) does not hold (0 ̸= 1). In both cases equation (2.28)
is false (−1 ̸= 0).

Remark 2.8. In the last part of this section we provide a comparison of the rank condition
(2.4) and the image condition (2.25) used in Theorem 2.1 and Corollary 2.3. In particular,
we discuss the gap between (2.4) and (2.25). Of course, condition (2.25) implies (2.4), as
already noted in Remark 2.2(ii) above. Next, it can be easily seen that the constancy of the
rank of R2(t) in (2.4) is equivalent with (2.25) if and only if R2(t) ≡ 0 or R2(t) is invertible.
Moreover, the second rank condition in (2.4) is always satisfied or follows from the first one if
X is invertible or if X = 0. Hence, the “smallest” general situation may occur when m = 2
and r = rankR2(t) = rankX = 1. Below we give examples with these dimensions. One may
construct, of course, similar examples in all higher dimensions.

Example 2.9. Let m = 2 and put X := diag{1, 0} and

R2(t) :=

(
1 −t

0 0

)
, R1(t) :=

(
0 0

t 1

)
, S∗(t) = (I −XX†)RT

2 (t) =

(
0 0

−t 0

)
. (2.30)

Then R1(t)R
T
2 (t) ≡ 0 is symmetric, rank (R1(t), R2(t)) ≡ 2, and ImRT

2 (t) depends on t,
i.e., condition (2.25) does not hold. Moreover, the first condition in (2.4) is satisfied, since
rankR2(t) ≡ 1 is constant, but the second condition in (2.4) is violated as rankS∗(t) ≡ 1 for
t ̸= 0 and rankS∗(0) = 0. On the other hand, if we put

X := diag{0, 1}, S∗(t) = (I −XX†)RT
2 (t) = diag{1, 0}, (2.31)

then rankS∗(t) ≡ 1 is constant. This shows that with R2(t) and X as in (2.30) and (2.31)
condition (2.4) is satisfied, but condition (2.25) is not. Therefore, in this case Theorem 2.1 can
be applied, while Corollary 2.3 cannot be applied.

Finally, we show that the rank conditions (2.4) and the image condition (2.25) are actually
equivalent when the matrix X is taken to be arbitrary. This result describes the most exact
relationship between the two conditions. Note that we do not even assume the continuity of
the function R2(t) at 0.

Proposition 2.10. Let be given an m×m matrix-valued function R2(t) for t ∈ [0, ε) with some
ε > 0 and put R2 := R2(0). Then the following two conditions are equivalent:

(i) rank (I − XX†)RT
2 (0

+) = rank (I − XX†)RT
2 for every X ∈ Rm×m, i.e., for every X

there exists δ ∈ (0, ε) such that rank (I −XX†)RT
2 (t) ≡ rank (I −XX†)RT

2 is constant
on [0, δ),
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(ii) ImRT
2 (0

+) = ImRT
2 , i.e., there exists δ ∈ (0, ε) such that ImRT

2 (t) ≡ ImRT
2 is constant

on [0, δ).

Proof. We know that (ii) implies (i) by Remark 2.2(ii). Now we assume (i). Then for X = 0
there exists δ ∈ (0, ε) such that

rankR2(t) ≡ rankR2 is constant on [0, δ). (2.32)

Suppose that the condition (ii) does not hold, i.e., there exists a sequence {tk}∞k=1 ⊆ (0, δ),
tk ↘ 0 for k → ∞, such that ImRT

2 (tk) ̸= ImRT
2 for all k ∈ N. Hence, since [ImRT

2 (t)]
⊥ =

KerR2(t), we get KerR2(tk) ̸= KerR2 for all k ∈ N. More precisely, KerR2 ̸⊆ KerR2(tk), since
by (2.32) we have defR2(tk) = defR2 for k ∈ N. Now we put

X := RT
2 = RT

2 (0).

Then (I − XX†)RT
2 = 0 and Im (I − XX†) = KerR2 with rank (I − XX†) = defR2(tk)

for all k ∈ N by (2.32). But since Im (I − XX†) = KerR2 ̸⊆ KerR2(tk), we obtain that
R2(tk) (I −XX†) ̸= 0 or, by transposing, (I −XX†)RT

2 (tk) ̸= 0 for all k ∈ N. Hence,
0 = rank (I −XX†)RT

2 < 1 ≤ rank (I −XX†)RT
2 (tk) for all k ∈ N.

Upon taking k → ∞ we get a contradiction with the assumption (i). Hence, condition (ii)
holds, and the proof is complete. �

3. Applications in discrete oscillation theory

In this section we consider an important application of the index theorem in discrete oscilla-
tion theory. In particular, as in [20] we consider the discrete symplectic system

xk+1 = Ak(λ) xk + Bk(λ)uk, uk+1 = Ck(λ) xk +Dk(λ)uk, k ∈ [0, N ]Z, (Sλ)

where λ ∈ R is the spectral parameter, and for k ∈ [0, N ]Z the n × n matrix-valued functions
Ak(λ), Bk(λ), Ck(λ), Dk(λ) are differentiable (hence continuous) in the variable λ. The name
“symplectic system” refers to the fact that the coefficient matrix Sk(λ) of system (Sλ) is assumed
to be symplectic, i.e., for all k ∈ [0, N ]Z and λ ∈ R

ST
k (λ)JSk(λ) = J , Sk(λ) :=

(
Ak(λ) Bk(λ)

Ck(λ) Dk(λ)

)
, J :=

(
0 I

−I 0

)
.

The same property is then satisfied by the fundamental matrix of the system (Sλ). The main
monotonicity assumption for the whole theory in [20] is

Ψk(λ) := J Ṡk(λ)JST
k (λ)J ≥ 0 for all k ∈ [0, N ]Z and λ ∈ R,

where the dot stands for the derivative with respect to λ. It is well known that discrete symplec-
tic systems constitute a natural analogue of continuous time (differential) linear Hamiltonian
systems, see [6, 8, 17,19].
According to [18, Definition 1], the number of focal points of a conjoined basis (X(λ), U(λ))

of (Sλ) in the interval (k, k + 1] is given by the number

mk(λ) := rankMk(λ) + indPk(λ),

where the n× n matrices Mk(λ) and Pk(λ) are defined through the functions Xk(λ), Xk+1(λ),
and Bk(λ). In particular, the matrix Pk(λ) is symmetric. Roughly speaking, the number
rankMk(λ) counts the multiplicity of the focal point at k + 1, while the number indPk(λ)
counts the multiplicity of the focal point in the interval (k, k + 1). One can see from this
definition that when λ varies, the change of the number of focal points in (k, k+1] contains as
one part the change of the index of the symmetric matrix Pk(λ). This provides the connection
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of discrete oscillation theory with the index theorem. In [20], the main results are oscillation
theorems which relate the number of focal points of conjoined bases of (Sλ) in (0, N + 1] with
the number of eigenvalues which lie in the interval (−∞, λ]. Such a result is very valuable in
Sturmian theory, since it gives the number of generalized zeros of corresponding eigenfunctions.
Our generalized index theorem yields new results for associated symplectic eigenvalue prob-

lems with the Dirichlet, separated, and jointly varying endpoints, including the periodic and
antiperiodic boundary conditions. This follows from the proofs of the corresponding results
in [20, Sections 6–7] and [10, 22] upon replacing the condition on constant Bk(λ) ≡ Bk by the
assumption

ImBk(λ) is constant in λ on R (3.1)

and applying Theorem 2.1 instead of [16, Theorem 2] or [20, Proposition 2.5]. The most inter-
esting examples of special symplectic systems, for which we obtain new oscillation results, are
those corresponding to Sturm–Liouville difference equations and linear Hamiltonian difference
systems.

Example 3.1. Consider the Sturm–Liouville difference equation (1.1) with the coefficients

rk(λ) ̸= 0, ṙk(λ) ≤ 0, q̇k(λ) ≥ 0,

see [20, Example 7.6]. Then the corresponding oscillation theorem in [20, Theorem 6.3] with
Bk(λ) = 1/rk(λ) reduces to [21, Theorem 2.8]. However, the proof of the latter result did not
use the index theorem. Note that the function Bk(λ) has constant image as required in (3.1).

Example 3.2. For the higher order Sturm–Liouville difference equations (1.2) with

r
[n]
k (λ) ̸= 0, ṙ

[n]
k (λ) ≥ 0, ṙ

[i]
k (λ) ≤ 0 for all i ∈ {0, . . . , n− 1},

the corresponding oscillation theorem in [20, Theorem 6.3] with Bk(λ) given by (1.3) is new.
Note that also in this case the matrix Bk(λ) has constant image as required in (3.1).

Example 3.3. The results in this section apply also to linear Hamiltonian systems

∆xk = Ak(λ) xk+1 +Bk(λ)uk, ∆uk = Ck(λ)xk+1 − AT
k (λ)uk k ∈ [0, N ]Z, (3.2)

where the n× n matrix-valued functions Ak(λ), Bk(λ), Ck(λ) are differentiable and such that
Bk(λ) and Ck(λ) are symmetric, I − Ak(λ) is invertible with Ãk(λ) := [I − Ak(λ)]

−1,

Ḣk(λ) ≥ 0, Hk(λ) :=

(
−Ck(λ) AT

k (λ)

Ak(λ) Bk(λ)

)
, k ∈ [0, N ]Z, λ ∈ R,

see [20, Example 7.9] and [3]. In this case, we have Bk(λ) = Ãk(λ)Bk(λ) and the corre-
sponding oscillation theorem in [20, Theorem 6.3] holds under the assumption that the matrix
Ãk(λ)Bk(λ) has constant image in λ.

Further applications of the above new oscillation theorems for systems (Sλ), (3.2) and equa-
tions (1.1), (1.2) can be derived in connection with associated discrete quadratic functionals
and Riccati equations and inequalities. We refer to [1, 4, 11–14] for an inspiration.

Acknowledgements

The first author is grateful to the Masaryk University for the hospitality provided when
conducting a part of this project. This research was supported by the Czech Science Foundation
under grant P201/10/1032.



INDEX THEOREM FOR MONOTONE MATRIX-VALUED FUNCTIONS 11

References

[1] C. D. Ahlbrandt, A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Frac-
tions, and Riccati Equations, Kluwer Academic Publishers, Boston, 1996.

[2] D. S. Bernstein, Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems
Theory, Princeton University Press, Princeton, 2005.

[3] M. Bohner, Discrete linear Hamiltonian eigenvalue problems, Comput. Math. Appl. 36 (1998), no. 10–12,
179–192.

[4] M. Bohner, O. Došlý, Disconjugacy and transformations for symplectic systems, Rocky Mountain J. Math.
27 (1997), no. 3, 707–743.
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[21] R. Šimon Hilscher, Spectral and oscillation theory for general second order Sturm–Liouville difference

equations, submitted (2012).
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