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Abstract

We show how regional prediction of car insurance risks can be im-
proved by combining explanatory modeling with phenomenological mod-
els from industrial practice. Motivated by the control-variates technique,
we propose a suitable combined predictor. We provide explicit conditions
which imply that the mean squared error of the combined predictor is
smaller than the mean squared error of the standard predictor currently
used in industry and smaller than predictors from explanatory modeling.
We also discuss how a non-parametric random forest approach may be
used to practically compute such predictors and consider an application
to German car insurance data.

1 Introduction

In Germany, car insurance premiums heavily depend on regional classifications.
In practice, premiums are multiplied by factors subject to the residence of the
car owner. These multipliers are estimated on the basis of statistical observa-
tions from the recent past. Few car insurers, if any, have the necessary data
to estimate multipliers all over Germany. Therefore, the German Insurance
Association (GDV) pools claims data from its members in a central database
and creates regional classifications that are available for all insurers. Although
the GDV classification divides Germany into more than 400 regions, there ap-
pear erratic transitions at regional borders. For example, we observe unrealistic
differences in the risk multipliers of the eastern outskirts of Berlin and their
neighboring regions such as the Oder-Spree county. Practitioners intuition sug-
gests that these neighboring districts, which are very similar with regard to
urban development and socio-economic circumstances, should have similar mul-
tipliers.

While the GDV uses a purely phenomenological modeling, better results
might be expected from explanatory models. However, as far as we know,
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there exist no explanatory models that come close enough to the real data
(nevertheless, see [6] for a more refined statistical approach to predict regional
risk levels phenomenologically). In the present paper we propose a method
that combines an explanatory approach with the phenomenological GDV model.
The idea is to make use of an explanatory component as far as possible and to
supplement it with the GDV model in order to incorporate effects that can not
be explained so far. Our approach is closely related to the so-called control-
variate technique which constitutes a popular means of variance reduction in
Monte-Carlo simulations, see e.g. [5, 8]. Within our modeling framework we
can prove that our mixed approach is in some sense optimal.

In our application to German car insurance data presented in Section 5
we solely focus on third party insurance, which is compulsory in Germany since
1939. Indeed, third party insurance data is particularly well-suited for our meth-
ods, since significant correlations between regional risks and publicly available
road data can be observed. Yet, our concept can also be applied in comprehen-
sive car insurance and might be helpful in other lines of business far beyond car
insurances.

2 The regional classification of the GDV

In the present section we provide a brief description of the current approach,
which is used in German insurance industry for the prediction of regional risk
levels. As has already been explained in Section 1, in Germany it is common
practice that the premium for car insurance (third party as well as compre-
hensive) depends on the county (so-called Landkreis) where the corresponding
vehicle is registered. In order to obtain a reliable data-basis the GDV collects
claim data of various insurers and associates with each county a risk level, which
reflects the deviation of the claim sizes in the respective county from the federal
average, see [4]. A risk level of 100 corresponds precisely to the federal average,
while values below or above 100 correspond to more favorable or less favorable
risk situations, respectively. The precise formula which is used to determine the
risk level given the claim data is not publicly available, but it also incorporates
averaging over the most recent years. The risk levels are used to define 12 risk
classes. Figure 2.1 shows a map of German counties colored according to their
risk class in third party car insurance.

3 Statistical model

3.1 Predictors of risk levels

Assume that we have a country that consists of n regions, where the i-th region
has mi subregions, for each i = 1, . . . , n. In our application, the regions i =
1, ..., n will equal the GDV classification regions, which we refine into further
subregions in order to make the regional classification more smooth. Let Θi

and Θij describe fundamental risk levels of region i and subregion ij, for each
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Figure 2.1: Regional risk classes in third party car insurance (source: GDV, [4])

i = 1, . . . , n and j = 1, . . . ,mi. We take a Bayesian perspective here and assume
that the risk levels are identically distributed random variables with finite second
moment. For example, think of Θi and Θij as claim costs per policy averaged
over all policy holders in region i and in subregion ij, respectively. These values
may change from one year to another due to certain random effects. Further, for
some integer d ≥ 1 let ∆i and ∆ij be d-dimensional explanatory covariates for
region i and subregion ij. For example, ∆i and ∆ij could contain information
on the road density. Taking these covariates into our Bayesian framework,
we assume that (Θi,∆i), i = 1, ..., n are identically distributed random vectors.
Similarly we also assume that (Θij ,∆ij), i = 1, ..., n, j = 1, ...,mi, are identically
distributed random vectors. Suppose that covariate data are available for each
region and subregion but that claim data are only available for the regions and
not for the subregions. In our application, each insurer has access to the GDV
classification for regions i = 1, ..., n but does not have more detailed information
for any subregions. That means that we can observe the Θi, ∆i, and ∆ij but
not the Θij . In insurance practice, Θij is then typically predicted by

Θ
(1)
ij = Θi, (3.1)

i.e., the premium of a car insurance of an owner that is registered in subregion ij
is calculated with the general risk factor for the entire mother region i. Given the
available information Θi = θi, ∆i = δi, ∆ij = δij , the mean squared prediction
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error is given by

E(θi,δi,δij)[(Θij −Θ
(1)
ij )2] = E[(Θij −Θi)

2|Θi = θi,∆i = δi,∆ij = δij ]. (3.2)

In this context we investigate the following question: Can we find a pre-
dictor for Θij that is better than Θi, i.e., a predictor whose mean squared
prediction error is smaller than the value given in (3.2)? An alternative to the
phenomenological model of the GDV is explanatory modeling. A natural idea

is here to predict Θij by Θ
(2)
ij = E[Θij |∆ij ] = fij(∆ij), since among all ∆ij-

measurable random variables Θ with finite second moment the mean squared

error E[|Θ−Θij |2] is minimized for Θ = Θ
(2)
ij .

The function fij : Rd → R describes the effect of the explanatory covariate
∆ij on the regional risk level Θij . Since we assumed that the (Θi,∆i), i =
1, . . . , n are identically distributed and also that the (Θij ,∆ij), i = 1, ..., n,
j = 1, ...,mi, are identically distributed, there exist measurable functions f, f ′ :
Rd → R such that

E[Θi|∆i]= f(∆i),

E[Θij |∆ij ]= f ′(∆ij)
(3.3)

for all i = 1, ..., n and j = 1, ...,mi. We additionally assume that the functions f
and f ′ coincide. In other words, the effects that the covariates ∆ij and ∆i have
on Θij and Θi, respectively, are the same over the whole country and do not
vary by region. In our application this means for example that if a higher road
density increases the risk in some region by some amount, then this is also true
for all other regions. This seems to be a plausible assumption for car insurance.
With using the same function f for both regions and subregions, we can estimate
f solely from data on the regional level and then make use of that information
on the subregional level. However, finding the function f is still not a trivial
task. Section 4 explains how f can be estimated from (Θ1,∆1), ..., (Θn,∆n).
We finally obtain

Θ
(2)
ij = f(∆ij) (3.4)

as a predictor for Θij . This method works well in practice if f(∆ij) explains
most of the variance of Θij . In our application to car insurance, we were able
to explain about two-thirds of the variance, which is quite encouraging but
not enough to clearly trump the phenomenological GDV model. We therefore
discuss the question whether there is still another alternative.

3.2 Combined predictor

The GDV predictor Θ
(1)
ij = Θi is motivated by the empirical observation that

the subregional risk level Θij positively correlates with the regional risk level
Θi. Similarly, it is plausible to assume that the error Γij = Θij − f(∆ij) of

4



the predictor Θ
(2)
ij positively correlates with the (observable) quantity Γi =

Θi − f(∆i). Therefore we suggest to replace the predictor Θ
(2)
ij by

Θ
(3)
ij = f(∆ij) + Θi − f(∆i). (3.5)

Our suggestion is motivated by the notion of control variates, a popular variance
reduction method used in Monte-Carlo simulations, see e.g. [5, 8]. Originally,
this approach is used to enhance the precision when computing the expectation
E[X] for some random variable X. Instead of considering the estimator X for
E[X] it is often convenient to consider estimators of the form X + (E[Y ]− Y )
for some random variable Y , whose mean is analytically computable. If X and
Y are highly correlated, then so are the errors E[X]−X and E[Y ]− Y and it
is plausible that X + (E[Y ] − Y ) yields a better estimate for E[X] . We refer
the reader to [5, 8] for further details on control variates.

We now derive conditions under which Θ
(3)
ij is a better predictor for Θij than

Θ
(1)
ij and Θ

(2)
ij .

Proposition 3.1. Assume that

E(θi,δi,δij)[Γij ] = E(θi,δi,δij)[Γi]. (3.6)

Then

E(θi,δi,δij)
[
(Θij −Θi)

2
]

= (f(δij)− f(δi))
2 + E(θi,δi,δij)

[
(Γij − Γi)

2
]
,

E(θi,δi,δij)
[
(Θij − f(∆ij)− Γi)

2
]

= E(θi,δi,δij)
[
(Γij − Γi)

2
]
,

E(θi,δi,δij)
[
(Θij − f(∆ij))

2
]

= E(θi,δi,δij)[Γ2
ij ],

and for any λ ∈ R

E(θi,δi,δij)
[
(Θij − f(∆ij)− λΓi)

2
]

= E(θi,δi,δij)
[
Γ2
ij

]
− (2λ− λ2) (θi − f(δi))

2.

Proof. Note that we can rewrite E(θi,δi,δij)
[
(Θi−Θij)

2
]

as E(θi,δi,δij)
[
(f(δij) +

Γij − f(δi) − Γi)
2
]
. Similarly, we can rewrite all other conditional expecta-

tions that occur in the proposition and in the remaining part of the proof. By
expanding the expression (f(δij) + Γij − f(δi)−Γi)

2 and by using the fact that

E(θi,δi,δij)[Γij ] = E(θi,δi,δij)[Γi] = θi − f(δi),

we get that

E(θi,δi,δij)
[
(Θij −Θi)

2
]
− (f(δij)− f(δi))

2 − E(θi,δi,δij)
[
(Γij − Γi)

2
]

= 2E(θi,δi,δij)
[
(f(∆ij)− f(∆i))(Γij − Γi)

]
= 2 (f(δij)− f(δi))E

(θi,δi,δij)
[
Γij − Γi

]
= 0.
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Analogously, by expanding the expression (Θij − f(∆ij)− λΓi)
2 = (Γij − λΓi)

2

we get that

E(θi,δi,δij)
[
(Θij − f(∆ij)− λΓi)

2
]

= E(θi,δi,δij)
[
Γ2
ij − 2λΓiΓij + λ2Γ2

i

]
= E(θi,δi,δij)[Γ2

ij ]− 2λE(θi,δi,δij)[(θi − f(δi)) Γij ] + λ2E(θi,δi,δij)[(θi − f(δi))
2]

= E(θi,δi,δij)[Γ2
ij ]− 2λ (θi − f(δi))

2 + λ2(θi − f(δi))
2.

This completes the proof.

Proposition 3.1 shows that predicting Θij by Θ
(3)
ij = f(∆ij) + Γi instead of

considering the predictor Θ
(1)
ij = Θi always leads to a decrease in mean squared

error. Moreover, the following result is true.

Corollary 3.2. Under assumption (3.6), it holds that

E(θi,δi,δij)
[
(Θij −Θ

(3)
ij )2

]
= min

λ∈R
E(θi,δi,δij)

[
(Θij − f(∆ij)− λΓi)

2
]
. (3.7)

Furthermore,

E(θi,δi,δij)
[
(Θij −Θ

(2)
ij )2

]
≤ E(θi,δi,δij)

[
(Θij −Θ

(1)
ij )2

]
if and only if (θi − f(δi))

2 ≤ (f(δij)− f(δi))
2.

Corollary 3.2 shows that Θ
(3)
ij is the best estimator among all linearly com-

bined estimators of the form f(∆ij) + λΓi = f(∆ij) + λ(Θi − f(∆i)), λ ∈ R.

In particular, Θ
(3)
ij is always better than Θ

(2)
ij provided that (3.6) holds. In the

special case E(θi,δi,δij)[Γij ] = 0, which is here equivalent to θi − f(δi) = 0, the

mean squared error for the predictor Θ
(2)
ij of the pure explanatory model equals

the mean squared error for Θ
(3)
ij . Comparing the GDV predictor Θ

(1)
ij and the

pure explanatory predictor Θ
(2)
ij , there is no clear winner.

The assumption (3.6), i.e., E(θi,δi,δij)[Γij ] = E(θi,δi,δij)[Γi] = θi − f(δi),
implies that the mean level of Γij is always θi−f(δi), regardless of the covariate
∆ij and regardless of j. In other words, Γij contains only risks that can not
be explained by ∆ij , and the noise term Γij has about the same level within
each subregion j = 1, ...,mi. In our application that means for example that
the effect that the road density in ij has on Θij should already be completely
included in f(∆ij), and that systematic differences in the error terms Γij can
appear between regions but not between subregions of the same mother region.
For instance, if legal practice is not accounted for in the covariates, then it
may be systematically different between Berlin and Potsdam, but there may be
only unsystematic differences within Berlin and within Potsdam. If we relax
assumption (3.6) to the weaker condition

E(δi,δij)[Γij ] = E(δi,δij)[Γi], (3.8)
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it can happen that in some subregions ij the predictor Θ
(3)
ij has a larger mean

squared error than Θ
(2)
ij . However, if we replace E(θi,δi,δij) by E(δi,δij), we still

get dominance of Θ
(3)
ij over Θ

(1)
ij and Θ

(2)
ij , given that we have a sufficiently high

correlation between subregions and their mother regions. Note that replacing
E(θi,δi,δij) by E(δi,δij) means that we average over the mean squared errors with
respect to Θi and study them on a grainier level.

Corollary 3.3. When replacing E(θi,δi,δij) by E(δi,δij), then the first three as-
sertions of Proposition 3.1 are still valid, and they are even true under the
weaker assumption (3.8).

A similar computation as in the proof of Proposition 3.1 yields the following
result.

Corollary 3.4. Under assumption (3.8), it holds that

E(δi,δij)
[
(Θij − f(∆ij)− λΓi)

2
]

(3.9)

= E(δi,δij)
[
Γ2
ij

]
− 2λE(δi,δij)[ΓiΓij ] + λ2E(δi,δij)[Γ2

i ].

The expression in the second line of (3.9) is minimized when choosing

λ = E(δi,δij)[ΓiΓij ]/E
(δi,δij)[Γ2

i ].

It may occur that the mean squared error E(δi,δij)[(Θij − Θ
(3)
ij )2] is strictly

larger than the mean squared error E(δi,δij)[(Θij −Θ
(2)
ij )2]. More precisely, this

happens if and only if

E(δi,δij)[ΓiΓij ]/E
(δi,δij)[Γ2

i ] < 1/2.

That is typically the case when Γi and Γij are weakly or negatively correlated.
However, in our application to car insurance, we expect that the random vari-

ables Γi and Γij are highly positively correlated, so that Θ
(3)
ij is still a better

estimator than Θ
(2)
ij .

In general, the quantity E(δi,δij)[ΓiΓij ]/E
(δi,δij)[Γ2

i ] may be difficult to esti-
mate, but we note that under the stronger assumption (3.6) we compute

E(δi,δij)[ΓiΓij ] = E(δi,δij)[ΓiE
(θi,δi,δij)[Γij ]]

= E(δi,δij)[Γ2
i ].

Therefore, under (3.6), we see that the expression E(δi,δij)
[
(Θij−f(∆ij)−λΓi)

2
]

is minimized for λ = 1 which is consistent to Corollary 3.2.

To put it into a nutshell, we learned that in our model the predictor Θ
(3)
ij in

some sense dominates Θ
(1)
ij and Θ

(2)
ij and should be preferred.
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3.3 Example

In Proposition 3.1 we provided a rigorous explanation for the improved perfor-

mance of our refined predictor Θ
(3)
ij in comparison to the GDV predictor Θ

(1)
ij . In

this subsection we give an example of a stochastic model in which the assump-
tions of Proposition 3.1 are satisfied. We have already provided an economic
explanation for the validity of the equation E(θi,δi,δij)[Γij ] = θi− f(δi) and now
present a specific example which shows that the conditions in Proposition 3.1
can also be satisfied by a rigorously defined mathematical model.

Let d, k ≥ 1, let (Ω,F ,P) be an arbitrary probability space, and let f :
Rd → R as well as g : Rd → Rk be measurable functions. Furthermore, for
any i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi} let (Wi,Wij) be a (k + 1)-dimensional
random vector with E[Wij ] = 0 and such that Wi and Wij are independent. We
assume that the random variables Wi, i ∈ {1, . . . , n} are identically distributed.
Similarly, we also assume that the random vectors Wij for i ∈ {1, . . . , n} and
j ∈ {1, . . . ,mi} have the same distribution. For δi, δij ∈ Rd we may then
consider the random vector

(Θi,Θij) =
(
f(δi) +Wi, f (δij) +Wi + g(δij)

>Wij

)
, (3.10)

so that

(Γi,Γij) = (Θi − f(δi),Θij − f(δij))

=
(
Wi,Wi + g(δij)

>Wij

)
.

In particular, E(θi,δi,δij)[Γi] = E(θi,δi,δij)[Γij ] and hence the assumption of
Proposition 3.1 is satisfied.

The random variable Wi can be interpreted as regional risk effect which is
not influenced by the covariates δi. In the subregion ij the same regional risk
effect Wi should be present, but additionally it is possible to add mean-zero
mixed effects g(δij)

>Wij which may depend both on covariates on the one hand
and incorporate random effects on the other hand. This could be reasonable
for instance if the size of a subregion would be included in the list of covariates.
Indeed, we would expect the risk level in smaller regions to be more volatile
than in larger regions, in the sense that its variance should be larger.

Also observe that when requiring the weaker condition (3.8) (instead of (3.6)),
then it would be possible to allow mixed effects also in the region i itself. To
be more precise, fix d, k ≥ 1 and a measurable function h : Rd → Rk. Further-
more, for each i ∈ {1, . . . , n} we consider a k-dimensional random vector W ′i
such that E[W ′i ] = 0 and such that for each j ∈ {1, . . . ,mi} the random vector
(Wi,W

′
i ) is independent of Wij . We also assume that the W ′i are identically

distributed for all i ∈ {1, . . . , k}. Then we may consider the model where for
each i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi} the random variables Θi and Θij are
defined by (

Θi

Θij

)
=

(
f(δi) +Wi + h(δi)

>W ′i
f(δij) +Wi + h(δij)>W ′i + g(δij)>Wij

)
. (3.11)
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While the model described in (3.10) enforces a strict additive decomposition of
Θi into the expression f(δi) depending only on the covariates and the random
variable Wi as the regional effect not depending on the covariates, in the model
given in (3.11) it is also possible to include mixed effects of the form h(δi)

>W ′i .
We observe that as explained in Section 3.2 it is still possible to deduce

E(δi,δij)
[ (

Θij −Θ
(1)
ij

)2 ]
≥ E(δi,δij)

[ (
Θij −Θ

(3)
ij

)2 ]
,

so that the refined predictor Θ
(3)
ij remains superior to Θ

(1)
ij , the current standard

approach in the car insurance industry. However, as we have seen in Section 3.2

the predictor Θ
(3)
ij is superior to Θ

(2)
ij if and only if E(δi,δij)[ΓiΓij ]/E

(δi,δij)[Γ2
i ] ≥

1/2. In our application, we expect that the risk levels Γi and Γij are highly
positively correlated, so that it is rather likely that the latter inequality holds.

4 Estimation of regression functions by random
forests

In Section 3 we showed how information on covariates in subregions can be used
to construct a refined predictor for the risk level in a subregion which exhibits a

suitable optimality property. One part in the refined predictor Θ
(3)
ij introduced

in (3.5) is based on the conditional expectation f(δ) = E[Θi | ∆i = δ], δ ∈ Rd,
which is supposed to capture the dependence of the risk level on the covariates.
In insurance practice, however, this function is also unknown and must be es-
timated from data. In the field of machine learning several approaches to the
estimation of conditional expectations have been developed. In our application
to the risk level in car insurance we are faced with a large number of possibly
relevant covariates and we have to expect non-linear dependencies. A paramet-
ric linear regression approach would therefore be rather unnatural and prone
to over-fitting. Therefore, we decided to follow the random-forest methodology
introduced in [1] which we shall briefly recall for the convenience of the reader
(see [1] and [7, Chapter 15] for further details).

A first intermediate step is the construction of so-called regression trees.
A regression tree defines an approximation f̂ : Rd → R of the desired func-
tion f which is given by a weighted sum of indicator functions, i.e., f̂(δ) =∑k
i=1 αi1Ri

(δ) for suitable values αi ∈ R and a suitable partition (Ri)i∈{1,...,k}
of Rd. Typically, each set Ri, i = 1, . . . , k is of the form

Ri =

d⋂
j=1

{
δ ∈ Rd : (−1)σjπj (δ) ≤ βj

}
,

for some βj ∈ R, σj ∈ {0, 1}, j = 1, . . . , d, where πj : Rd → R denotes the
projection to the j-th coordinate. There is no simple formula which expresses
the parameters (αi, Ri)i=1,...,k in terms of given initial data (δ`, θ`)`=1,...,n. The
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(αi, Ri)i=1,...,k are thus determined by a non-trivial fitting algorithm. For the
convenience of the reader, we provide a brief description of this algorithm and
refer to [7, Chapter 9] for details.

The fitting proceeds in two steps, where the first step consists in defining a
suitable partition (Ri)i=1,...,k. For j ∈ {1, . . . , d} and s ∈ R we consider the half-

spaces R1(j, s) =
{
δ ∈ Rd : πj(δ) ≤ s

}
and R2(j, s) =

{
δ ∈ Rd : πj (δ) > s

}
.

Then, we find j ∈ {1, . . . , d} and s, u1, u2 ∈ R minimizing the expression∑
δ`∈R1(j,s)

(θ` − u1)2 +
∑

δ`∈R2(j,s)

(θ` − u2)2. (4.1)

Stopping the fitting algorithm at this point would correspond to the estimator
f̂(δ) = u11R1(j,s)(δ) + u21R2(j,s)(δ). However, typically this approximation is
considered too rough and one proceeds to apply the above fitting procedure
to each of the data sets {(δ`, θ`) : δ` ∈ R1(j, s)} and {(δ`, θ`) : δ` ∈ R2(j, s)}.
Continuing in this way, we can iteratively refine the constructed partition until a
satisfactory level of approximation is attained. Typically only those members of
the partition are subdivided further which contain more than a certain number
of data points that has been specified in advance and the fitting algorithm
terminates when each of the members in the partition contains at most this
number of data points. Once the partition (Ri)i=1,...,k has been determined the
coefficient αi corresponding to Ri is defined by the average

αi = (# {(δ`, θ`) : δ` ∈ Ri})−1
∑
δ`∈Ri

θ`.

The algorithm described above often provides a regression tree which gives a
good fit to data. However, these fits tend to be rather unstable in the sense that
adding only a small number of new data points can lead to dramatic changes of
the estimated function f̂ .

Significant improvements in obtaining a stable estimate f̂ can be achieved
by the use of bagging. Starting from an initial training set M = {(δi, θi)}1≤i≤n
new training sets M1, . . . ,Mb can be constructed for any b ≥ 1, where Mi is ob-
tained from M by drawing independently n elements from M with replacement.
With the help of the so-defined training sets M1, . . .Mb we get the regression
trees f1, . . . , fb which can be used to define the average f̂ = 1

b

∑b
i=1 f̂i. Finally,

a random forest constitutes a refinement of the bagging method, where also the
subset of covariates used for fitting the regression trees is randomized. To be
more precise, first fix an integer d′ ∈ {1, . . . , d}. When constructing the regres-

sion tree f̂i from the training set Mi we use a variant of the fitting algorithm
described above, where each time the refinement step (4.1) is performed the vari-
able j is selected only from a randomly chosen subset of {1, . . . , d} consisting of
d′ elements.

We conclude the present section by recalling some useful quantities related
to random forest estimators. First, the so-called out-of-bag estimator for the
mean-squared regression error may be obtained as follows. For each (δ, θ) ∈M
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consider the function

fδ,θ = (#{i ∈ {1, . . . , b} : (δ, θ) 6∈Mi})−1
∑

i∈{1,...,b}
(δ,θ) 6∈Mi

f̂i.

Then the out-of-bag estimator εoob for the mean-squared regression error is
defined as

εoob =
1

n

∑
(δ,θ)∈M

(θ − fδ,θ(δ))2 . (4.2)

We note that in (4.2) it is preferable to consider the quantity (θ − fδ,θ(δ))2

instead of
(
θ − f̂(δ)

)2
, since the pair (δ, θ) was already used in the fitting of f̂ ,

so that the latter alternative would lead to an estimator with significant bias.
Although the use of bagging improves prediction accuracy, it makes the

random-forest methodology more difficult to interpret than models based on a
single regression tree. To decrease the severeness of this disadvantage different
approaches are possible. On the one hand, refined statistical approaches have
been proposed in [3, 9] to reduce model complexity without deteriorating the
predictive power too much. On the other hand, for random forests two kinds of
variable importance scores may be computed which provide a hint as to which
covariates have the largest predictive power. We only discuss the first kind of
these scores in greater detail and refer to [1, 7] for further information on the
second one. To determine the importance score of a variable j ∈ {1, . . . , d} first
fix i ∈ {1, . . . , b} and consider the out-of-bag sample M \Mi, i.e., those data
points which are not used in the fitting of the i-th regression tree. We denote
by ρ : M \Mi →M \Mi, (δ, θ) 7→ (ρ(δ), θ) a function which randomly permutes
the j-th coordinate. Then we compute the decrease in accuracy∑

(δ,θ)∈M\Mi

(fi(ρ(δ))− θ)2 − (fi(δ)− θ)2

and average these quantitities over all i ∈ {1, . . . , b} to obtain the importance
score of type 1 for variable j.

5 Improved regional classification

Finally, we provide an application of our prediction method to real data. In
our data set we consider n = 401 German counties. As already mentioned
in Section 2, for each of these counties the GDV provides a risk level describ-
ing the relative risk in comparison to the federal average. Among all German
counties, the lowest and highest observed risk levels are given by 71.15 (Elbe-
Elster county) and 131.05 (Kaufbeuren county), respectively. A value of 100
corresponds to the federal average. In order to develop a suitable covariate-
based predictor, we consider a vector of d = 49 publicly available covariates,
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see e.g. [10, 11], which can be categorized into geographic data (e.g. longitude,
latitude, altitude above sea level), demographic data (e.g. population density,
number of registered vehicles) and road data (e.g. density of roads of a given
type, density of junctions). We provide a more precise description of our data
basis in the appendix.

5.1 Construction of the random-forest estimator

In the first step we construct a suitable random-forest estimate f̂(δ) of the

conditional expectation E[Θ | ∆ = δ]. Our random-forest estimate f̂ is based
on b = 500 trees and for the random feature selection d′ = 15 of the d = 49
covariates were used. This corresponds to the smallest out-of-bag error estimate
and is in good accordance with the rule of thumb d′ ≈ d/3 suggested in [7]. Using

these parameters we obtain a random-forest estimate f̂ for which the out-of-
bag error estimate εoob can be computed as explained in (4.2). Performing this
computation for our data set gives εoob = 40.32. Similar as in linear regression [2]
we may compute an estimated R2-value by subtracting from 1 the quotient of
the out-of-bag error estimate and the empirical risk level variance, i.e.,

R̂2 = 1− εoob
1

n−1
∑n
i=1

(
θi − 1

n

∑n
j=1 θj

) .
Performing this computation suggests that using the random-forest estimator a
proportion of 66.63% of the risk level variance can be explained by the consid-
ered covariates. This shows that there is significant correlation between publicly
available data on the one hand and the risk level of third party car insurance
insurance on the other hand. However, at the same time this result also illus-
trates that performing a risk level prediction based only on covariates would not
yield satisfactory results. In Figure 5.1 we show the importance scores of the
most relevant covariates.

We see that latitude, total road density, the density of residential streets
and the indicator for Bavarian counties are the four covariates with the highest
importance scores (independently of the considered type of importance score).
We also see that the mean altitude above sea level and the sum of county latitude
and longitude seem to be of importance.
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Figure 5.1: Covariates with highest importance scores (type 1/2 in the left/right
hand figure), see Appendix for definition of considered variables

Furthermore, it may be interesting to perform a visual comparison of the
predicted risk levels on the one hand and the actual risk levels on the other
hand. In Figure 5.2 we marked those counties where the relative deviation of
the predicted risk level from the actual risk level is larger than a 5% and 10%
relative error threshold, respectively. Counties exhibiting an underestimated
risk level are colored red, while those exhibiting an overestimated risk level
are colored green. Figure 5.2 shows once more that although there is clear
correlation between covariates on the one hand and risk levels on the other
hand, a purely covariate-based approach might not lead to satisfactory results.

5.2 Prediction of risk level in a subregion

After having computed an estimate f̂ for f , see Section 5.1 we may now consider

an application of the combined predictor Θ
(3)
ij introduced in (3.5) to subregions

of two specific counties. As already mentioned in Section 1, when strictly ad-
hering to the risk classification proposed by the GDV rather counter-intuitive
effects can be observed at the city boundary of Berlin. While the city of Berlin
is associated with the highest risk class 12, a car driver living just outside the
city boundary in the adjacent Oder-Spree county only has to pay the premium
associated with the lowest risk class 1. This situation is a rather absurd one and
we will see that it is alleviated to a certain extent by applying our refined esti-

mator Θ
(3)
ij to the subregion of the Oder-Spree county colored red in Figure 5.3

and to the subregion of Berlin colored green in Figure 5.3.

In Section 5.1 we computed a random-forest estimate f̂ for the function
f based on geographic covariates, demographic covariates and covariates asso-
ciated with road data. Although demographic covariates such as population
density are certainly correlated with the risk level, Figure 5.1 suggests that the
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Figure 5.2: Counties with significant mispredictions (5% and 10%-threshold in
the left and right hand figure, respectively)

Figure 5.3: Oder-Spree county (south-east) including the considered subregion
(red), as well as Berlin city (north-west) including the considered subregion
(green)
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corresponding road-related covariates exhibit an even better predictive power.
Indeed, removing the demographic covariates from the random-forest estimator
does not significantly increase the out-of-bag error estimates. Since it would
require considerable effort to collect reliable demographic data for the chosen
subregions, we therefore decided to omit these 13 covariates. We denote by
δBerlin, δOder−Spree, δBerlin,sub and δOder−Spree,sub the 36-dimensional vectors
of covariates in Berlin city, the Oder-Spree county and the considered subre-
gions, respectively. Evaluating the random-forest estimate f̂ at δBerlin and
δBerlin,sub, we obtain

f̂(δBerlin) = 104.48 and f̂(δBerlin,sub) = 87.54. (5.1)

Similarly the evaluation of f̂ at δOder−Spree and δOder−Spree,sub yields

f̂(δOder−Spree) = 86.7 and f̂(δOder−Spree,sub) = 90.09. (5.2)

Moreover, the risk level for the city of Berlin and the Oder-Spree county as
provided by the GDV are given by

θBerlin = 122.78 and θOder−Spree = 77.68, (5.3)

respectively. Thus, using (5.1), (5.2) and (5.3), the corresponding values of the

combined predictor Θ
(3)
ij introduced in (3.5) can be computed as

87.54 + (122.78− 104.48) = 105.84.

for the considered subregion of Berlin

90.09 + (77.68− 86.70) = 81.07.

for the considered subregion of the Oder-Spree county. These results are sum-
marized in Table 1.

i θi ij θ
(1)
ij θ

(2)
ij θ

(3)
ij

Berlin 122.78 Berlin, sub 122.78 87.54 105.84
Oder-Spree 77.68 Oder-Spree, sub 77.68 90.09 81.07

Table 1: Computed values θ
(1)
ij , θ

(2)
ij , θ

(3)
ij of predictors Θ

(1)
ij ,Θ

(2)
ij ,Θ

(3)
ij

The values θBerlin and θOder−Spree of the phenomenological predictors given

by the GDV are far apart from each other. Likewise the values θ
(1)
Berlin,sub

and θ
(1)
Oder−Spree,sub of the phenomenological predictors for the two neighboring

subregions show a large difference. However, practitioners intuition suggests
that the difference between the subregions should be rather small. The values

θ
(2)
Berlin,sub and θ

(2)
Oder−Spree,sub of the pure explanatory predictors are very close,
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but the Berlin subregion gets now a lower risk level than the Oder-Spree subre-
gion. This change of order seems implausible and is an unwanted feature. The

most convincing prediction is given by the values θ
(3)
Berlin,sub and θ

(3)
Oder−Spree,sub

of the combined predictors, where the difference between the risk levels of the
two neighboring subregions is significantly smaller than for the phenomenolog-
ical estimator and the order of the risk levels remains unchanged.

We expect that the following refinement of our approach could yield further
improvements. For practical purposes, when considering subregions close to the
boundary of other subregions, it may make sense to use as a control variate not
only the regression error in the given subregion, but also the regression error of
the adjacent subregion. Trying to find a framework where this approach can be
made more rigorous would constitute an interesting subject of further research.
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Appendix

For the sake of completeness we provide a description of all covariates used in the
construction of our random forest estimation. These covariates can be roughly
subdivided into the categories geographic data, demographic data or road data.

geographic data. We considered the following covariates of geographic type.

• lat. average latitude of the county

• lon. average longitude of the county

• latlon. sum of average longitude and average latitude

• alt. average altitude above sea level

• bavaria. indicator for being Bavarian county

demographic data. Moreover, we considered the following covariates of de-
mographic type. We relied on publicly available data from the Federal Statistical
Office of Germany [10].

• popDens. population density, i.e., number of inhabitants/area

• pkwDens. vehicle density, i.e., number of automotive vehicles/area

• pkwRat. ratio of numbers of vehicles and inhabitants

• totDens. road density, i.e., total length of roads inside county/area

• totPop. road length per inhabitant, i.e., total length of roads inside
county/number of inhabitants

• totPkw. road length per vehicle, i.e., total length of roads inside county/number
of vehicles
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road data. The majority of covariates used in our application are associated
with road data. Our data is taken from the OpenStreetMap project [11]. Open-
StreetMap is a massively collaborative project to create a high-quality open-
source alternative to commercially available road data. On a technical level the
available data consists of an XML-database containing entries for nodes and
ways connecting several nodes. The possibility to cut out subsystems of a given
road system inside an arbitrarily definable boundary constitutes a feature which
is especially useful for our purposes. Moreover, the data not only consists of
the location of roads but also contains information regarding the type of the
road (e.g. motorway, primary road, secondary road, residential street, etc.).
Therefore we can consider a variety of road-related covariates such as road den-
sity, mean curvature or junction density of roads of different types. To be more
precise, we include 38 further covariates of the following form. For readability
we only present a selection of these covariates.

• motorway/primar/... road density for roads of given type, i.e., total
length of roads of given type inside county/area

• motorwayPop/primarPop/... road length per inhabitant for roads of
given type, i.e., total length of roads of given type inside county/number
of inhabitants

• aTotal. curvature angle per km, i.e., sum of absolute values of all angles
occurring in polygonal representation of roads/total length of roads inside
county

• amotorway/aprimar/... curvature angle per km for roads of given type

• juncDens. density of junctions, i.e., number of junctions/area

• mwmw/mwpr/... density of junctions between roads of given types
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