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Abstract

In this paper we investigate a recent method for effectively reducing the dimen-
sionality of high-dimensional nonlinear convection-diffusion-reaction problems.
This is known as model reduction. We apply a particular chemistry-based model
reduction approach based on numerical optimization within a discontinuous
Galerkin (DG) framework. In doing so, we obtain a system with (significantly)
fewer equations for the chemical species whereat the information loss compared
to simulating the full system is kept at an agreeable level.

Keywords: chemically reacting flows, model reduction, slow invariant
manifold, discontinuous Galerkin, adaptive tabulation

1. Introduction

Modeling realistic physical scenarios such as chemically reacting flows often
comprises a large number of differential equations as a result of many chemical
species interacting with each other. An example is the simulation of fossil or
biomass fuel combustion in an internal combustion engine. Therefore, the nu-
merical solution of such equation systems is inevitably associated with a tremen-
dous increase in computational costs.
In order to face this, plenty of different model reduction (MR) approaches have
emerged in recent years. These methods aim at simplifying the setting of a
differential equation system in one or another way. Some of these approaches
attempt to simplify the physical domain [24] while others assume that a (possi-
bly infinite) dynamical system under consideration possesses an attracting slow
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invariant manifold (SIM) and that this manifold can be parameterized by fix-
ing a few distinct variables of the state space, the so-called reaction-progress
variables (RPVs). These variables correspond to slow dynamics and serve as
a means to reconstruct the values of the remaining fast variables on the SIM.
Ideally, the number of slow variables is much smaller than the number of fast
ones.
The choice of the slow variables is user-defined and there seems to be no rule
of thumb of how to select appropriate RPVs, so we won’t make any further
assumptions on them. An algorithm to choose RPVs in an automatic way has
been suggested in [13].
Roughly speaking, a SIM represents a long-term evolutionary behavior of a
system. To keep technicalities about dynamical systems a minimum here, the
reader might envisage a SIM as a bundle of trajectories in phase space moving
towards a system’s fixed point as time passes by and, avalanche-like, draw-
ing other dynamics with them to that point. That is, once the dynamics are
“caught” by the manifold, they will stay on it and are driven to the fixed point
of the system. This fixed point corresponds to the chemical equilibrium.
In this paper, we will employ a relatively new MR method for characterizing
such a SIM [21]. It is based on minimizing the rate of change of the vector field
for the chemical kinetics

ẏ(t) = S(y(t)), y(0) = y0. (1.1)

In [21] this is described as “maximum slowness” inherent to (1.1) and is to yield
an optimal SIM. A variant of this will be briefly discussed in section 4.
The benefits of a SIM-related MR approach are twofold:
First, the underlying differential system can be expressed in the slow variables
only with the fast variables being reconstructed via the slow ones whenever
needed. Second, beside reducing the dimension of a large system, there arises
another advantage of MR: When describing the full system via a SIM, a possibly
stiff system is made less stiff. As a direct consequence, implicit solvers may be
replaced by explicit ones and larger time steps can be employed when solving
the reduced system.
SIM-related MR approaches have been subject of intense research and the inter-
ested reader, who wishes to gain an overview of existing methods in that field,
may consult [10] and the references therein.

2. Chemically reacting flows

We will focus here on convection-diffusion-reaction (CDR) systems made up
of equations of the form

∂tu+∇ · (F (u)− A(u)∇u) = S(u), (2.1)

accompanied with appropriate initial and boundary conditions. The chemical
source term S(u) contains the chemical reactions. As a matter of fact, chemical
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reactions in several species proceed on various time scales, resulting in a certain
stiffness of the differential system. The distinct separation of time scales is, in
turn, needed for a clear determination of slow and fast dynamics in phase space.
In general, we assume that there are nspec chemical species reacting with each
other in nreac reactions.
Furthermore, we focus on the equations for the species concentrations and will
here neglect the evolution equations for the fluid density and velocity. Thus
we assume that the vector of conservative variables is given by u = (ρY ),
where ρ is the mixture density and the vector of species mass fractions is Y =
(Y1, ..., Ynspec

)T whose entries must satisfy the physical constraint
∑nspec

j=1 Yj = 1.

With Ω ⊂ Rd, d > 0 the governing equations can be written in the form

∂tu = L(u) in (0, tend)× Ω, (2.2)

u(0, ·) = u0(·) in Ω,

with L(u) := −∇ ·
(
F (u)−A(u)∇u

)
+ S(u) and suitable boundary conditions.

The convection and diffusion parts of the above CDR equations (2.1),

F (u) = (Fj(u)) and A(u)∇u = (A(u)∇u)j)

for i = 1, ..., d, are given as follows:

Fj(u) =




ρY1vj
...

ρYnspec
vj


 ,

(
A(u)∇u

)
j
=




j1j
...

jnspecj


 , (2.3)

where the velocity v = (v1, ..., vd)
T is given and ∇·v = 0. The diffusion operator

for the species, cf. [7, 17] is given by

jk = ρ
Wk

W
Dmix

k

(
∇Xk +

(Xk − Yk)

p
∇p

)
(2.4)

with mole fraction of species k

Xk =
YkW

Wk

(2.5)

and mean molecular weight of the gas mixture

W =

(
nspec∑

k=1

Yk

Wk

)−1

. (2.6)

Here, Wk denotes the molecular weight (also known as molar mass) of species
k.
As diffusion coefficients are stated as function of pressure p, temperature T
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and mole fractions X , it is worth knowing conversion formulae from and to
concentrations [X], namely

[Xk] = ρ
Yk

Wk

= ρ
Xk

W
. (2.7)

Concentrations are stated in molm−3.
An empirical formula for the mixture-averaged diffusion coefficient , cf. [7,

17] is given by

Dmix
k =

∑
j 6=k XjWj

W
∑

j 6=k Xj/Djk

. (2.8)

This expression ensures that the roundoff is accumulated similarly in the nu-
merator and denominator, especially when the mixture approaches pure species
situations. We exclude here the possibility of a mixture containing a single
species only, because in that case (2.8) isn’t defined and also because an MR
wouldn’t make sense at all.
The binary diffusion coefficient, Djk, for the (j, k) species pair in (2.8) can be
readily computed via

Djk =
3

16

√
2πk3BNAT 3Wj+Wk

WjWk

pπσ2
jkΩ

(1,1)∗
, (2.9)

σjk =
1

2
(σj + σk).

In order to obtain a well-scaled diffusion coefficient, molecular weights should be
inserted in g/mol, pressure in bar (which is 105Pa ) and lengths for the collision
diameter σjk in Å (which is 10−10 m). We use recommended values from [22]
for both the Boltzmann constant kB and the Avogadro number NA.
We want to point out that there are better ways to compute the diffusion coef-
ficient of species k in a mixture, as done in (2.8), both in view of accuracy and
theoretical validation. However, this comes along with increased computational
costs and we refer the interested reader to [7, 16, 17].

Furthermore, for the computation of the binary diffusion coefficient (2.9),
the collision integral Ω(1,1)∗ is fitted as follows [16]

Ω(1,1)∗(T ∗, δ̃∗jk) ≈
(
a1T

∗−a2 + (T ∗ + a3)
−a4
)
f (1,1)(T ∗, δ̃∗jk),

f (1,1)(T ∗, δ̃∗jk) = 1 +
(exp(a5/T

∗)− exp(−a6/T
∗))
(
δ̃∗jk

)2

2 + 2.5δ̃∗jk
,

where the coefficients are given in Table 1 and f (1,1) is a simple extension for
the Stockmayer potential (i.e. δ̃∗jk 6= 0).

For the sake of simplicity, we assume that all collision partners in a gas
mixture are polar. This deliberates us from distinguishing different cases of
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Table 1: Coefficients for interpolating Ω(1,1)∗ as stated in [16]

i 1 2 3 4 5 6

ai 1.0548 0.15504 0.55909 2.1705 0.093193 1.5

molecular interaction when computing the subsequent quantities for an approx-
imate Ω(1,1)∗:

εjk
kB

=

√
εj
kB

εk
kB

,

T ∗ =
kBT

εjk
,

δ̃∗jk =
1

2

µdip
j µdip

k

εjkσ3
jk

.

Data for molecular interaction such as Lennard-Jones potentials εk/kB (K),

Lennard-Jones collision diameters σk (Å) and dipole moments µdip
k (Debye

≈ 3.34× 10−30 Cm) have been taken from the transport database of [18].
For a thorough discussion and detailed derivation of the above transport con-
cepts, the reader may wish to consult [16, 14].

To close the system we define the pressure p in accordance with the ideal
gas law

p =
ρRT

W
. (2.10)

Chemical kinetics cast in the source term S(u) are modeled with the aid of
concentrations (2.7). The differential equations from (1.1) read as

ẏk := ˙[Xk] =

nreac∑

i=1

(ν′′ki − ν′ki)qi, k = 1, . . . , nspec, (2.11)

where ν′′ki, ν
′
ki are the reverse and forward stoichiometric coefficients of species

k in reaction i, respectively. The rate of progress of reaction i is defined as

qi = ii

(
ki(T )

(
nspec∏

k=1

[Xk]
ν′

ki −

nspec∏

k=1

[Xk]
ν′′

ki

))
, i = 1, . . . , nreac, (2.12)

where ii =
∑nspec

k=1 aki[Xk]. The collision efficiencies aki are set to 1 for all
k by default but they may vary depending on the chemical mechanism under
consideration.
The reaction rate constants in (2.12) for both the forward and reverse direction
of reaction i are given by a modified 3-parameter Arrhenius law

ki(T ) = AiT
βi exp

(
−

Ea,i

RgasT

)
(2.13)

with known values for the prefactor Ai, temperature exponent βi and activation
energy Ea,i.
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3. Discontinuous Galerkin approximation

The considered discretization is based on the Discontinuous Galerkin (DG)
approach and implemented in Dune-Fem [9] a module of the Dune framework
[4, 5]. The current state of development allows for simulation of convection
dominated (cf. [8]) as well as viscous flow (cf. [6]). We consider the CDG2
method from [6] of up to 2nd order in space and 3rd order in time for the
numerical investigations carried out in this paper.

3.1. Spatial discretization

The spatial discretization is derived in the following way. Given a tessellation
Th of the domain Ω with ∪K∈Th

K = Ω the discrete solution uh is sought in the
piecewise polynomial space

Vh = {v ∈ L2(Ω,Rnspec) : v|K ∈ [Pk(K)]nspec , K ∈ Th} for some k ∈ N,

where Pk(K) is a space containing polynomials up to degree k. On quadrilateral
or hexahedral elements we replace Pk with Qk build by products of Legendre
polynomials of up to degree k in each coordinate.

We denote with Γi the set of all intersections between two elements of the
grid Th and accordingly with Γ the set of all intersections, also with the boundary
of the domain Ω. The following discrete form is not the most general but still
covers a wide range of well established DG methods. For all basis functions
ϕ ∈ Vh we define

〈ϕ,Lh(uh)〉 := 〈ϕ,Kh(uh)〉+ 〈ϕ, Ih(uh)〉 (3.1)

with the element integrals

〈ϕ,Kh(uh)〉 :=
∑

K∈Th

∫

K

(
(F (uh)−A(uh)∇uh) : ∇ϕ+ S(uh) · ϕ

)
,

and the surface integrals (by introducing appropriate numerical fluxes F̂e, Âe

for the convection and diffusion terms, respectively)

〈ϕ, Ih(uh)〉 :=
∑

e∈Γi

∫

e

(
{{A(uh)

T∇ϕ}}e : [[uh]]e + {{A(uh)∇uh}}e : [[ϕ]]e
)

−
∑

e∈Γ

∫

e

(
F̂e(uh)− Âe(uh)

)
: [[ϕ]]e,

where {{v}}e =
1
2 (v

+ + v−) denotes the average and [[v]]e = (n+ ⊗ v++n−⊗ v−)
the jump of the discontinuous function v ∈ Vh over element boundaries. For
matrices σ, τ ∈ Rm×n we use standard notation σ : τ =

∑m

j=1

∑n

l=1 σjlτjl.

Additionally, for vectors v ∈ Rm, w ∈ Rn, we define v⊗w ∈ Rm×n according to
(v ⊗ w)jl = vjwl for 1 ≤ j ≤ m, 1 ≤ l ≤ n.
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The convective numerical flux F̂e can be an standard upwind flux or the
Local Lax-Friedrichs Flux function.

A wide range of diffusion fluxes Âe can be found in the literature, for a
summary see [3]. We choose the CDG2 flux

Âe(v) := 2χe

(
A(v)re([[v]]e)

)
|K−

e
for v ∈ Vh, (3.2)

which was shown to be highly efficient for advection-diffusion equations and
also for the Navier-Stokes equations (cf. [6]). Based on stability results, we
choose K−

e to be the element adjacent to the edge e with the smaller volume.
re([[v]]e) ∈ [Vh]

d is the lifting of the jump of v defined by

∫

Ω

re([[v]]e) : τ = −

∫

e

[[v]]e : {{τ}}e for all τ ∈ [Vh]
d. (3.3)

For the numerical experiments done in this paper we use χe = 1
2NTh

, where
NTh

is the maximal number of intersections one element in the grid can have
(cf. [6]).

3.2. Temporal discretization

The discrete solution uh(t) ∈ Vh has the form uh(t, x) =
∑

i ui(t)ϕi(x). We
get a system of ODEs for the coefficients of u(t) which reads

u′(t) = f(u(t), t) in (0, tend] (3.4)

with f(u(t), t) = M−1Lh(uh(t), t), M being the mass matrix which is in our case
block diagonal or even the identity, depending on the choice of basis functions.
u(0) is given by the projection of u0 onto Vh.

In this paper we use diagonally implicit Runge-Kutta (DIRK) solvers to solve
the resulting ODE system, e.g. implicit Euler, Crank-Nicholson, or DIRK34 [1].
These solvers are based on Jacobian-free Newton-Krylov methods (see [19]).

4. Computation of slow invariant manifolds

Chemical processes often involve a large amount of chemical species that in-
teract with each other. The question arises whether the number of species and
hence the number of differential equations can be reduced without destroying
too much information. Methods that are concerned with this question are called
chemistry-based model reduction methods. Thus whenever we speak of model
reduction (MR) methods, we exclusively mean chemistry-based model reduc-
tion approaches. Often (but not always [15]) such MR methods are reliant on
the existence of slow invariant (attracting) manifolds, SIMs for short, [12] that
specify system dynamics for a long period, cf. Fig. 1. For recent reactive flow
applications in conjunction with non-SIM methods, see [26]. A SIM is usually
parametrized by a distinct number of state variables. These state variables usu-
ally describe, e.g., the concentrations or mass fractions y of chemical species and
their dynamics are commonly given by an initial value problem (1.1). Here, we
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y3

y1

y2

Figure 1: Visualization of a SIM: Trajectories (dashed curves) in phase space
– here consisting of three states y1, y2 and y3 – successively bundle on lower-
dimensional manifolds (shaded area, bold solid line) until reaching the chemical
equilibrium (black dot). This corresponds to a 2D, 1D and 0D manifold.

assume y ∈ Rnspec , nspec > 1. At the very beginning, one selects a distinct and
fixed subset of variables of y, i.e. {r1, . . . , rnred

} ⊂ {y1, . . . , ynspec
}, where ideally

nred ≪ nspec. This subset of state variables that we collect in a vector r ∈ Rnred

are called reaction progress variables (RPVs) and are used to parametrize the
SIM. Roughly speaking, a SIM can be viewed as a function of r. For it, we
define a constant matrix B ∈ {0, 1}nspec×nred such that the RPVs are related to
the full state via

r = BTy. (4.1)

Thus each column of B is made up of a unit vector, with a 1 denoting the species
that is to be used as a RPV. The exact choice of B is user-defined and it is out
of the scope of this presentation to discuss ways of choosing “good” candidates
for RPVs in chemical systems.
As soon as the system dynamics approach the SIM M, the RPVs are used to
approximate the remaining variables in order to obtain an estimate of the full
state y. The estimation of y is designated by zM(r) and the nred-dimensional
chemistry-based manifold that is used in the dimension reduction is given by

M = {y | y = zM(r)}. (4.2)

This process is also referred to as species reconstruction.
The RPVs are sometimes associated with the slow dynamics of a dynamical
system (1.1) and the unrepresented state variables with the unknown fast modes.
This originally goes back to the idea of separating different time scales and lower-
dimensional long-term dynamics in order to describe complex systems [10].
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For further investigations, we frequently require the computation of the tangent
space for a given r. The matrix whose columns span the tangent space of the
manifold M at zM(r) is denoted by T (r) ∈ Rnspec×nred , in accordance with [27].
This matrix can be computed by taking the derivatives of zM(r) with respect
to r. Fig. 2 serves as an illustration of a SIM in phase space (the space spanned
by the species).

For the computation of such a SIM, we employ an approach that has recently
been launched by Lebiedz et al. [21]. However, we use a computationally
cheaper variation of it. In particular, we do not solve ẏ(t) = S(y(t)), t ≤ tend in
order to get a new “time-averaged” approximation for the full state but evaluate
the following minimization problem:
Given current values of the RPVs r (fixed throughout optimization) and of the
full state y, solve the minimization problem to obtain a new y = zM(r), viz.

min
y

J (y) := σ‖J(y)S(y)‖22 (4.3a)

subject to

Cy − b = 0, (4.3b)

BTy − r = 0, (4.3c)

ylow ≤ y ≤ yup. (4.3d)

The last statement (4.3d) is to be understood componentwise and, for given
lower and upper bounds, ylow and yup respectively, on the variables, ensures
that physical properties are maintained during the optimization process (e.g.
positivity of mass fractions that might be violated during the solution of (4.3)).
The notation from [21] has been slightly adapted for the above problem: J(y)
represents the Jacobian of the source term S(y), both being evaluated at the
current full state approximation y. In addition the minimization problem is
run with the current approximation r of the reduced system and represents
values of RPVs that parameterize the SIM. Constraint (4.3b) expresses element
mass conservation: C = (βkl) is a constant mass balance matrix. The vector b
represents the sum of masses, i.e.

nspec∑

k=1

βlkyk − bl = 0, l = 1, . . . , nelem, (4.4)

with nelem denoting the number of chemical elements involved in the reactions
(i.e. C, H, O,. . . ) and βkl denoting the number of occurrences of chemical
element l in chemical species k. Consider CH4, then βC,CH4

= 1 and βH,CH4
= 4.

In the current discussion, we assume nred = nelem, but these dimensions need
not necessarily be equal. The matrix BT has already been introduced in (4.1).
The usual Euclidean norm in Rnspec is given by ‖ · ‖2. A parameter σ in (4.3a)
is used for scaling the objective function. A quite similar approach is described
in [11].
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Due to the continuity of J and the compactness of the constraint set (4.3b)–
(4.3d), the existence of a solution of (4.3) is guaranteed. Therefore, it may be
solved by any standard method for nonlinear programming, see e.g. [23].
We use a code by J. Siehr [20] that implements the generalized Gauß-Newton
(GGN) to solve (4.3). Although having a linear convergence rate only, the GGN
is not affected by a loss of positive definiteness of the underlying linear equation
systems. In particular no expensive regularizations of such systems need to be
performed as is the case with the conventional Newton’s method.

5. Handling invariances

Generally, computing a SIM may be accompanied by small aberrations lead-
ing the composition away from the SIM and introducing invariances. These
perturbations can result from accumulation of computational errors such as
truncation and round-off errors as well as from considering physical transport
processes such as diffusion (convection/advection is not assumed to contribute
any perturbations in u). Diffusion introduces additional time scales into the
dynamics thus contributing to the aforementioned drawn-off effects.
In this section we briefly review a method, the so-called Close-Parallel Assump-
tion, CPA for short, which “projects” the composition back onto the SIM. It was
first laid out by Ren and Pope [27] and we will stay close to their presentation.
The concept is graphically highlighted in Fig. 2. Without loss of generality, we

��
��
��
��

M

TrM

δu

NrM

u = zM(r) + δuM̂

zM(r)

Figure 2: Close-Parallel Assumption: The composition u on a nearby manifold
M̂ is thought to be a linear combination of a point zM(r) lying on the manifold
M of interest and an aberration δu into the unrepresented space spanned by
the columns of U. The manifold M is parameterized by r. TrM and NrM
represent tangent and normal space at the manifold point zM(r), respectively.
The figure has been adapted from [27].

assume that a composition u can be represented via an aberration δu in the
form

u = zM(r) + δu, (5.1)
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where zM(r) stands for the computed point on the manifold M and

r := BTu (5.2)

are chosen entries out of u ∈ Rnspec via a predefined transposed species-selection
matrix B ∈ {0, 1}nspec×nred whose entries serve as parametrization for the man-
ifold. We won’t make any further assumptions about the special structure of B
since the proper selection of slow mode species is a topic of its own and won’t
be addressed here.
We assume that the aberration takes place in the phase space of unrepresented
species, spanned by the columns of U ∈ {0, 1}nspec×(nspec−nred). Therefore we set

δu := Uδ, (5.3)

where δ ∈ R(nspec−nred) is an unknown to be determined in what follows.
Consider the general CDR system

∂tu+∇ · (F (u)− A(u)∇u) = S(u). (5.4a)

together with elementary mass balances

Cu = b, (5.4b)

with given conservation matrix C ∈ Rnred×nspec and b ∈ Rnred a given vector of
sum balances.
Premultiplying system (5.4a) with BT yields

∂tB
Tu+∇ ·BTF (u) = BT∇ · (A(u)∇u) +BTS(u). (5.5)

Using (5.1) and (5.2) we can write

∂tr +∇ · BTF (zM(r) + Uδ) = BT∇ · (A(zM(r) + Uδ)∇(zM(r) + Uδ))

(5.6)

+ BTS(zM(r) + Uδ).

The CPA now states that the composition is drawn onto another manifold
that is close by and similar in structure as those being computed (hence the term
parallel – quasi-isomorphic would probably be a better-suited description), cf.
Figure 2.
We now apply the CPA to (5.6): First we note that diffusion depends only
on derivatives of u. The composition u in turn is assumed to lie on a nearby-
manifold. Thus we have

BT∇ · (A(zM(r) + Uδ)∇(zM(r) + Uδ)) ≈ BT∇ · (A(zM(r))∇zM(r)). (5.7)

As a matter of fact, chemical kinetics cast in the source term S(·) are sensitive to
perturbations. Applying again the CPA, namely the property of being nearby,
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we can perform a first order Taylor expansion around zM(r) w.r.t. the second
term of the RHS of (5.6):

BTS(zM(r) + Uδ) ≈ BTS(zM(r)) +BTJ(zM(r))Uδ (5.8)

where J(zM(r)) = DS(zM(r)) denotes the Jacobian of the chemical source
term.
Using (5.7) and (5.8) and the fact that the convective part depends on derivatives
of u and since we assume that u is close to zM(r), compare (5.7) for the same
argumentation, we achieve the CPA formulation of system (5.4a)

∂tr +BT∇ · F (zM(r)) = BT(∇ · (A(zM(r))∇zM(r)) + S(zM(r)))︸ ︷︷ ︸
=:Q

(5.9)

+ BTJ(zM(r))Uδ︸ ︷︷ ︸
=:R

.

We refer to Q as “first approximation” and to Q+R as “second approximation”
or CPA approximation. We frequently write 1st and 2nd as mnemonic for these
approximations.
The first approximation neglects possible drawn-off effects whereas the second
approximation takes them into account via a “correction term” R.
Up to now, we have not specified how to calculate the unknown perturbation δ
of (5.9). This will be done in what follows.
Assuming that the aberration δu lies in the normal space of the manifold M,
we multiply (5.4a) by NT(r) ∈ R((nspec−nred))×nspec (note that the columns of
N(r) span the normal space of M at zM(r)) :

NT(r)∂t(z
M(r) + Uδ) +NT(r)∇ · F (zM(r) + Uδ) =

(5.10)

NT(r)∇ · (A(zM(r) + Uδ)∇(zM(r) + Uδ)) +NT(r)S(zM(r) + Uδ).

Obviously,

NT(r)∂t(z
M(r) + δu) = NT(r)DzM(r)︸ ︷︷ ︸

=:T (r)

∂tr +NT(r)∂tδu. (5.11)

Noting that NT(r)T (r) = 0 and applying the CPA on (5.11) again, we get

NT(r)∂tδu ≈ 0. (5.12)

Recall
∇ · F (zM(r) + Uδ) ≈ ∇ · F (zM(r)).

Moreover, we reason in the sense of the CPA that the convective part makes
the composition u evolve only along the tangent space T (r) ∀zM(r), hence

NT∇ · F (zM(r)) ≈ 0.
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Thus we end up with

NT(r)∂tu = NT(r)∇·(A(zM(r)+Uδ)∇(zM(r)+Uδ))+NT(r)S(zM(r)+Uδ) ≈ 0.

Using the same argumentation as above, see (5.8), we obtain

0 ≈ NT(r)∇ · (A(zM(r))∇zM(r)) +NTS(zM(r)) +NTJ(zM(r))Uδ. (5.13)

After some rearrangement we arrive at

NT(r)J(zM(r))δu = −NT(r)(∇ · (A(zM(r))∇zM(r)) + S(zM(r))) (5.14)

for the unknown δu = Uδ. The dynamics cast in the chemical source term
S(·) are formed using the law of mass action. As a result, the Jacobian J(·) of
that source term is singular. This makes matrix NT(r)J(zM(r)) rank-deficient.
To remove some of the ambiguity in the definition of δu we make use of the
elementary mass balance Cu = b, recall (4.3b), where C ∈ Rnred×nspec . Using
representation (5.1) we arrive at CzM(r) + Cδu = b. The value zM(r) on the
slow manifold also satisfies the same mass balance law, i.e. CzM(r) = b so
that the abbreviation satisfies Cδu = 0. Summing up, δu solves the following
nspec × nspec linear system

[
NT(r)J(zM(r))

C

]
δu = −

[
NT(r)(∇ · (A(zM(r))∇zM(r)) + S(zM(r)))

0

]
.

(5.15)

Finally, it should be said that the matrix N(r) can be obtained by an or-
thonormalization of T (r) := DzM(r). Once the matrix T (r) has been computed,
we use a QR factorization T (r) ≡ T = [Q1, Q2][R, 0]T, where N(r) agrees with
Q1 and it holds NT(r)T (r) = 0 ∈ R((nspec−nred))×nred .
Note however that Eq. (5.15) differs from the presentation in [27] insofar as
we have added constraints to take violations of the mass balance into account.
However for the simple system considered in the numerical experiments in [27]
there are no mass balance equations and the Jacobian is not singular, so that
in this case the system (5.15) corresponds to the definition given in [27]. For
more complicated systems however we found that adding mass conservation was
essential for obtaining a well defined method. The matrix C can be identified
with the “element matrix” because it counts the number of atoms of chemical
elements (such as O,H,. . . ) in each of the nspec chemical species. Thus our
approach bears a certain resemblance with that presented in [28].

5.1. Implementation of the manifold

Every time zM(r) is to be evaluated, equation (4.3a) has to be solved. This
is computationally expensive, especially in the 2d or 3d computations where
similar states r can be present in the system (see also Section 7.3 and 7.4).
Therefore, an appropriate way of tabulating already computed similar states
needs to be used. In this work we used an adaptive interpolation approach.
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We discretize the space spanned by the reduced variables using a linear
Lagrange Finite Element approach on a Cartesian grid where the computational
domain is given by [0, 1]r. We start with a very coarse grid that contains one
or four cells. For every Lagrange Point, here the vertices of the cells, that lies
below the line of mass conservation (see Figure 4), the optimization problem
(4.3a) is solved. We skip points above the line of mass conservation by setting
the interpolation values to zero.

Whenever zM(r) is to be evaluate, instead of solving equation (4.3a) we
interpolate the values for zM(r) on the cell of the Cartesian grid the point r is
located in. The search of this cell can be obtained by simple integer arithmetic
since we rely on a Cartesian grid.

To resolve zM(r) appropriately we adaptively refine the grid cells until the
interpolation of the manifold at the cell center rc is close enough to the computed
solution or a maximal refinement level is reached. The criterion reads as follows:

‖zM(rc)−ΠzM(rc)‖ ≤ α or l(Er) = lmax. (5.16)

For points r within cells that satisfy this criterion the interpolation ΠzM is used
to approximate zM(r).

A resulting interpolation grid is presented in Figure 4 with threshold α =
10−8 and maximal refinement level lmax = 5. In this example we started with
one cell and cells are refined by quartering.
Another tabularization strategy frequently applied in practical CFD simulations
is described in [25].

6. Discretization of the reduced system

We now need to discretize the evolution equation (5.9) for the reduced vari-
able r. Using operator notation, we have to solve ∂tr = L2(r) with

L2(r) :=−∇ ·
(
BTF (zM(r)) −A(zM(r))∇zM(r)

)

+BT
(
S(zM(r)) + J(zM(r))Uδ

)

where δ is given by (5.15):
[
NT(r)J(zM(r))U

CU

]
δ = −

[
NT(r)(∇ · (A(zM(r))∇zM(r)) + S(zM(r)))

0

]
.

We will concentrate on the second approximation which is given by the oper-
ator L2. The discretization of the first approximation is simpler and can be
inferred from the following discussion. We assume in the following that the
parametrizations zM of the slow manifold and of its normal space NT are avail-
able for example using the tabularization discussed in the previous section.

First we need to discuss the computation of the correction δ = δ(r). As
already mentioned NT(r)J(zM(r)) is rank-deficient. But we assume that by
adding the mass balance constraints CUδ = 0 the full matrix

[
NT(r)J(zM(r))U

CU

]

14



has full column rank. In this way the linear least squares solution is unique. We
must, however, be able to cope with the situation when the left hand side matrix
of (5.15) is rank deficient (up to machine precision), i.e. its rank is smaller than
the minimum of its row and column number. In such a case, we can solve the
linear system (5.15) by using the pseudo inverse. In our implementation we use
a linear least squares method based on singular value decomposition, employing
LAPACK’s dgelsd routine [2]. This can handle a possible rank deficiency.

The evolution operator for r differs from the general form discussed in Sec.
3 in two ways:

1. The diffusion is not simply of the form A(r)∇r but involves a non-linearity
A(zM(r))∇zM(r). Thus our DG approximation can not be directly used
for this equation.

2. The operator is not in divergence form due to the second order correction.

To overcome these problems, we study the following discrete weak formulation
of the evolution equation for r:

uh = zM(rh)

〈ϕ,wh〉 = 〈ϕ,La(uh)〉

δh = −

[
NT (rh)J(uh)U)

CU

]−1 [
NT (rh)wh

0

]

〈ϕ, ∂trh〉 = 〈ϕ,Lb(rh, uh, wh, δh)〉

where La and Lb are advection-diffusion-reaction operators of the form discussed
in Sec. 3:

La(uh) := ∇ · (A(uh)∇uh) + S(uh)

Lb(rh, uh, wh, δh) := −∇ ·BTF (uh) +BT (wh + J(uh)Uδh)

Note that this formulation is formally equivalent to the original equation and
the operators are of the right form. In fact La is equivalent to the original evo-
lution operator for the full system (neglecting the advection term). The second
operator Lb is a convection-reaction operator. Note in our implementation we
do not store the auxiliary variables uh, wh, δh. Both uh and δh can be directly
computed pointwise for given values of rh and wh so they can be obtained as
needed. The same also holds for wh which can be computed on a single ele-
ment K ∈ Th due to the local structure of the discontinuous Galerkin method.
Thus L2 can be approximated using a single grid traversal and without storing
additional variables - especially no variables of the size of the full system are
required.

7. Numerical results

We will apply the approaches from the preceding sections to some exam-
ples. The first one is a rather simple one with a known SIM that allows direct
comparison with numerically generated results. The second example is a no-
tional isothermal mechanism paving the way for future investigations on realistic
combustion chemistry.
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7.1. A generalized 1d Davis-Skodje-like toy problem

The following academic example of a simple diffusion-reaction system in 2
variables has been taken from [27]. This model has the advantage that an
analytical SIM is known.

Let z ≡ z(x, t) where z = (z1(x, t), z2(x, t))
T. We skip the dependence on x

and t until further notice in order to make the representation more readable.
Defined on Ω := (0, 1), the test model is given by

∂tz1 =
c

ε
w(z)− dz1 + ∂x(D1∂xz1)

(7.1)

∂tz2 = −
1

ε
w(z)−

z1
(1 + bz1)2

+ ∂x(D2∂xz2),

where w(z) = z2 − z1/(1 + az1) and D2(x) = D1 + ex. Both the “stiffness gap”
and the diffusion coefficient for z1 are held fixed in all cases of interest, namely
ε = 0.01 and D1 = 1. Parameters a to e vary and are displayed in Table 2.
System (7.1) is equipped with the following boundary and initial conditions

z(t, x = 0) =

[
0
0

]
z(t, x = 1) =

[
1
1

1+a

]

and

z(t = 0, x) =

[
x
z1

1+az1

]
.

These conditions are already on the SIM.
The reaction-progress variable (RPV) will be z1, hence

B =

[
1
0

]
U =

[
0
1

]
.

An analytical SIM is given by

z = zM(z1) =

[
z1
z1

1+az1

]
, (7.2)

so that in a fully analytical scenario, z2 = z1/(1 + az1).
Differentiation of (7.2) with respect to the RPV z1 yields the matrix T (z1)

whose column spans the (analytical) tangent space at zM(z1),

T (z1) := DzM(z1) =

[
1

ϕ(z1)

]
,

where ϕ(z1) := 1/(1 + az1)
2.

Since NT(z1)T (z1) = 0, the 2× 1 matrix N(z1) for the analytical normal space
can be readily computed via

N(z1) =
1√

ϕ(z1)2 + 1

[
−ϕ(z1)

1

]
.
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Table 2: Parameters for system (7.1), taken from [27]

case 1 case 2 case 3 case 4

a 0 1 0 1
b 1 1 0 1
c 1 1 1 1
d 2 1 1 2
e 0 0 3 3

In terms of (5.9), we obtain

∂tz1 = −dz1 + D1∂
2
xz1

(7.3)

+
c

cϕ(z1) + 1

(
dz1ϕ(z1)−

z1
(1 + bz1)2

− ϕ(z1)D1∂
2
xz1 + ∂xD2(x)∂xz2

)
.

The first term in the RHS of (7.3) corresponds to the first approximation while
the second to the correction term introduced by the CPA. The complete RHS
denotes the second approximation. In Fig. 3, we compare our numerical results
with the analytical ones obtained by (7.3).
Note however that in this special case we have no mass balance equations so
that the system defining the correction δ reduces to NTJ(zM)U which is always
not equal to zero, i.e., in contrast to realistic chemical reaction source terms,
the Jacobian is not singular for this model.

Our results shown in Fig. 3 agree quite well with the results presented in
[27]. In all considered cases, the second approximation obtained with the CPA is
closer to the full solution than the analytical first approximation. The numerical
second approximation has been computed via in situ calculations and storage
in an adaptive look-up table as described in preceding sections. The in situ
calculations have been performed by solving an optimization problem of the
form (4.3) at the finest refinement level.

7.2. Hydrogen combustion model

We consider an isothermal (T = 1000 K) hydrogen mechanism that can
be found in Table 3 and we compute numerically a two-dimensional SIM. The
mechanism has been taken from [12]. Unfortunately, it does not possess any
known analytical SIM so that any simulations concerning a reduced description
can only be verified by comparing them to the computational solution of the
full system.

The species in the above mechanism are put into a vector in order of ap-
pearance

U = (u1, u2, u3, u4, u5, u6)
T.

Thus, u1, u2, . . . , u6 corresponds to H2,H, O2, O, H2O and OH, respectively. In
order to derive the mass balance matrix from Eqs. (4.3b) and (4.4), we count
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Figure 3: Results for the four test cases, cf. Table 2. For each case, the solution
of the full set of equations (7.1) at tend = 1 is plotted and compared with the
solution of the analytical first and second approximation (7.3) as well as with
fully numerically obtained solutions for the second approximation (this includes
computation of normal spaces, too).

the number of occurrences of the two chemical elements H and O in each of the
six chemical species, see. Tab. 5.

The conservations laws, e.g. in concentrations (4.4), are given by

2u1 + u2 + 2u5 + u6 = b1,

2u3 + u4 + u5 + u6 = b2.

We take b1 = 2 and b2 = 1 as in [12].
Had the conservation laws been stated in mass fractions Yk, then physical con-
straints would have been imposed by

∑
k Yk = 1.

The equilibrium (in concentrations) is

ueq = (0.27, 0.05, 0.135, 0.02, 0.7, 0.01)T. (7.4)

We take r = (u1, u5)
T, i.e. H2 and H2O as RPVs.

We start our investigation by studying the pure ODE, i.e. neglecting advec-
tion or diffusion. As can bee seen from Fig. 5, the CPA approximation 5.9 yields
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Table 3: Simple test mechanism. Forward (kf) and reverse (kr) rate coefficients
are assumed to be temperature-independent. The rate coefficients have been
computed via (2.13), with βi = Ea,i = 0.

Reaction kf kr
H2

−−⇀↽−− 2H 2. 216.
O2 −−⇀↽−− 2O 1. 337.5
H2O −−⇀↽−− H+OH 1. 1400.
H2 +O −−⇀↽−− H+OH 1000. 10800.
O2 +H −−⇀↽−− O+OH 1000. 33750.
H2 +O −−⇀↽−− H2O 100. 0.7714

Table 4: Hydrogen combustion mechanism

Chemical species
Elements H2 H O2 O H2O OH

H 2 1 0 0 2 1
O 0 0 2 1 1 1

Table 5: Define matrix C from Eq. (4.3b)

(slightly) better results than simply applying the first approximation for differ-
ent initial data. From Tab. 6 one can also observe that the aim of reducing the
stiffness in the system by the reduction to the slow manifold has been achieved.
To obtain an upper bound for the stability of the method we used a nested
interval approach, integrating the system to the equilibrium state for different
time steps. A method is termed stable for a given time step if in each step the
mass balance equations is satisfied. In the case of an implicit method, the New-
ton scheme converged, and the method approximated the correct equilibrium
state at tend = 2. It turns out that the reduced system can be solved using an
explicit method with a larger time step than with an implicit treatment of the
full system. For example, the forward Euler method for the reduced system is
stable with twice the time step as for the full system using the implicit Euler
method. To clarify this issue, we should point out that the Newton method
used for treating the nonlinear system was quite basic and more sophisticated

first second full
explicit RK(1) 0.0021 0.0021 0.0001
implicit RK(1) 0.0041 0.0040 0.0011
explicit RK(2) 0.0028 0.0028 0.0001
implicit RK(2) 0.0083 0.0080 0.0006

Table 6: Numerically estimated maximum time step for the full ODE and the
first and second order approximation using different time stepping methods.
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Figure 4: Interpolation grid used to store the evaluation of the manifold.

approaches could lead to higher time steps for the implicit method. The sta-
bility of the explicit and implicit methods applied to the reduced system turns
out to be quite similar.

As expected, the reduced system allows the use of larger time steps and even
explicit methods can successfully be used to integrate the system. The maximal
time steps for the CPA approach are very similar to the first approximation
but the CPA produces slightly better results. However, the CPA approach is
much more expensive because of the formation of N(r), i.e. the computation
of the derivatives of zM with respect to r. To make things worse, unlike in the
case of the first approximation, the transport coefficients have to be calculated
for all species (represented and unrepresented) and finally a linear system, cf.
(5.15), has to be solved. Therefore, one should carefully weigh up the necessity
of applying more elaborate (and possibly more accurate) methods in the light
of computational performance.

We used two sets of initial values (IVs) which are in the “vicinity” of the
chemical equilibrium (7.4). The left column of Fig. 5 shows results for IV

u0 = (0.455, 0.779, 0.237, 0.363, 0.148, 0.015)T. (7.5)

In the right column, results are depicted for IV

u1 = (0.2, 0.95, 0.31, 0.03, 0.3, 0.05)T. (7.6)

In the next subsections, we endow mechanism 3 with transport coefficients.
Values needed for the computation of these coefficients can be obtained upon
request, if the reader wishes to compare our results with his own.
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Figure 5: Results for ODE test for data set 1 and 2.

7.3. Hydrogen combustion with diffusion in 1d

We study the convection-free (v = 0) transport problem described in section
2, in an isobaric (p = const.) and isothermal (T = const. = 1000K) setting de-
fined on Ωtend = (0, 0.01)× (0, tend), where tend = 0.5. The governing equations
read as

∂t(ρYk)− ∂x

(
ρ
Wk

W
Dmix

k ∂xXk

)
− ˙[Xk]Wk = 0, k = 1, . . . , nspec, (7.7)

where ˙[Xk] is given by Eq. (2.11). By virtue of (2.7), the governing equations
can also be stated in concentrations by simply dividing (7.7) by Wk.
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As initial condition, we take

u(x, t = 0) =

{
u0 if 0.002 ≤ x ≤ 0.008

u1 otherwise,

where u0 is given in (7.5) and u1 is given in (7.6). For the sake of simplicity we
impose periodic boundary conditions, i.e.

u(0, t) = u(0.01, t).
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Figure 6: Results for ODE test for data set 1 and 2.
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As can be seen in Fig. 6, diffusive and computational invariance effects
can be extenuated by using the CPA approach. However, the improvements
relative to the result obtained by solving the full set of differential equations is
moderate. At the same time, the computational costs increase tremendously.
Nevertheless, the CPA remains a viable method for improving the accuracy of
our model reduction method.

7.4. Hydrogen combustion with diffusion in 2d

In this section we consider the full transport problem described in section
2 in an isobaric (p = const.) and isothermal (T = const. = 1000K) scenario
with diffusion defined on Ωtend = (0, 0.01)2 × (0, tend), where tend = 0.5. The
governing equations are the ones from the previous section, this time in 2d and
with a convection term. They read as

∂t(ρYk)+∇·

(
ρYkv − ρ

Wk

W
Dmix

k ∇Xk

)
− ˙[Xk]Wk = 0, k = 1, . . . , nspec, (7.8)

where ˙[Xk] is given by Eq. (2.11). By virtue of (2.7), the governing equations
can also be stated in concentrations by simply dividing (7.8) by Wk.
We choose a rotational velocity field given by

v(x, y) =
(
− 2π(y − 0.005), 2π(x− 0.005)

)T
.

The initial conditions are shown in Fig. 7. Again, for the sake of simplicity we
impose periodic boundary conditions, i.e.

u(0, y, t) = u(0.01, y, t) and u(x, 0, t) = u(x, 0.01, t).

As with one spatial dimension, the CPA approach works well in the 2d case,
compare Figs. 8 and 9 for simulations of the RPVs H2 and H2O, respectively.
To get a better impression of the quality of the particular approximations with
respect to the full solution, Fig. 10 shows cross-sectional plots for both H2 and
H2O. The CPA (2nd) approximation yields again slightly better results than
the 1st, but is computationally much more expensive.
In this paper we only highlight the quality of the approximations. A full effi-
ciency study will be carried out in a separate paper together with the coupling
to the fully compressible Navier-Stokes equations.
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(a) concentration of H
2
at t = 0 (b) concentration of H

2
O at t = 0

Figure 7: Initial data for the 2d simulation. The dark color corresponds to the
concentration of uH2

(·, 0) = 0.2 and uH2O
(·, 0) = 0.148 whereas the bright colors

correspond to the concentrations uH2
(·, 0) = 0.455 and uH2O

(·, 0) = 0.3.
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(a) Full: H
2
t = 0.1 (b) Full: H

2
at t = 0.5

(c) 1st: H
2
at t = 0.1 (d) 1st: H

2
at t = 0.5

(e) 2nd: H
2
at t = 0.1 (f) 2nd: H

2
at t = 0.5

Figure 8: Simulations of H2. From top to down: full, first and second ap-
proximation. Left column: Snapshot at t = 0.1. Right column: Snapshot at
t = 0.5. 25



(a) Full: H
2
O at t = 0.1 (b) Full: H

2
O at t = 0.5

(c) 1st: H
2
O at t = 0.1 (d) 1st: H

2
O at t = 0.5

(e) 2nd: H
2
O at t = 0.1 (f) 2nd: H

2
O at t = 0.5

Figure 9: Simulations of H2O. From top to down: full, first and second ap-
proximation. Left column: Snapshot at t = 0.1 Right column: Snapshot at
t = 0.5.

26



(a) Plot over the line connecting the
points (0, 0.004) and (0.008, 0.01) for
H

2
at t = 0.1

(b) Plot over the line connecting the
points (0, 0.004) and (0.008, 0.01) for
H

2
O at t = 0.1

(c) Plot over the line [0, 0.01]×{0.003}
for H

2
at t = 0.5

(d) Plot over the line [0, 0.01]×{0.003}
for H

2
O at t = 0.5

Figure 10: Cross-sectional results to show the quality of the particular approxi-
mation approaches w.r.t. the full model at two distinct time points t = 0.1 and
t = 0.5. Left column: H2. Right column: H2O
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8. Discussion and conclusion

In this treatise, we make the following contributions:
We present a novel weak formulation for discontinuous Galerkin methods to
cope with reduced problems, especially the CPA formulation. To our knowledge,
this is the first time that the CPA method is applied in conjunction with higher
dimensional SIMs for nontrivial mechanisms in several space dimensions.
Moreover, we introduce a new method for the adaptive tabulation of manifold
points.
We also present the application of a relative novel method for chemistry-based
model reduction based on nonlinear optimization to a 2D chemically reacting
flow scenario and demonstrate its limitations. This optimization approach can
be seen as an adaption of the methods proposed in [11, 10]. It is the very first
time that the MR approach (4.3) has been applied to nontrivial PDE systems.
Our implementation of the method requires relatively little knowledge of chem-
ical issues and is intended to provide a rather automatized way of dealing with
dimension reductions of chemically reaction flows: the user has only to select
those variables out of the chemical species vector that are to serve as reaction
progress variables, the method of approximation (none, 1st or 2nd) as well as
thermochemical and transport data.
Besides the simplicity of the nonlinear programming approach, this method still
exhibits a few drawbacks:
First of all, problem (4.3) is ill-posed in the sense that the objective functional
(4.3a) is usually non-convex. This means, that any minimal point of (4.3) is
not unique. Hence it is difficult to judge whether, amongst other things, a
local solution depicts an actual SIM point and how, in dependence on initial
values, “better” solutions can be determined. A possible convexification could
circumvent this shortcoming. Moreover, up to now it seems uncertain how to
devise a reasonable adaptive strategy in order to control errors introduced by a
dimension reduction.
A second issue concerns computational resources. In this paper we were inter-
ested in a qualitative comparison of the different methods (full, 1st, and 2nd)
only and thus we have not spent much efforts to make the reduced approaches
very efficient. Indeed, the current implementation demands slightly more com-
putational resources in comparison to the full model, even with the adaptive
tabulation approach used. For the simple hydrogen combustion, the 1st and
2nd approximations are still around 1/5 and 1/3, respectively, slower than the
simulation of the full system. Future work on this topic will concentrate on
optimizing the implementation from a software technical point of view. Owing
to the small dimension of the combustion mechanism, a speed-up should most
likely occur for (much) more complex chemical compositions, i.e. much more
chemical species and possible 3d scenarios. Future research will treat these is-
sues.
Moreover, for the sake of simplicity, we dropped any dependence on tempera-
ture. Including thermal energy definitely blows up the optimization problem,
thus resulting in additional computational expense.
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Further investigations are supposed to deal with non-isothermal settings in or-
der to incorporate thermal energy as well as momentum, thus describing a full
set of Navier-Stokes equations. This will be laid out in a future paper and
we expect our approach to get a viable alternative to existing model reduction
methods.
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