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Peclet number. We first introduce a Petrov-Galerkin space-time finite element discretiza-
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sis approximation and associated Brezzi-Rappaz-Raviart a posteriori error bounds. We
detail computational procedures that permit offline-online decomposition for the three
key ingredients of the error bounds: the dual norm of the residual, a lower bound for
the inf-sup constant, and the space-time Sobolev embedding constant. Numerical results
demonstrate that our space-time formulation provides improved stability constants com-
pared to classical L2-error estimates; the error bounds remain sharp over a wide range of
Peclet numbers and long integration times 7', unlike the exponentially growing estimate
of the classical formulation for high Peclet number cases.
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1. Introduction

In this paper, we develop a certified reduced basis method for the parametrized un-
steady Burgers’ equation. Classically, parametrized parabolic partially differential
equations (PDEs) are treated by collecting solution snapshots in the parameter-
time space and by constructing the reduced basis space using the proper orthogonal
decomposition of the snapshots.*%7 Such a formulation enables rapid approxima-
tion of parametrized PDEs by an offline-online computational decomposition, and
the reduced basis solution converges exponentially to the truth finite element for
sufficiently regular problems. However, the quality of the associated L?-in-time a
posteriori error bound relies on the coercivity of the spatial operator. If the spatial
operator is non-coercive, the formulation suffers from exponential temporal instabil-
ity, producing error bounds that grow exponentially in time, rendering the bounds
meaningless for long-time integration. In particular, limited applicability of the clas-
sical a posteriori error bounding technique to unsteady Burgers’ and Boussinesq
equations are documented by Nguyen et al.® and Knezevic et al.”, respectively.

In order to overcome the instability of the classical L2-in-time error-bound
formulation, we follow the space-time approach recently devised by Urban and
Patera,'12; we consider a space-time variational and corresponding finite element
formulation that produces a favorable inf-sup stability constant and then incorpo-
rate the space-time truth within a space-time reduced basis approach. The approach
is inspired by the recent work on the space-time Petrov-Galerkin formulation by
Schwab and Stevenson'!.

The main contribution of this work is twofold. First is the application of the
space-time finite-element and reduced-basis approach to the unsteady Burgers’
equation with quadratic nonlinearity. The formulation results in Crank-Nicolson-like
time-marching procedure but benefits from full space-time variational interpretation
and favorable inf-sup stability constant. The second contribution is the application
of the Brezzi-Rappaz-Raviart theory to the space-time formulation to construct an
error bound for the quadratic nonlinearity. Particular attention is given to the de-
velopment of an efficient computation procedure that permits offline-online decom-
position for the three key ingredients of the theory: the dual norm of the residual;
an inf-sup lower bound, and the Sobolev embedding constant.

This paper is organized as follows. Section 2 reviews the spaces and forms used
throughout this paper and introduces a space-time Petrov-Galerkin variational and
finite element formulation of the Burgers’ equation. Section 3 first presents an hp
interpolation-based reduced basis approximation and then an associated a posteri-
ort error estimate based on the Brezzi-Rappaz-Raviart theory. The section details
the calculation of the dual-norm of the residual, an inf-sup lower bound, and the
space-time Sobolev embedding constant, paying particular attention to the offline-
online computational decomposition. Finally, Section 4 considers two examples of
Burgers’ problems and demonstrates that the new space-time error bound provides
a meaningful error estimate even for noncoercive cases for which the classical esti-
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mate fails. We also demonstrate that the hp interpolation method provides certified
solutions over a wide range of parameters using a reasonable number of points.
Although we consider single-parameter, one-dimensional Burgers’ equation in order
to simplify the presentation and facilitate numerical tests, the method extends to
multi-dimensional incompressible Navier-Stokes equations and several parameters
as will be considered in future work.

2. Truth Solution
2.1. Governing Equation

This work considers a parametrized, unsteady, one-dimensional Burgers’ equation
of the form

ou 0 (1., 1 0%u -

—+— |zt ) - — == =gz reQ tel 2.1

ot  Ox (ZU) Pe 022 9(x), ’ (2.1)
where @ is the state variable, Pe is the Peclet number, g is the forcing term,
Q= (0,1) is the unit one-dimensional domain, and I = (0,7 is the temporal in-
terval with T denoting the final time of interest. We impose homogeneous Dirichlet
boundary conditions,

@(0,t) = a(1,t) =0, Vtel,
and set the initial condition to
(z,0) =0, Vze.
Setting t = {/Pe and u = Pe - @, Eq. (2.1) simplifies to

2
?Z-i—aax(;uQ)—g;;:PeQ-g(x), reQ, tel (2.2)
Note that the transformation makes the left hand side of the equation independent of
the parameter Pe. The homogeneous boundary conditions and the initial condition
are unaltered by the transformation. Moreover, note that T = (1) represents a
long time integration from ¢ = 0 to T = O(Pe) based on the convection time scale.
From hereon, we will exclusively work with this transformed form of the Burgers’
equation, Eq. (2.2).

2.2. Spaces and Forms

Let us now define a few spaces and forms that are used throughout this paper.'?

The standard L?(D) Hilbert space over an arbitrary domain D is equipped with an
inner product (¢, ¢)r2(py = [ ¥édx and a norm |[¢||r2(py = \/(¥,¥)r2(p). The
H'(D) space is equipped with an inner product (v, P ur(py = Jo V- Vdr and an
inner product [[v| g1(py = \/(¥, )1 (p). We also introduce a space of trace-free
functions H} (D) = {v € HY(D) : v|sp = 0} equipped with the same inner product
and norm as H'(D). We define Gelfand triple (V, H,V’) and associated duality
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paring (-, -)v/xy where, in our context, V = H{(Q2) and H = L?(Q). Here the norm

of £ € V' is defined by ||f|v: = %, which is identical to ||R{||y where the

Riesz operator R : V' — V satisfies (R, )y = (¢, P)vixv, V€V Vpe V.
Let us now define space-time spaces, which play key roles in our space-time
formulation. The space L2(I;V) is equipped with an inner product

(w,0) () = / (w(t), v(t))vdt

and a norm |Jw||p2(r.vy = /(w,w)r2(1,v). The dual space L*(I;V’) is equipped
with an inner product

(w0, 0) L2y = /1 (Ruw(t), Ro(t))y dt

and a norm |lwl|p2(vy = /(w,w)p2(vr), where R : V! — V is the aforemen-
tioned Riesz operator. The space H(lo) (I; V') is equipped with an inner product
(w,v)g1(rvry = (W, 0) g2,y and a norm [|w|| g1 (r,vry = /(w, w) g1 (r;v+) and con-
sists of functions {w : ||w| g1 (r,v) < 00, w(0) = 0}; here 1w = 2% denotes the
temporal derivative of w. The trial space for our space-time Burgers’ formulation is

X =L*LV)NH (V')
equipped with an inner product
(w,v)x = (w,v) g (1,7 + (W, ) L2130y

and a norm ||w||x¥ = \/(w, w)x. Note that ||w|% = ||w||§{1(1;v,) + ||w||%2(m/).a The
test space is Y = L%(I; V).

Having defined spaces, we are ready to express the governing equation, Eq. (2.2),
in a weak form. We may seek a solution to the Burgers’ equation expressed in a
semi-weak form: find ¢ € C’(OO)(I; L?(Q)) N L3(I; V) such that!®

(W), d)m + a((t), ) + b(1(t),1(t), ¢) = f(¢;Pe), Vo eV, Vtel,

where C? is the space of functions with continuous p-th derivative, and C’f’o) is the

subspace of CP that consists of functions satisfying the zero initial condition. The

bilinear form a(-,-), the trilinear form b(-,-,-), and the parametrized linear form

f(:;Pe) are given by

0y 0¢

q Oz Oz
1 do

b G0 = — [ wCide, WGV
[¢) X

f(@;Pe) =Pe® - (g,9)vixv Vo EV.

a(y, ¢) = dr, Vi,peV

aThe X-norm used in this work is slightly weaker than that used in Urban and Patera!3:12 that
includes the terminal condition, ||w(T)]||%;.
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Note that the trilinear form b(-,-,-) is symmetric in the first two arguments. By
choosing j = Pe?, we can express the linear form as a linear function of the param-
eter u, i.e.

f(osp) = p- (g, P)vixv.

Thus, our linear form permits so-called affine decomposition with respect to the
parameter u. (We note that the certified reduced-basis formulation presented in
this work readily treats any f that is affine in a function of parameter u, though
the work is presented for the simple single-parameter case above.)

More generally, we can seek the solution to the Burgers’ equation in the space-
time space X. Namely, a space-time weak statement reads: Find u € X such that

Glu,v;) =0, Yve), (2.3)
where the semilinear form G( -, -; ) is given by
G(w,v; p) = M(w,v) + Alw,v) + B(w,w,v) — F(v;pu), Ywe X, Yve), (2.4)

with the space-time forms
Mio) = [ (o) oO)vrnvdt, Vue 270 ey,
I

Afw,v) = / a(w(t), v(t))dt, Yw e X, Yo e Y,

I

B(w, z,v) = /Ib(w(t),z(t),v(t))dt, Yw e X,Vv € ),

Fojp) = p- /(g,v(t)}v/xvdt, Yv e .
I

Note that the trilinear form B(-, -, -) inherits the symmetry with respect to the
first two arguments. Furthermore, we will denote the Fréchet derivative bilinear
form associated with G by 9G, i.e.

G (w, z,v) = M(w,v) + A(w,v) + 2B(w, z,v), Yw,z€ X, Vv €,

where z € X is the linearization point.

Let us note a few important properties of our unsteady Burgers’ problem. First,
our space-time linear form F permits trivial affine-decomposition, i.e. F(v;pu) =
uFo(v) where Fy = fI (g9,v(t)) v’ xvdt. Second, our trilinear form is bounded by

|B(w, z,v)| =

1
—wzdmdt] L lullallalvly, Ve X, e,
Q

where p is the L*-X embedding constant

w .
p= sup || ||L4(I,L4(Q))
weX ||’LU||X
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Recall that the LP norm is defined as ||wl| (1,20 (0)) = ([, Jo, wPdzdt) Y7 This sec-
ond property plays an important role in applying the Brezzi-Rappaz-Raviart the-
ory to construct an a posteriori error bound. Although we consider only Burgers’
equation in this paper, we can readily extend the formulation to any quadratically
nonlinear equation which satisfies suitable hypotheses on the forms, as implicitly
verified above for Burgers’. (We can also consider non-time-invariant operators sub-
ject to the usual affine restrictions.)

2.3. Petrov-Galerkin Finite Element Approximation

To find a discrete approximation to the true solution u € X, let us introduce finite
dimensional subspaces X5 C X and Js C ). The notation used in this section closely
follows that of Urban and Patera.!? We denote the triangulations of the temporal

interval and spatial domain by 7™¢ and 7,7, respectively. In particular, TAme
consists of non-overlapping intervals I* = (t*=1 ¢*], k = 1,..., K, with t° = 0 and

t% = T; here maxy(|I*])/T < At and the family {Ta:}ate(o,1) is assumed to be
quasi-uniform. Similarly, 7, 7% consists of N'+1 elements with max,c7;, diam(x) <
h, belonging to a quasi-uniform family of meshes. Let us introduce a temporal trial
space Sa¢, a temporal test space Qa¢, and a spatial approximation space V}, defined
by

Sar={v e Hi(I) :v|p € PH(I*), k=1,..., K},

Qar={ve L*(I): v e P(I*), k=1,...,K},

Vi ={ve H}(Q):v], € P(k),k € Tn}.

Our space-time finite element trial and test spaces are given by
Xs =5 @V, and Vs =Qar® Vh,

respectively, where § = (At, h) is the characteristic scale of our space-time dis-
cretization. Furthermore, we equip the space X5 with a mesh-dependent inner prod-
uct

(w,v);(d. = (wvv)Hl(I;V’) —+ (H),’U)[ﬁ(];\/).

Here w € Y5 is a temporally piecewise constant function whose value over I* is the
temporal average of the function w € Xy, i.e.

1
-
= dt kzl...K.
w Atk/lkw ) ) ’

We also introduce an associated induced norm||wl|%, = (w,w)x;. The choice of this
mesh-dependent norm is motivated by the fact that, with a slight modification to
|wll%, + [lw(T)||3, the norm provides the unity inf-sup and continuity constant
for the Petrov-Galerkin finite element discretization of the heat equation.'®'2 The
space Vs is equipped with the same inner product and the norm as the space ).
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Our discrete approximation to Burgers’ equation, Eq. (2.3), is given by: Find
us € X5 such that

g(u(sav(;;:u) = 07 Yus € Vs. (25)

The well-posedness of the space-time finite element formulation will be verified a
posteriori using the Brezzi-Rappaz-Raviart theory. The temporal integration re-
quired for the evaluation of the source term F is performed using the trapezoidal
rule.

2.4. Algebraic Forms and Time-Marching Interpretation

In this subsection, we construct algebraic forms of temporal, spatial, and space-time
operators required for computing our finite element approximation, various norms,
and evaluating inf-sup constants. In addition, we demonstrate that our Petrov-
Galerkin finite element formulation can in fact be written as a time-stepping scheme
for a particular set of trial and test basis functions.

Throughout this section, we will use standard hat-functions o* with the node
at t*, k =1,..., K, as our basis functions for Sa;; note that supp(c*) = I* U I¥+1
(except for o, which is truncated to have supp(c®) = IX). We further choose
characteristic functions 7% = x;« as our basis functions for Qa;. Finally, let ¢;, i =
1,...,N, be standard hat-functions for V;,. With the specified basis, we can express
a space-time trial function ws € Xjs in terms of basis coefficients {w? }f;lj\lf as
ws = Zszl Zi\i wFo® @ ¢;; similarly a trial function vs € Y5 may be expressed
as vy = Z,[f:l Dt va’“ ® ¢;. The following sections introduce temporal, spatial,
and space-time matrices and their explicit expressions that facilitate evaluation of
the residual, norms, and inf-sup constants in the subsequent sections.

2.4.1. Temporal Operators

First, let us form temporal matrices required for the evaluation of the Petrov-
Galerkin finite element semilinear form. We will explicitly determine the entries of
the matrices (i.e. the inner products) for our particular choice of basis functions,
which are later required to construct a time-marching interpretation. The Petrov-
Galerkin temporal matrices M{i™me¢ € RE*K and M}lime € REXK are given by

(MR )ik = (6%, ™) p2(r) = Okt — Ok,

‘ At
(M) = (0%, ) 2(r) = 7(%1 + Oks1,0),

where 6 is the Kronecker delta, and At = |I'| = #! — #!=1. Note that, with
our particular choice of basis functions for Sa; and Qa:, the matrices are lower
bidiagonal. The triple product resulting from the trilinear form evaluates to
At
(cFa™, Tl)LZ(I) =5 (208,101 + Ok, 10m+1,0 + Ok41,10m,1 + 20k41,10m+1,1)

(no sum implied on ).
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In addition, evaluation of the X5 inner product requires matrices M3, € RE*K
=5 . . .
and M, € REXE associated with Sa; given by

: . 1 1 1 1
(MR = (65,6 12y = = 30k + (Atl - W) Okt = A Ok
—5 e At At 4+ A At
(Magik = (Ukvol)Lz(l) = Tékﬂ,l f(;k,l + Ok—1,-

Because the support of the basis functions are unaltered by differentiation or the
averaging operation, both Mit and M, are tridiagonal. Finally, the evaluation of
the ) inner product requires a matrix Mgt € REXE associated with Qa; given by

(MR )i = (T, ™) L2(ry = Aty

Because 7, k = 1,..., K, have element-wise compact support, Mgt is a diagonal
matrix.

2.4.2. Spatial Operators

The spatial matrices M;P* € RNV and AP € RV*N associated with the
L?(Q) inner product and the bilinear form a( -, -) are given by

(MP*) i = (¢ ) and  (AP*) ;5 = al¢i, d5).

To simplify the notation, let us denote the spatial basis coefficients for time t* by
vector w¥ € RV i.e. the j-th entry of w is (w"); = wh. The vector 2™ € RV is
defined similarly. Then, we can express the action of the quadratic term in terms
of a function b”* : RV x RN — RV the j-th component of the whose output is
given by

N
(B (w, 2™); = > wialb(di, én, 65).

i,n=1

2.4.3. Space-Time Operators: Burgers’ Equation

Combining the expressions for the temporal inner products and the spatial oper-
ators, the space-time forms evaluated against the test function 7' ® ¢; may be
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expressed as

K N

M(ws, ™ @ ¢5) =D wh(6", ) 21y (61, ¢5)m = (MFP*(w' — w'™1));
k=11=1
K N At

A(ws, 7' @ ¢5) = > Y wi(o", ) 12(yalei, ¢;) = > (A (w' + '),

Mw

N
B(ws, z5, 7' @ ¢;) Z w2 (0% o™, ) L2 (1 b(Bi, Py D))

km=11in=1

AN
= 30 S (2l b(6s 0u 05) + el b(6i, 60y 6)

w2l (i, dn, &) + 2w) T 2 (i, dns b))
= (267 (w', 2") + B (w27

+bzpace(wl— z ) + 2bzpace(,wl—17 zl—l))j )

The trilinear form further simplifies when the first two arguments are the same, as
in the case for the semilinear form of the Burgers’ equation, Eq. (2.4); i.e.

At

B(wg,wg,Tl & ¢3) = ?

In addition, the integration of the forcing function using the trapezoidal rule results
in

(bzpace(wl )+bspace(wl w )+bspace( 1— 1’,wl—1)).

1 _
F(r' @ jip) =p- /<go(t)77l ® ¢j)vixvdt ~ Aty - §<90(tl) + 90t ), b vixy
= At'p (90h+90h)
where g! € RV with (g4); = (g(t"), ¢;)v'xv. Combining the expressions for our
particular choice of the Petrov-Galerkin test functions, the finite element residual

statement, Eq. (2.5), may be simplified to

1
7Mbpace( I wl—l) + §A2pace(wl + wl—l)

At
1 1
+ g (bzpace(wl,wl) + bzpace(wl’wl—l) + bzpace(wl—17wl—l)) _ Hi(glo,h T géT}Ll)a
forl =1,..., K, with w® = 0. Note that the treatment of the linear terms are iden-

tical to that resulting from the Crank-Nicolson time stepping, whereas the quadratic
term results in a different form. In any event, the Petrov-Galerkin space-time for-
mulation admits a time-marching interpretation; the solution can be obtained by
sequentially solving K systems of nonlinear equations, each having RV unknowns;
thus, the computational cost is equivalent to that of the Crank-Nicolson scheme.
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2.4.4. Space-Time Operators: Xs and Vs Inner Products

Combining the temporal matrices with the spatial matrices introduced in Sec-

tion 2.3, we can express the matrix associated with the X5 inner product, X €
RENX(KN) g

° space spacey — sSpace 7S space
X =M3, ® (MRS (AGPR) TIMLPS) + M, @ AJP.

Note that X is block-tridiagonal. Similarly, the matrix associated with the )5 inner
product, Y € RUEN)X(KEN) g given by

Y = MY, @ AjPece,

The matrix Y is block diagonal because Mgt is diagonal. Note that the norm

—S
induced by the My, ® A}P* part of the X matrix is identical to the usual norm
for the Crank-Nicolson scheme, i.e.

Sl space
{wi} (Ma, @ AP ) {wi'} = [|ws|Ex

5 (o) e (et ).

k=1

where {wF} € REV is a vector of space-time basis coefficients for ws. The identity
— together with the equivalence of our space-time Petrov-Galerkin formulation with
the Crank-Nicolson scheme for linear problems — suggests that the inclusion of the
averaging operator in our Xs norm is rather natural for the particular scheme we
consider.

3. Certified Space-Time Reduced-Basis Approximation
3.1. N,-p Interpolation-Based Approrimation

Here, we introduce a simple reduced-basis approximation procedure based on solu-
tion interpolation (rather than projection). We choose interpolation as it is less ex-
pensive than projection, sufficiently accurate in one parameter dimension, and also
facilitates construction of an inf-sup lower bound as we will show in Section 3.2.2.

We consider an hp-decomposition (or, more specifically, N,-p decomposition) of
the parameter domain D as considered in Eftang et al.? In particular, we partition
D C R! into N, subdomains, D; = [,uf,u?], j=1,...,N,, and approximate the
solution variation over each subdomain using a degree-p polynomial. On each Dy,
we use p + 1 Chebyshev-Lobatto nodes

L
W= f 1 2k —1 1
o= 7 | cog | ——— - k=1,... 1

:u’Jak ILLU_ML |:2 COb<2(p+1)ﬂ- +2 ’ ’ 7p+ )
as the interpolation points. At each interpolation point, we obtain the truth solu-

tion uj, = us(pj k) by solving the finite element approximation, Eq. (2.5). (For
notational simplicity, we will suppress the subscript ¢ for the finite element truth
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solutions from hereon.) Then, we construct our reduced basis approximation to
u = u(p) by a direct sum of N, polynomials

Nﬂ
-
j=1
where a§ is a degree-p polynomial over p € D; given by

p+1

P () =Y i} (1)
k=1

for j = 1,...,N,. Here ¢} is the degree-p Chebyshev polynomial correspond-
ing to the k-th interpolation point, i.e. ¢} € PP(D;) such that ¢} (z;) = 0k,
k,l=1,...,p+1. Note that, unlike in the classical time-marching formulation,?%7"
the computational cost of constructing the reduced-basis approximation using our
space-time formulation is independent of the number of time steps, K. In this work,
we do not assess the relative approximation properties of classical time-marching

formulation (e.g. POD-Greedy) and our N,-p interpolation method.

3.2. Brezzi- Rappaz-Raviart Theory

Our a posteriori error estimate for the Burgers’ equation is a straightforward ap-
plication of the Brezzi-Rappaz-Raviart (BRR) theory!. The following proposition
states the main results of the theory; detailed proof for a general case is provided
in the original paper! and for quadratic nonlinearity is presented by Veroy and

Patera.l4

Proposition 3.1. Let the dual norm of the residual, the inf-sup constant, and the
L*-X;5 Sobolev embedding constant be given by

(1) = sup G(uP(p),v; 1)
vey  vlly

g
B () = inf sup Z(LE (1), 0)
weXs yey  [wllx,lvlly

)

b= sup lwllzagrizs )

wEXs lel?(a
In addition, let BY p(u) be a lower bound of BP(p), i.e. BY gp(u) < BP(n), Yu € D.
Let the prozimately indicator be TP (1) = 2p*eP (u) /(8L 5)* (). Then, for 7P (p) < 1,
there exists a unique solution u(p) € B(aP(u), BP(u)/p?), where B(z,r) = {z €
Xs ||z — z||x; <7} Furthermore, ||u(p) — aP(u)||x, < AP(u) where

& = 28 (1 T 7).

Proof. Proof is provided in, for example, in Veroy and Patera.'* O
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The following subsections detail the computation of the three key ingredients of
the BRR theory: the dual norm of residual €,(u); the inf-sup constant, Srg ,(1);
and the L*- X5 Sobolev embedding constant p. In particular, we will present efficient
means of computing these variables that permits offline-online decomposition.

3.2.1. Residual Evaluation

Here, we briefly review a technique for efficiently computing the dual norm of the
residual in the online stage, the technique originally presented by Veroy et al.'* We
first note that e?(u) = ||G(aP (), -5 1)|ly = ||€P|ly, where the Riesz representor of
the residual is given by é? = RG(a?(u), -; 1) € Y and satisfies

(€7 v)y = G(a"(n),v; p)
p+1

= Z Py () [M (g, v) + A(ug, v)]
k=1

p+1

+ 5 WP (1) Blug, i, v) — i Folv), Vv e .

k=1

Let us introduce (pieces of) Riesz representators x°, {x5}?], and {Xil}ijil of the
residual contribution from the linear, bilinear, and trilinear form, respectively, for
the snapshots according to

(XO7U)3} :‘FO(U)v Vv e,

(X1, v)y = M(iy,v) + A(ug,v), Yo €V, k=1,....p+1, (3.2)

(Xﬁl?v)y:B(ukauhv)a V’UGy, kvl:17ap+1

Then, we can express éP as

p+1 p+1
& =X+ Y Rk + Y VRl (xR
k=1 k=1

The dual norm of the residual can be expressed as

p+1 p+1
€7 ]ly = (% X0y + 2 > (X xm)y 20 > (X X))y
m=1 m,n=1
p+1 p+1
+ > PRER () (X Xy 2 YRR, (W5 (1) (s Xy
k,m=1 k,m,n=1
p+1
> R (R, (PR () (XRts X ) v+ (3.4)
k,l,m,n=1

The offline-online decomposition is clear from the expression. In the offline stage,
we first solve Eq. (3.1)-(3.3) to obtain the Riesz representors x°, {x4}71], and

{x3,}2*+1 . Note that there are 1+ (p + 1) + (p + 1)? representors, each requiring
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a Y-solve. Recalling that the matrix associated with the )’ inner product is given
by Y = Mgt ® AP each Y-solve requires K inversions of the AJP** operator,
where K is the number of time steps. It is important to note that the computation
of the representators does not require a solution of a coupled space-time system,
as the matrix Y is block diagonal. In other words, the computational cost is not
higher than that for the classical time-marching reduced basis formulation. After
computing the representators, we compute the ) inner product of all permutation
of representators, i.e. (x°,x%)y, (X%, x})y, etc.

In the online stage, we obtain the dual norm of the residual by evaluating
Eq. (3.4) using the inner products computed in the offline stage. The computational
cost scales as (p + 1)* and is independent of the cost of truth discretization. Note
that, unlike in the classical reduced-basis formulation based on time-marching, the
online residual evaluation cost of our space-time formulation is independent of the
number of time steps, K.

3.2.2. Inf-Sup Constant and its Lower Bound

Here, we present a procedure for computing an inf-sup lower bound, 8¢5 (p), that
permits offline-online decomposition. The particular procedure presented is specifi-
cally designed for the N,-p interpolation-based reduced basis approximation intro-
duced in Section 3.1. Let us first define the supremizing operator S5 : X5 — Vs

associated with the solution u§ = u(,u?) at the centroid of Dj, u§, by

(Sjw,v)y = 0G(w,uf,v), Vw € Xs, Vv € Vs,
for j =1,..., Ny. The inf-sup constant about uj is given by

S¢w
T
wers Twllx,
Let us also introduce the following correction factors at interpolation points,

0G (w, uj k., S5w) 9G(w, ujk, Sjw)

B, = inf ————"9 2 and B = sup 3.5
R [ A
fork=1,...,p+1and j=1,...,N,. Then, we construct an inf-sup lower bound

according to

Bl (=65 Y. Budhkw+ > Bhub(w) |, VpeD;. (3.6)
k=1,...,p+1 k=1,...,p+1
P (1)>0 ¥l (1)<0

Let us denote the lower bound over the entire D by ] 5, which is simply the direct
sum of the piecewise lower bounds, ie. g = @;V:”l 6&3, ;- We have the following

proposition:

Proposition 3.2. The inf-sup lower bound constructed using the above procedure
satisfies B 5(p) < BP(w), Yu € D.
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Proof. Let us show that the 8y ;(u) < BP(u) for p € D; for each j =1,..., N,
Since Sjw € YV, Vw € X5, we can bound the inf-sup constant from below as

o ~p p+1 P
BP(p) = inf supM: inf bup2¢p M
wEXs ycy Hw”?(o”va we?faueyk 1 ||’lUHX5HU||y
pt1 ptl
> inf pr 0G(w, uj ., Sjw) _ Zwk [S5wlly ag(wwg‘,k,QS}?w)
20 S 0 e e A A0 e 7 13
HSC’U)H Ak w,ujk,Srw)
= U ( —’J, VueD;, j=1,...,N,.
E e DU o ﬂ

(3.7)

Note that we have

ISjwlly . . [155zlly

wllay — zexs 2],

= B(Mj) =p67>0, Vwed,

and the first term of Eq. (3.7) is bounded below by 3§ > 0. The second term
involving summation over p + 1 terms may be may be bounded below by the cor-
rection factors defined in Eq. (3.5). Namely, if ¢} (x) > 0, then we may bound the
contribution from the k-th term from below by using Bj_k; if Y7 (p) < 0, then the
contribution may be bounded from below by using . In other words, the final
expression of Eq. (3.7) is bounded from below by

BP(p) > ( inf ”Sﬂcw|y) S () inf G (w, uj, S§w)

weXs ||w x; et wEXs [S§wll3,
Yr(n)>0

0 y g 750"
LY ety B 5

k=1,...,p+1 weXs Hsgcw”§)
Yy (1) <0

»p+1 k=1,...,p+1
wk (1)>0 PP (u)<0
which concludes the proof. O

Remark 3.1. For small intervals, the correction factors are close to unity. To see
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this, we note that
10G (w, uj k., S§w)]| _ 10G (w, u§ + (ujk — uf), Sjw)|

155 wlly [[S5wlly
\8Q(w,u§,5§w)\ |B(w, ujx — u?,SJc»w)|

- Sfwlly 155 wlly

14 1P Jwlla lluge — Sl |1 S5wlly

-2 B2 (u5) lwll%,

< 1 g (7 L2l ) s = v

26°(5) 27 1 ’
where 772t is the continuity constant for the heat equation, i.e.
et — up sup P00 + AGw.v)]
wexsvey Wl llvlly

Thus, as [D;| — 0 and [Ju; x — u§|lx; — 0, the correction factors converge to 1.

Remark 3.2. The inf-sup lower bound construction procedure presented here pro-
duces a tighter lower bound than the natural norm Successive Constraint Method
(SCM)® that uses the p + 1 interpolations as the SCM sampling points, i.e.

Bu) = Bip;(n) = Blpscm,; (W), Vi € Dy,

where g o (1) is the SCM inf-sup lower bound. A detailed derivation is pro-
vided in Appendix B.

Again, the offline-online decomposition is clear from the structure of Eq. (3.6).
In the offline stage, for each D;, we evaluate the inf-sup constant at the centroid,
7, and correction factors Bfk at each of the p + 1 interpolation points. The online
stage consists of identifying the parameter subdomain D; to which p belongs and
evaluating 1y (1) using Eq. (3.6).
Let us demonstrate that none of the offline computations require solutions to a
fully-coupled space-time problem, and the computational cost scales linearly with
K. The inf-sup constant at the centroid, BJQ, can be obtained by finding the largest

eigenvalue of a generalized eigenproblem Pv = AQv with
P=X-= Mit ® (M:;‘lpace(Azpace)—lepace) 4 Mit ® A;‘lpace
Q _ (GC)TY*IGC
and setting (37 = )\;1;1”/(2. Here, G¢ € RUEN)X(KN) i5 the Jacobian matrix of the

residual operator linearized about u® = u(u$); the (li)(kj) entry of the matrix is
given by

(G) iy (k) = G (0" @ ¢, u’, 7' @ ¢y).

Note that G¢ is block lower bidiagonal due to our choice of the basis functions for
the spaces Sa; and Qa; in the Petrov-Galerkin formulation. If the eigenproblem is
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solved using an Arnoldi-based method, each Arnoldi step requires action of P, Q
and Q! on a vector in REV. The application of P requires O(K) operations due
to the tensor-product structure of the matrices that constitutes X; for instance, to
compute Mit ® AP*°v, we first compute AJP*°vF k& =1,..., K, and then take a
linear combination of (at most) three AjP**“v#’s according to the weights specified
in Mit. The application of Q requires application of G¢, (G¢)T, and Y !, each
of which requires O(K) operations due to the block bidiagonal or block diagonal
structure of the matrices. Finally, the application of Q™! = (G¢)"'Y(G¢)~T re-
quires: 1) (G¢)~7T, which corresponds to a backward solve of a linearized K-step
time marching problem; 2) ), which requires application of AP onto K spatial
vectors; and 3) (G¢)~!, which corresponds to a forward solve of a linearized K-
step time marching problem. Thus, each Arnoldi step of the inf-sup eigenproblem
requires O(K) operations.

The calculation of the correction factors require the extreme eigenvalues of a
generalized eigenproblem Pv = AQv with

P= % ((GC)TY*le‘ + (Gk)TYfch)
Q _ (GC)TY*lGC.

Here, G*¥ ¢ RIEN)X(KN) g the Jacobian matrix corresponding to the residual
operator linearized about the solution at the interpolation point u; . Application
of P again requires O(K) operations due to the block bidiagonal and block diagonal
structure of G¢ and Y, respectively. The Q matrix is identical to that used for the
inf-sup constant calculation; thus, application of Q and Q! can be carried out in
O(K) operations.

3.2.3. Sobolev Embedding Constant

The final piece required for the BRR theory is the L*-X;5 Sobolev embedding con-
stant. Details of approximating the embedding constant is provided in Appendix A;
here we state the main results. Due to the nonlinearity, we have not been able to
analyze the L*- X5 embedding problem analytically. However, we can analyze closely
related linear problems: L?-X embedding and L?-X; embedding. Using the Fourier
decomposition in space and time, we can show that the L?-X embedding constant
is bounded by

0= sup lwllL2(r;22(0)) < (1 +7r2) -1z
wex  (wllx T \477

for @ = (0,1) and I = (0,T] with T > 1/(4w). An upper bound for the L2-Xj
embedding constant can also be analytically found for constant time-stepping cases
using the Fourier decomposition in space and von Neumann analysis in time; the
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Fig. 1. The solution to the Burgers problem Case 1 and Case 2 for Pe = 20.

constant is bounded by

fs = sup M < \/? ~ 0.3257VT
weXs ”wHXa 3m
as K — oo. Note that the embedding constant scales weakly with the final time
T. For an arbitrary temporal discretization, we were unable to analytically analyze
the L?-Xs; embedding constant; however, numerical experiments suggest that the
constant is bounded by 65 < 0.5773 on any quasi-uniform temporal discretization.
The L*-Xs5 embedding constant can be approximated using a homotopy procedure
starting from the solution to the L2-Xs5 embedding problem; for related methods,
see Deparis? and Manzoni®. Numerical experiments suggest that the constant is

bounded by p < 0.81 for any quasi-uniform space-time mesh over Q = (0,1) and
I=(0,1].

4. Numerical Results
4.1. Model Problems

We consider two different forcing functions in this section. First is a constant func-
tion, g1 = 1, which results in Fy(v; ) = p - [; [, vdedt with p = Pe?. The solution
over the space-time domain for the Pe = 20 case is shown in Figure 1(a). As the
Peclet number increases, the boundary layer at x = 1 gets thinner and the initial
transition time decreases. The second case uses a spatially linear source function,
g2 = 3 — x, which results in Fo(v;pu) = p- [, [,(3 — x)vdadt. The solution for this
second case with Pe = 20 is shown in Figure 1(b). This case develops an internal
layer at © = 1/2, which becomes thinner as the Peclet number increases. These two
cases exhibit different stability properties, as we will show shortly.

For purposes of comparison we provide here a short summary of the standard L?
time-marching error bound developed by Nguyen et al.” A parameter that dictates
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the effectivity of the time-marching L? formulation is the stability parameter w®,
defined as®
4b
Wk = inf (v,u(,u),v)+a(v,v), k=1,...,K.
vEVH ||UHL2(Q)

In particular, a negative value of w® implies that the L? error estimate grows ex-
ponentially over that period of time. All results shown in this section use the exact
value of w¥ instead of a lower bound obtained using the successive constraint method
(SCM) as done in Nguyen et al.”; i.e. we use the most favorable stability constant
for the L? time-marching formulation.

4.2. Stability: Small Parameter Intervals

We will first demonstrate the improved stability of the space-time a posteriori er-
ror estimate compared to the L? time-marching error estimate. For the space-time
formulation, we monitor the variation in the inf-sup constant, 5, and the effectivity,
A/|le]| x5, with the Peclet number. For the L? time-marching formulation, we mon-
itor several quantities: the minimum (normalized) stability constant, miny w*/Pe;
the final stability constant, w’ /Pe; the maximum effectivity, max; Ak/||€k||L2(Q);
and the final effectivity, AKX /[|e®]|12(q).

For each case, the reduced basis approximation is obtained using the p = 2
interpolation over a short interval of D = [Pe — 0.1, Pe + 0.1]. Note that, the use of
the short interval implies that 7 < 1, which reduces the BRR-based error bound to

1

Bl ™ G
In addition, as the supremizer evaluated at the centroid of the interval is close to
the true supremizer over a short interval, Sz (p) = B(n), Vi € D. In other words,
we consider the short intervals to ensure a good inf-sup lower bound such that we
can focus on stability independent of the quality of the inf-sup lower bound; we
will later assess the effectiveness of the lower bound. The effectivity reported is the
worst case value observed on 40 sampling points over the interval.®

Table 1 shows the variation in the stability constant and the effectivity for
Case 1 for Pe = 1, 10, 50, 100, and 200. The stability constant for the space-
time formulation gradually decreases with Pe; accordingly, the effectivity worsens
from 1.04 for Pe = 1 to 11.9 for Pe = 200. Note that the effectivity of O(10) is
more than adequate for the purpose of reduced-order approximation as the error
typically rapidly converges (i.e. exponentially) with the number of reduced basis.
The L? time-marching formulation also performs well for this case. This is because,

PIn the original paper by Nguyen et al., the variable p¥ is used for the stability constant. Here,
we use w* to avoid confusion with the L*-X embedding constant for the space-time formulation.
¢The 40 sampling points are equally-spaced between [Pe — 0.099, Pe 4 0.099]. We have found that
the variation in the effectivity across the sampling point is small (less than 10%) over the small
intervals considered.
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space-time L? time-marching
A oW wi AF AK
Pe | B [y | ™Dk Pe  Fe WAk oy e
1 0.993 1.04 9.87 9.87 3.87 1.30
10 | 0.665 2.23 0.982 1.32 3.18 2.11

50 | 0.303 7.01 0.114 0.924 7.73 5.10
100 | 0.213 9.7 0.0203  0.862 11.7 6.95
200 | 0.149 119 | -0.0072  0.820 18.0 9.59

Table 1. Summary the inf-sup constant and effectivity for the space-time formulation and the
stability constant and effectivity for the L? time-marching formulation for Case 1 with g = 1.

space-time L? time-marching
k K k K
Pe B m ming $; 5 maxy \@TH ”f—K”
1 0.999 1.01 9.84 9.84 2.80 2.80
10 | 0.877 1.15 0.727 0.727 3.12 3.12
20 | 0.547  1.84 | -0.0675 -0.0675 124 124
30 | 0217  4.92 -0.606 -0.606 3.7 x10* 3.7 x 10*
50 | 0.038  40.8 -1.67 -1.67 6.5 x10%% 6.5 x 10%®
100 | 0.0077 259 -4.43 -4.43 — —

Table 2. Summary the inf-sup constant and effectivity for the space-time formulation and the

stability constant and effectivity for the L? time-marching formulation for Case 2 with g = % — .

even for the Pe = 200 case, the stability constant w* /Pe takes on a negative value
over a very short time interval and is asymptotically stable. (See Nguyen et al.® for
the detailed behavior of the stability constant over time.)

Table 2 shows the variation in the stability constant and the effectivity for Case 2
for Pe = 1, 10, 20, 50, and 100. Note that the asymptotic stability constant for the L?
time-marching formulation is negative for Pe 2 18.9; consequently, the error bound
grows exponentially with time even for a moderate value of the Peclet number,
rendering the error bound meaningless. The stability constant for the space-time
formulation is much better behaved. The effectivity of 40.8 at Pe = 50 is a significant
improvement over the 102® for the L? time-marching formulation, and the error
estimate remains meaningful even for the Pe = 100 case.

4.3. N,-p Interpolation over a Wide Range of Parameters

Now we demonstrate that our certified reduced basis method provides accurate and
certified solutions over a wide range of parameters using a reasonable number of
snapshots. Here, we employ a simple (and rather crude) N,-p adaptive procedure
to construct certified reduced basis approximations over the entire D with an error
bound of Agy = 0.01. Our N,-p approximation space is described in terms of a
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set Pe*** consisting of N « + 1 points that delineate the endpoints of the parameter
intervals and an N,-tuple P5* = (pq,... ,PN,,) specifying the polynomial degree
over each interval. Starting from a single p = 1 interval over the entire D, we
recursively apply one of the following two operations to each interval [Per,, Pey] =
[Pejet, Pejﬂfl] with polynomial degree p;:

(a) if min, 85 (p) < 0, subdivide [Per,, Pey] into [Per,, Pen|U[Pey, Pey] where

Pen = (Per, + Pey)/2, assign p; to both intervals, and update Pe*** and
Pset.

(b) if min,, S5 (p) > 0 but max, (1) > 1 or max, A(u) > Ao, then increase
p; top; + 1.

The operation (a) decreases the width of the parameter interval, which increases
the effectiveness of the supremizer S§ and improves the inf-sup lower bound. The
operation (b) aims to decrease the residual (and hence the error) by using a higher-
order interpolation, i.e. p-refinement. Thus, in our adaptive procedure, the N, and
p refinement serves two distinct purposes: improving the stability estimate and im-
proving the approximability of the space. In particular, we assume that the solution
dependence on the parameter is smooth and use (only) p-refinement to improve the
approximability; this is in contrast to typical hp adaptation where both h- and
p-refinement strategies are used to improve the approximability for potentially ir-
regular functions.

The result of applying the N,-p adaptive procedure to Case 1 is summarized
in Figure 2. Here, we show variations over the parameter domain D = [1,200] of
key quantities: a) the error and error bound; b) the error effectivity; ¢) the inf-sup
constant and its lower bound; and d) the approximation polynomial degree. First,
note that the entire parameter domain is covered using just 10 intervals consisting
of 89 total interpolation points; this is despite the use of the crude adaptation
process whose inefficiency is reflected in excessively accurate estimates in some of the
intervals. Smaller intervals are required in the low Peclet number regimes to ensure
that the normalized residual measure, 7, is less than unity. The maximum error
bound of 1072 is clearly satisfied over the entire parameter range. The effectivity is
of order 5.

Table 3 shows the p-convergence behavior of our certified basis formulation over
the final interval, D1y = [175.13,200.00].¢ Each variable is sampled at 40 equispaced
sampling points over D and the worst case values are reported. The table confirms
that the error (and the normalized residual) converges rapidly with p. The rapid
convergence suggests that the error effectivity of @(10) is more than adequate,
as improving the error by a factor of 10 only requires 1 or 2 additional points.

dUsing the Nu-p adaptive procedure, this p = 8, D1 = [175,13,200.00] interval is created by
subdividing a p = 8, Dy = [150.25,200.00] interval in the final step. This results in the use of the
p = 8 interpolant over the interval D1g in the final N,-p adapted configuration despite the error
meeting the specified tolerance for p = 5.
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Fig. 2. The error, effectivity, and inf-sup constant behaviors on the final N,-p adapted interpolation
for Case 1.

The higher p not only provides higher accuracy but also concomitantly enables
construction of the BRR-based error bounds by decreasing 7. Note also that the
inf-sup effectivity decreases with p in general as a larger number of “inf” operations
are required to construct SFy using the procedure introduced in Section 3.2.2.
Figure 3 shows the behavior of the error and stability constant for Case 2 over
D = [1,50]. As shown in Section 4.2, this problem is less stable than Case 1, and
the classical formulation produces exponentially growing error bounds. The N,-p
adaptive procedure utilizes 7 intervals consisting of 31 total interpolation points.
The maximum error bound incurred over D is less than 0.01. Due to the unstable
nature of the problem, the effectivity worsens as the Peclet number increases. Nev-
ertheless, unlike in the classical time-marching based formulation, our error bounds
remain meaningful over the entire parameter range. For this problem, the size of the
interval in the high Peclet number regime is dictated by the necessity to main a pos-
itive inf-sup lower bound. For instance, for the p = 4 interpolation, we were unable
to maintain a positive value of S over a single interval of [46, 50], necessitating
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burgers

P max,(p) max, A(p) mag ey, max, GG min, ZR0
1 1.22e+04 - 1.14e+4-01 - 0.61
2 2.39e+02 - 6.67¢-01 - 0.62
3 2.03e+01 - 9.36e-02 - 0.61
4 1.38e+00 - 1.11e-02 - 0.61
5  1.69e-01 6.47¢-03 1.48e-03 5.01 0.56
6  2.17e-02 7.69e-04 1.86e-04 5.05 0.52
7 2.94e-03 1.02e-04 2.38e-05 5.38 0.49
8  4.13e-04 1.30e-05 3.00e-06 5.77 0.47

Table 3. The p-convergence behavior over the final interval of Case 1, Pe € [175.13,200.00].

0 10 20 30 40 50 0

Pe

(c) inf-sup constant

.
I

10 20 30 40 50
Pe

(b) error effectivity

10 20 30 40 50
Pe

(d) Nu-p selection

Fig. 3. The error, effectivity, and inf-sup constant behaviors on the final N,-p adapted interpolation
for Case 2.

the split into two smaller intervals.
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p max,T(n) max, Adp)  max, [le(u)]x, max, Y- min, 2200
1 3.58e+03 - 7.38e-02 - 0.21
2 1.39e+01 - 1.03e-03 - 0.22
3  1.23e+00 - 2.78e-05 - 0.21
4 2.63e-02 8.22e-05 6.03e-07 176.78 0.20
5 2.15e-02 1.11e-05 1.54e-08 978.07 0.03

Table 4. The p-convergence behavior over the last interval of Case 2, Pe € [46.94, 50.00].

Table 4 shows the p-convergence behavior of the reduced basis formulation over
Ds = [46.94,50]. Similar to the previous case, the normalized residual, the error
bound, and the error converge exponentially with p. We note that even though
the worst case error effectivity is of O(10%), the geometric mean of the effecitivies
collected at the 40 sampling points is only 136.

Appendix A. Sobolev Embedding Constants

In this appendix, we study the behavior of the L*-Xs embedding constant required
for the Brezzi-Rappaz-Raviart theory. Unfortunately, due to the nonlinearity, we
have not been able to analyze the L*-Xs problem analytically. To gain some insight
into the behavior of the embedding constant using analytical techniques, let us con-
sider two closely related linear problems, L?-X embedding and L?-X;s embedding,
in Appendix A.1 and A.2. Then, we will numerical investigate the behavior of the
L*- X5 embedding constant in Appendix A.3.¢

A.1. L?-X Embedding
Let us first consider L?-X embedding. The embedding constant is defined by
0= sup 1WllLzaizz@)
wex  Jlwllx

which is obtained by solving a (linear) eigenproblem

(w,v)x — A(w,v) =0, Yvel

1- ||w||2L2(1;L2(Q)) =0
ALz

and setting 6 = A ;)
we can express the eigenproblem as: find eigenpairs (w*s, \¥+) € H}(I) x R such

. Applying the Fourier decomposition in the spatial domain,f

€Analysis in this appendix is “formal”; for brevity, some of the assumptions or arguments required
related to completeness or compactness may be omitted.

fWe could directly analyze the spatial discretization with appropriate modification of the kg
Fourier symbol per the usual von Neumann analysis. Here we consider a continuous-in-space case
for simplicity.
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that
1
k22

ke (4)qike 2.2 [ ke Pk (£) = Noo [ oFe (£ ke
[ i it @ar iz [ oot = 2 [ ot et g,

I I
vok= € HE(I),

where v¥s € H}(I) is the temporally-varying Fourier coefficient associated with the
k.-mode and Hi(I) = {v € Co(I) : v(t = 0) = 0}. It is straightforward to show
that the eigenmodes of the continuous problem are given by

_ 1\ ¢
vk*’kf(t) = sin <7r (kt - 2) T) s k=12,

and the corresponding eigenvalues are

2
Mewke — g2z L1
@ T2\t 2)

The expression clearly shows that the minimum eigenvalue is achieved for k; = 1
for all T. In particular, for T' > 1/(4n), the minimum eigenvalue corresponds to
k. = k; = 1, and its value is

1
AInin = —5+ 772-
472
Because &5 C X for any temporal discretization of I, we have

5 1
Amin = inf I > inf _ Nwllx = Amin = o5 a2
weds [[wllrzagra(e) — weX [wllza(rra(ey AT

for all T > 1/(4r7). (Appropriate bounding constant may be deduced from the
expression for the eigenvalues of the continuous problem even for T' < 1/(4x).) In
other words, for any X5 C X, the L2-X embedding constant is bounded by

1 ~1/2
2
0 < <4T2+7T)

for T > 1/(4w). Note that this bounding constant is not significantly different from

that for the standard L*-H{,, embedding problem, Oremmy, = (72/(4T?) + =2) iz

A.2. L?-Xs5 Embedding
Now let us consider L2-Xs embedding. The embedding constant is defined by

w .
05 = su lwllL2(r;22(0))
wE X5 Hw”X&

)

where we recall that ||w|/%, = ||u')H2LQ(I;V,) + ||1D||%2(I;V). Similar to the L2-X em-
bedding problem, the solution is given by finding the minimum eigenvalue of
(w,v)x; — A(w,v) =0, Yve Xs

1- ”wH%Q(I;L?(Q) =0,
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and setting 65 = )\;ilf. However, as the A5 norm is dependent on the temporal
mesh by construction, we must consider temporally discrete spaces for our analysis.
Let Vay C HE(I) be the piecewise linear temporal approximation space. Then,
the Fourier decomposition in the spatial domain results in an eigenproblem: find
eigenpairs (wf“”,)\kf) € Vas X R such that

1 < ko wkT 271_2 @kz wkz _ k. ka wkz
/I o (£ (£)dt + k2 / (B (1) = A / (tywh= (t)dt,

2.2
kym I I

Vvk” S VAt,

where %+ over the I* is given by (At*)~! [}, vF=dz.
For Va¢ with a constant time step (i.e. At = At! = ... = AtK), the k-th entry
of the ki-th eigenmode vF=* € RX is given by

et i (x (1 D) £).

Accordingly, the eigenvalues may be expressed as

K . 1) 1 k2m2T . 1) 1
merr (1= cos (m (ki — 5) %)) + 5 (1+cos (m (ke — 3) %))
T 1\ 1
o (24 cos (7 (ke — 3) %))
To estimate the minimum eigenvalue, we first relax the restriction that k, be an
integer; with the relaxation, the minimizing value of k;, k%, is given by

. 42 [K (ke 1 1/2
(ko) = —— T(ta“<2 (K_2K>>> -

Furthermore, for k, = kJ, it can be shown that the eigenvalue is minimized for
ki = K. Thus, for any given final time 7" and the number of time steps K, a lower
bound (due to the continuous relaxation on k) of eigenvalues can be expressed as

Aot (KT =

6K si 1- %
Ap(K;T)= min min M\ (K;T)=— sin ( ( 2K)1) )
ki€1,... K ky €ERT T 2 + cos (71' (1 — ﬁ))
In the limit of K — oo, the eigenvalue approaches
37
li K;T)=—.
Koo Aus (K T) T

Thus, in the limit of K — oo, the L2-Xs embedding constant for Va; with a constant
time step is given by 65 = /- ~ 0.3257/T. Note that the embedding constant

scales weakly with the final ti:?rrle T. We also note that the optimal spatial wave
number behaves like k) — oo as K — oc.

Unfortunately, for Va; with non-constant time stepping, we cannot deduce the
embedding constant analytically. Here, we numerically demonstrate that the L2-X;s
embedding constant is indeed bounded for all quasi-uniform meshes. In particu-
lar, we compute the embedding constant on temporal meshes characterized by the

number of elements, K, and a logarithmic mesh grading factor, ¢, where ¢ = 0
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mesh grading factor, ¢

K -2 -1 0 1 2 3 4 5 7 10

2 10.3483 0.3379 0.3903 0.4783 0.5156 0.5550 0.5683 0.5760 0.5771 0.5773
4 103344 0.3252 0.3423 0.4623 0.5379 0.5692 0.5758 0.5771 0.5769 0.5760
8 103224 0.3164 0.3298 0.4629 0.5422 0.5696 0.5761 0.5772 0.5772 0.5771
16 | 0.3159 0.3148 0.3267 0.4635 0.5419 0.5692 0.5759 0.5772 0.5771 0.5772
32 | 0.3147 0.3145 0.3259 0.4636 0.5418 0.5691 0.5758 0.5771 0.5773 0.5773
64 | 0.3144 0.3144 0.3257 0.4636 0.5418 0.5691 0.5758 0.5771 0.5773 0.5773
128 | 0.3144 0.3144 0.3258 0.4636 0.5418 0.5691 0.5758 0.5771 0.5773 0.5773

Table 5. The variation in the L?-X embedding constant with the number of time intervals, K, and
the mesh grading factor, ¢, for T' = 1.

corresponds to a uniform mesh, ¢ > 0 implies that elements are clustered toward
t = 0. For g sufficiently large, the first temporal element is of order At! ~ 1079T.
Without loss of generality, we pick T = 1.

The result of the calculation is summarized in Table 5. First, the table confirms
that, on a uniform temporal mesh (¢ = 0), the embedding constant converges to
—1/2 ~ 0.3257 as K increases. The embedding constant
increases with the mesh grading factor, ¢; however, the constant appears to asymp-
tote to 0.5773 as ¢ — oo. Thus, the numerical result suggests that the L2-Xj is
bounded for all quasi-uniform meshes by 0.5773.

the analytical value of (37)

A.3. L*-Xs5 Embedding
Recall that the L*-Xs embedding constant is defined as
p = sup Hw||L4(I;L4(Q))
wex  Jlwllx
To find the embedding constant we solve a nonlinear eigenproblem
(w,v)x — ANw?,v) =0, YweX
1—|Jwl|Za(r. a0y =0
\~1/2

min

and set p =
dure. Namely, we successively solve a family of problems,

(w,v)x = A (1 — &) (w?v) + a(w’®,v)) =0, YveEX

. This nonlinear eigenproblem is solved using a homotopy proce-

1= (= lwlazz@) + alwlisg.cy) =0

starting from o = 0, which corresponds to L?-Xs embedding, and slowly increase
the value of o until o = 1, which corresponds to L*-X; embedding.

The numerical values of the embedding constant on different meshes is shown in
Table 6. Similar to the L?-X;5 embedding constant, the L*-X; embedding constant
increases with the number of temporal time steps, K, and the mesh grading factor,
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mesh grading factor, ¢

-2 -1 0 1 2 3 4
0.4508 0.4308 0.5716 0.6479 0.6694 0.7211 0.7389
0.4333 0.4479 0.4955 0.6367 0.7227 0.7454 0.7520
0.4475 0.4962 0.4824 0.6242 0.7188 0.7537 0.7567
0.4958 0.4956 0.4791 0.6315 0.7174 0.7496 0.7626
0.4955 0.4955 0.4774 0.6295 0.7371 0.8084 -
64 | 0.4955 0.4955 0.4755 0.6283 0.7462 0.7808 -

N I

Table 6. The variation in the L*-X embedding constant with the number of time intervals, K, and
the mesh grading factor, ¢, for T'= 1.

q. Again, the embedding constant appears to be bounded. Based on the table,
we approximate the L*-X; embedding constant for any quasi-uniform mesh to be
bounded by p = 0.81.

Appendix B. Comparison of Inf-Sup Lower Bound Construction
Procedures

This appendix details the relationship between the inf-sup lower bound constructed
using the procedure developed in Section 3.2.2 and the natural-norm Successive
Constraint Method (SCM) method.® For convenience, we refer to our method based
on the explicit calculation of the lower and upper bounds of the correction factors
as “LU” and that based on the Successive Constraint Method as “SCM.” Both LU
and SCM procedures are based on the decomposition®

) e
B(u) = inf supM > inf M
weX pey [lwllxllvlly T wex [lwllx[lSew]

c ~p Qc
> (inf 18%wly w'“’) ~<inf 09w, 17, 5) w)>,
weX |w|lx wEX [|Sewl3,

pe Be ()
where we have identified the inf-sup constant evaluated at the centroid by 8¢ and
the correction factor by 5°(u). Note that the correction factor may be expressed as

) . 9G(w,ar, Sew) A 9G (w, uy,, Sw)
B°(p) = inf —————= = inf b (p)——2—o—2
() = inf, B Zzlwex k(1) R

p+1

] (S*w, ug, Sw)y
= inf P (p)—7"—""5—>>
2t A ey

Our LU method and SCM differ in the way they construct bounds of 3°(p).

&The subscript j on the supremizer S$ (and later solution snapshots u; 1) that denotes the domain
number is suppressed in this appendix for notational simplicity.



July 27,2012 15:7 WSPC/INSTRUCTION FILE burgers

28 M. Yano, A. T. Patera, K. Urban

Let us recast our LU formulation as a linear programming problem, the language
in which the SCM is described. We compute a lower bound of the correction factor,
BEB,LU(U) < Be(n), Vu € D, by first constructing a box in RP*! that encapsulates
the lower and upper bounds of contribution of each term of the correction factor,
ie.

, Sup

B _ﬁ f (S*w, ug, Sw)y (S*Fw, ug, Sw)y
O L oex T Sew]2 T her (1Sew]3

k=1
Then, we solve a (rather simple) linear programming problem

p+1

BEB,UL(H): inf Z¢§(H)yk7
k=1

yeBUL 4=

the solution to which is given by choosing either extrema for each coordinate of the
bounding box Bry based on the sign of ¢} (1), as explicitly stated in Section 3.2.2.

Let us now consider a special case of SCM where the SCM sampling points are
the interpolation points, pu*, k = 1,...,p+1, of the N,-p interpolation scheme. The
SCM bounding box is given by

s Ve Vk
Bscem = [—7 } :
where
Sk
= s ISl
weX HwHX
Since the kernel of Bry is bounded by

-1
(Stwsu Sw)y| _ [S*uly fule _ o ISFuly (IS ely)
weceY ||’LUHX ﬁc’

[Sewl3, T wllx [[Sewlly T wex llwllx
fork=1,...,p+ 1, we have
Bry C Bscom-
Furthermore, as the SCM sampling points correspond to the interpolation points,
the SCM linear programming constraints

p+1

Do vr(myr = B(m), 1=1,...,p+1

k=1
simplify to (using ¥% (1) = o)
Ye > B(e), k=1,...,p+1,

where

ac o (Skwauk7scw)y
Pm) = Bt T geu



July 27,2012 15:7 WSPC/INSTRUCTION FILE burgers

A Space-Time Certified Reduced Basis Method for Burgers’ Equation 29

We recognize that the this constraint is in fact identical to the lower bound box
constraint of Br,y. Thus, the space over which the SCM lower bound is computed,

DEBy = {y € BS™ 1y > B%(ui), k=1,....p+1},
satisfies
Bru C D[%gM

More specifically, DISjCBM has the same lower bounds as Bpy but has loser upper
bounds than Bry. Consequently, we have

P+l ptl

inf szw)yk = BfB,SCM(M) < BEB,LU(M) = inf Z¢Z(M)yk < BC-
YEDEEN b—1 yeBor k=1

Thus, if the SCM sampling points are the same as the interpolation points of the
N,-p interpolation scheme, then our LU formulation gives a tighter inf-sup lower
bound than SCM.
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