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Abstract The key condition for the application of the Reduced Basis Method
(RBM) to Parametrized Partial Differential Equations (PPDEs) is the availability
of affine decompositions of the systems in parameter and space. The efficiency
of the RBM depends on both the number of reduced basis functions and the
number of affine terms. A possible way to reduce the costs is a partitioning of the
parameter domain. One creates separate RB spaces [6] and affine decompositions
[4] on each subdomain. Since the solutions are supposed to be smooth in parameter,
the variation of the solutions on a subdomain becomes small and only few basis
functions and affine terms are needed.

Based upon the Empirical Interpolation Method (EIM), we generalize the ex-
isting partitioning concepts to arbitrary input functions with possibly unknown,
high-dimensional, or even without direct parameter dependencies. No a-priori in-
formation about the input is necessary. We create affine decomposition and par-
titions without the knowledge of either an explicit description of the parameter
domain or of the form of the partitions. An application includes PPDEs with
stochastic influences [7,12]. For a probability space (Ω,F ,P), the parameter do-
main is now associated with Ω. Each element ω ∈ Ω represents a stochastic event.
Hence, ω is not a parameter in classical sense and there usually is no explicit
description of Ω.
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1 Introduction

In the context of Reduced Basis Methods (RBMs) for Partial Differential Equa-
tions (PDEs) with deterministic parameter dependencies [5,8,9,11,13], it is com-
mon to split the parameter domain into several parts and construct separate re-
duced bases for each parameter subdomain [2,3,4,6]. It is assumed that the vari-
ation of the parametric influences of the PDEs and therefore the variation of the
corresponding solutions become small on each subdomain. Then, only small num-
bers of basis functions are needed and the online cost of the RBM decreases.

In [3] and [2], the so-called hp-Partitioning has been introduced for stationary
and instationary problems, respectively, for already affine problems. The methods
differ only slightly from the so-called p-Partitioning [6]. The main distinction are
two different procedures for the splitting into subdomains, leading to theoretical
convergence results for some special cases. In [4], the hp-Partitioning is introduced
for non-affine problems. It is based upon the EIM and generates affine decompo-
sitions and partitions simultaneously.

In this work, we generalize the partitioning concepts developed for determin-
istic and compact parameter domains to arbitrary, possibly unknown parameter
domains. No explicit description of the parameter domain — if existent at all
— will be required, and no particular information about the problem is needed.
Furthermore, we will show that our new implicit partitioning methods also out-
perform the existing methods for wide classes of problems even in the setting of
known parameter domains.

In Section 2, we briefly introduce the basic idea of partitioning and the hp-
Partitioning according to [4] for known, explicitly given parameter domains. In
Section 3, we introduce the general concept of unknown parameter domains and
of affine decompositions with respect to unknown parameters. Furthermore, we
introduce some necessary assumptions and requirements for our Implicit Parti-
tioning Method (IPM). As the hp-Partitioning, it generates affine decompositions
and partitions in parallel. We will develop two different concepts of the IPM. In
Section 4, we introduce an IPM where the form of the subdomains is not fixed but
depends on the used collateral basis size. The method is therefore called Moving
Shapes (MS) IPM. Next, in Section 5, we develop IPMs where the forms of the sub-
domains are supposed to be stationary. This method is called Fixed Shapes (FS)
IPM. Finally, in Section 6, we provide several numerical examples and compare
the different methods.

2 Preliminaries

We start introducing the basic ingredients and tasks of parameter domain par-
titioning and review some partitioning concepts for known, deterministic, and
compact parameter domains.

Let D ⊂ Rd denote a bounded spatial domain and let P ⊂ Rp be an arbi-
trary parameter domain. Furthermore, let c : D × P → R denote a parametrized
coefficient of a given PDE. For each µ ∈ P, we assume to obtain a trajectory
c(µ) ∈ X ⊂ L∞(D) ∩ C0(D) for some appropriate discrete Hilbert space X on D
of dimension N .
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In the context of Reduced Basis Methods (RBM), it is essential that c(x;µ) is
affine with respect to the parameter µ. This allows for an efficient decomposition of
expensive offline computations and highly efficient online simulations. In general,
however, this requirement is not fulfilled. Hence, affine approximation of the form

c(x;µ) ≈ cM (x;µ) =
∑M

j=1
θj(µ)qj(x), x ∈ D, µ ∈ P, (1)

are desired, with so-called collateral basis functions qj ∈ X and efficiently evaluable
parametric coefficients θj(µ), j = 1, . . . ,M . Such approximations can be obtained
using the Empirical Interpolation Method (EIM) which is described below.

For the partitioning, we then define Mmax as the largest allowed collateral basis
size. At the same time, an approximation error tolerance εtol is desired. Hence,
the objective is to divide P into multiple subdomains and generate individual
collateral bases such that

(i) the dimension of all affine approximations is smaller than Mmax,
(ii) the maximal approximation error on each subdomain does not exceed εtol,
(iii) each parameter µ ∈ P can be assigned efficiently to the right subdomain,
(iv) whereas the number of subdomains should be as small as possible.

2.1 Empirical Interpolation Method (EIM)

We briefly review the EIM as introduced for example in [1] and [10]. The main
idea of the EIM is to generate a collateral basis such that the evaluation of the
coefficients θj in (1) requires only the values of c at a small set of interpolation
points.

2.1.1 EIM Offline-phase

A general form of the EIM offline procedure is described in Algorithm 1. It gener-
ates the so-called collateral basis QM = {q1, . . . , qM} and the corresponding set of
interpolation points TM = {t1, . . . , tM}, M ≤ Mmax. We describe the main steps
below. The ingredient of the algorithm is a training set Ξtr ⊂ P such that the space
span{c(µ) |µ ∈ Ξtr} sufficiently covers the family of functions {c(µ) |µ ∈ P}. Fur-
thermore, we start with an empty set of basis functions Q0 = {} and an empty
set of interpolation points T0 = {}.

We start with the procedure that computes the affine approximation in line 3
of Algorithm 1. For an empty basis Q0, the procedure getApproximation(Q0, T0, c)
returns cEIM

0 = 0 for all functions c ∈ X. Otherwise, getApproximation(QM , TM , c)
computes the coefficients θM (c) = (θj(c))

M
j=1 by solving the linear system∑M

j=1
θj(c)qj(ti) = c(ti), i = 1, . . . ,M, (2)

and returns the approximation cEIM
M =

∑M
j=1 θj(c)qj .

The procedure getNextBasisFunction(QM−1, TM−1, Ξtr) in line 2 evaluates ap-
proximations cEIM

M−1(µ) of all functions c(µ), µ ∈ Ξtr, and returns the trajectory
that is so far worst approximated in the L∞-sense. In line 4, the residual is eval-
uated. The next knot tM is defined in line 5 in order to supremize the residual,
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Algorithm 1 EIM-Offline(Ξtr,Mmax)

1 for M = 1 to Mmax do
2 c = getNextBasisFunction(QM−1, TM−1, Ξtr)
3 cEIM

M−1 = getApproximation(QM−1, TM−1, c)

4 rM = c− cEIM
M−1

5 tM = arg ess supx∈D |rM (x)|, TM = {TM−1, tM}
6 qM = rM/rM (tM ), QM = {QM−1, qM}
7 end for

i.e., as that point where c is so far worst approximated. The next collateral basis
function qM is added in line 6, defined as the L∞-normalized residual.

By construction, the approximation is exact at the knots ti, i = 1, . . . ,M .
This implies that the linear system (2) is lower triangular. The computational
complexity of the evaluation of the EIM coefficients θM is thus O(M2).

2.1.2 EIM Online-phase

In the online phase, for a new parameter µ, we choose an M < Mmax sufficiently
large for a good approximation quality. Additionally, we define M+ with M <
M+ ≤Mmax that is used for the error estimation.

We first call getCoefficients(M+, c(µ)) that evaluates the trajectory at the

knots (ti)
M+

i=1 and returns the solution θM+(µ) of the linear system (2). Due
to its lower triangular form, the solution shows a hierarchical structure, i.e.,
θM+ = (θM , θM+1, . . . , θM+). We use θM to evaluate the approximation cEIM

M (µ)
and the remaining coefficients for the error estimator

∆EIM
M,M+(µ) =

∑M+

j=M+1
|θj(µ)|. (3)

The error estimator for the L2-error would be given by
∑M+

j=M+1 ‖qj‖2|θj(µ)|. For
more details on EIM error estimators and more accurate bounds, see [10].

In the RBM context, the evaluation of cEIM
M (µ) is not necessary and only the

coefficients θM (µ) are returned. Then, the online complexity reads O((M+)2).

2.2 hp-Partitioning

Let us now briefly describe the hp-Partitioning as it has been introduced in [4] for
compact parameter domains. The term “hp” is adopted from the finite element
(FE) theory. In the context of parameter domain partitioning, the “h” represents
the refinement of the partition and the “p” stands for the improvement of the basis
on a subdomain. Accordingly, the hp-Partitioning is divided into two separate
parts, the h-part with the refinement of the partition and the p-part with the
basis construction. We introduce two separate error tolerances εhtol and εptol and

two maximal numbers of collateral EIM basis functions Mh
max and Mp

max. The
h-indexed quantities are only employed to make the subdividing scheme cheaper
whereas the p-indexed quantities refer to the actual desired values.

Algorithm 2 describes the general h-part. Given an initial partition, we call
the procedure for each initial subdomain. The refinement and basis construction
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Algorithm 2 hp-Partitioning(Pj , Mh
max, ε

h
tol, J)

1 create Ξjtr from Pj
2 for M = 1 to Mh

max do

3 {SjEIM,M , µ
j
M} = addBasisFunction(SjEIM,M−1, Ξ

j
tr)

4 εM,max = getMaxError(SjEIM,M , Ξ
j
tr)

5 if εM,max < εhtol then return SjEIM,M , P
j end if

6 end for
7 {PJ+i | i = 1, . . . , Jadd} = refinePartition(Pj , µj1, . . . , µ

j
Mmax

)

8 Jnew = J + Jadd
9 for i = 1 to Jadd do

10 hp-Partitioning(PJ+i, Mh
max, ε

h
tol, Jnew)

11 end for

works recursively. A rather large error tolerance εhtol is used and only a small
number Mh

max of maximal basis functions per subdomain is allowed. In that way,
the construction of superfluous bases functions for subdomains that are discarded
anyway is avoided. The total number of current subdomains is denoted by J . The
algorithm generates the structs SjEIM,M , j = 1, . . . , J , that contain the complete

EIM data for the respective subdomain, denoted by Pj . The term “struct” is
adopted from programming languages like C where it denotes a structured data
type that unites a set of components of different data types.

The procedure addBasisFunction(·) in line 3 performs one iteration of the offline
EIM construction as described in Section 2.1.1. Additionally, it now returns the
parameter that corresponds to the just selected basis function. These parameters
are used for the new refinement procedures in line 7. Since no error estimators for
the EIM can be evaluated during the construction of the collateral basis, the exact
L∞-error is evaluated in line 4 and used as termination condition in line 5.

Before we introduce two different refinement procedures that can be used in
line 7, we briefly provide the second step of the hp-Partitioning, the p-part. For
each final subdomain, we call separately start the EIM procedure and iterate until
the small error tolerance εptol or the maximal number Mp

max is reached.

2.2.1 Gravity Center Splitting Scheme

It is assumed that that the parameter domain P ⊂ Rp and each subdomain are
given by p-dimensional hypercubes. In the refinement step, we cut the current
subdomain Pj into Jadd = 2p subhypercubes. The splitting is based on a so-called
“gravity center” µ̄j which is evaluated using the parameters that correspond to
the selected basis functions of the EIM in the subdomain Pj ,

µ̄j :=
1

Mh
max

∑Mh
max

M=1
µjM .

The gravity center denotes the point of Pj that all 2p new subdomains share, i.e.,
the coordinates of µ̄j define the splitting positions of Pj . Figure 1 exemplarily
shows two refinement steps for the square P = [0, 1]2. First, the square is split
based upon the gravity center µ̄1 = [0.35, 0.40]. The subdomain in the upper right
corner is then divided based upon the gravity center µ̄2 = [0.75, 0.60].
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Fig. 1 Two refinement steps using the gravity
center splitting scheme for P = [0, 1]2. Gravity
centers µ̄1 = [0.35, 0.4] for the first step (left)
and µ̄2 = [0.75, 0.6] for the second step (right).
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Fig. 2 Two refinement steps using the anchor
point splitting scheme for P = [0, 1]2. Anchor
points for the first (left) and second refinement
step (right).

The online assignment of a new parameter µ ∈ P ⊂ Rp to the appropriate
subdomain is done using a tree search. Only the gravity centers have to be stored
to completely define the final partition as well as the partition tree. In each step,
the identification of the next subdomain is of complexity O(p). Thus, for a well
balanced tree of depth O(log J), the assignment complexity reads O(log J · p).

2.2.2 Anchor Point Splitting Scheme

The anchor point splitting scheme divides the current parameter domain Pj into
Jadd = 2 subdomains, independently of its shape and dimension. For the splitting,
it is assumed that one can define a distance measure d : P × P → R on the
parameter domain. The two subdomains are then specified by the proximity to the
parameters µj1 and µj2 — the so-called anchor points — that have been returned
by the procedure addBasisFunction(·) in line 3 of Algorithm 2 and correspond to
the two first selected EIM basis functions in the subdomain Pj . Then, the new
subdomains in line 7 of Algorithm 2 are defined in the following way,

PJ+1 := {µ ∈ Pj | d(µ, µj1) < d(µ, µj2)},

PJ+2 := {µ ∈ Pj | d(µ, µj2) ≤ d(µ, µj1)}.
(4)

Figure 2 exemplarily shows two refinement steps using the anchor point splitting
scheme for P = [0, 1]2. In the first step (left), the anchor points µ1

1 = [0.1, 0.1] and
µ1
2 = [0.9, 0.9] have been used. In the second step, the anchor points µ2

1 = [0.1, 0.1]
and µ2

2 = [0.8, 0.1] lead to the separation parallel to the y-coordinate at x = 0.45.

Since only two anchor points are needed for the next refinement step, it is
enough to set Mh

max = 2. Furthermore, the two subdomains can inherit the basis
function of the “parent” domain that corresponds to their respective anchor point.
In other words, for the domain Pj with the two “child” subdomains PJ+1 and
PJ+2 as defined in (4), we have µJ+1

1 := µj1 and µJ+2
1 := µj2. Thus, only one more

iteration has to be performed for each new subdomain.

We use a tree search in the online stage to find the subdomain of a new pa-
rameter µ ∈ P. We iteratively select the nearest anchor point and “move” to the
corresponding subdomain. The evaluation of the distances to the anchor points is
of complexity O(p). Assuming a balanced tree of depth O(log J), the total tree
search is again of complexity O(log J · p).
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3 Partitioning of Unknown Parameter Domains

3.1 Unknown Parameter Domains

Let us start with the illustration of the concept of unknown parameter domains
using some practical examples. First, one may consider coefficient functions of
PDEs that are based upon measurements. On the one hand, underlying parame-
ters can be hidden since the information of the system that produces the measured
outcome is not completely accessible. On the other hand, the measured input func-
tions could be non-parametric and merely belong to a common class of functions
in terms of boundedness, regularity, or similar shape. Another application of un-
known parameters are stochastic inputs, where the “parameter domain” can be
seen as a set Ω of stochastic events that does not imply a feasible metric. Hence,
the theory of compact parameter domains does not apply [12]. As an example of
such events, one may consider the porosity structure of any physical medium such
as sandstone or Li-ion batteries.

In the following, it is assumed that the input coefficient functions can be ob-
tained without the detailed knowledge of any underlying parameter or stochastic
event. Hence, no information about the parameter domain is required, and there-
fore, no distance measures on the parameter domain can be assumed to exist. We
now define the family of possible input functions by

M := {c(µ) : D → R |µ ∈ P}, (5)

where D ⊂ Rd denotes a bounded spatial domain. The parameter µ ∈ P can
also be interpreted as a reference to an arbitrary real life event that underlies the
function c(µ), or just as an index to the associated c(µ) ∈M. In any case, µ is not
a parameter in the classical sense and the p- or hp-Partitioning are not applicable.

Another interpretation could be to consider the whole function c(µ) as a pa-
rameter, i.e., to consider a parameter function µ(x) in a certain function spaceM.
The subsequent theory and methods remain valid for such cases.

3.2 Affine Decomposition for Unknown Parameters

For the application of the EIM even for unknown parameter domains or arbitrary
sets of functions, and for the applicability of partitioning methods, we postulate:

Assumption 1 A mechanism is available that delivers arbitrarily many functions
c(µ) ∈ M as defined in (5). For any given ε > 0, it is possible to create a finite
training set of functions Mtr ⊂ M of cardinality ntr ∈ N that sufficiently covers
the variety of M up to the maximal error tolerance ε, i.e.,

sup
c(µ)∈M

inf
v∈span(Mtr)

‖c(µ)− v‖X ≤ ε (6)

for a given norm ‖ · ‖X . Furthermore, let M be replaced by any subset M0 ⊂⊂M
with significantly less variation, i.e., of less complexity. Then,Mtr can be replaced
by a subset M0

tr ⊂⊂ Mtr of significantly less cardinality n0
tr � ntr such that (6)

still holds.
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Now, the offline and online EIM Algorithms from Section 2.1 can directly be
adopted. Instead of a training parameter set Ξtr for the Greedy step (in line 2 of
Algorithm 1), we can directly use the training functions Mtr. For any function
c ∈ M, we can evaluate the vector cM := (c(ti))

M
i=1 and compute the coefficients

θM (c) = (θi(c))
M
i=1 using the linear system (2) without the knowledge of a possibly

underlying parameter.

3.3 Implicit Partitioning Problem Formulation

We now formulate the tasks and the main idea of the IPM. Input functions that
are based upon unknown parameters naturally do not directly admit for an affine
decomposition. Hence, the partitioning is connected to the EIM as we have already
seen for the hp-Partitioning. We define the implicit partitioning problem.

Problem 1 (Implicit Partitioning Problem) For a family of input functions
M that suffices Assumption 1, create a partition of the parameter domain,

(a) without the use of an explicit description of either P or M,
(b) without an explicit description of the partitions and subdomains,
(c) with efficient and suitable assignments of new input functions c(µ).

For each subdomain, create separate affine decompositions with respect to the un-
known parameter. The partition is supposed to be fine enough such that

(d) the affine approximations are precise up to a tolerance εtol,
(e) the number of collateral basis functions per subdomain does not exceed Mmax.

The basic idea of the following implicit partitioning methods is the construction
of several EIM bases that cover different parts of the family of input functionsM.
As opposed to the hp-Partitioning, the splitting of the parameter domain is based
upon the proximity of functions in M to the spaces spanned by the different
collateral EIM bases and not on geometrical aspects of the parameter domain.

Under Assumption 1, it is possible to generate a training set of functions
Mtr ⊂ M of cardinality ntr ∈ N that sufficiently covers the complexity of M.
Furthermore, the second part of Assumption 1 assures that a partitioning based
upon a training setMtr is possible under the condition thatM itself can be split
into several parts of less complexity.

The presented implicit partitioning methods could also be seen as a partitioning
of the familyM or of the space spanned byM. Thus, functions c(µ) are assigned
to an appropriate subspace of span(M) rather than µ is assigned to a subdomain of
P. However, for an easier understanding, we stay in the parameter setting and refer
to parameters and subdomains. We construct the structs SjEIM,M , j = 1, . . . , J ,
that contain the complete EIM data for all subdomains. These structs also define
subspaces Mj of dimension M which correspond to the parameter subdomains
Pj , j = 1, . . . , J . In the following, we just refer to subdomain j and mean the
subdomain defining components Pj , Mj , or SjEIM,M .

4 Moving Shapes IPM

We introduce different implicit partitioning procedures. As mentioned before, their
common approach is the construction of several EIM bases that are supposed to
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Algorithm 3 MovingShapesIPM(Mtr, εtol, J)

1 set M = 0
2 repeat
3 M = M + 1
4 if M==1 then
5 S0EIM,J+1 = doInitialEIM(Mtr, J + 1)

6 {S1EIM,1, . . . ,S
J
EIM,1} = initialFirstBasisFunction(S0EIM,J+1, J)

7 else
8 for j = 1 to J do

9 SjEIM,M = addBasisFunction(SjEIM,M−1,M
j
tr)

10 end for
11 end if
12 {I1M , . . . , I

J
M} = getOfflineAssignment(S1EIM,M , . . . ,S

J
EIM,M ,Mtr)

13 for j = 1 to J do

14 Mj
tr = {c(µ) ∈Mtr |µ ∈ IjM}

15 εjM,max = getMaxError(SjEIM,M ,M
j
tr)

16 end for
17 until max

j∈{1,...,J}

{
εjM,max

}
< εtol

18 return
{
S1EIM,M , . . . ,S

J
EIM,M

}

cover different parts of the family of input functions M. The first procedure, the
Moving Shapes (MS) Implicit Partitioning Method (IPM), simultaneously gener-
ates the number of J EIM bases for a previously fixed number J of subdomains.
It is desired that the partition is formed such that the complexity ofM is equally
distributed on the J different subdomains and the least possible number of basis
functions is obtained. This is achieved by letting the subdomains reshape in each
iteration instead of using a fixed partition. Thus, the actual partition depends on
the used number M of basis functions.

4.1 Outline of the Method

The MS IPM is described in Algorithms 3 and 4. Let J denote the desired number
of subdomains and let εtol > 0 be the desired approximation error tolerance.
Furthermore, let the set of training parameters be given by {µ1, . . . , µntr} such
that the set of training functions reads Mtr = {c(µn) |n = 1, . . . , ntr}. Algorithm
3 generates EIM data structs SjEIM,M , j = 1, . . . , J , M ∈ N. Since the number
of subdomains and the error tolerance εtol are (at least for now) fixed, we do
not set a maximal number of basis functions per subdomain, differently to the
hp-Partitioning where Mmax and εtol were fixed and J was flexible.

We start the description of the MS IPM with the initialization of the EIM
structs SjEIM,1, j = 1, . . . , J , in the first iteration of the loop in Algorithm 3, for
M = 1. In line 5, we perform J + 1 steps of the normal EIM, based upon the
training setMtr and without any partitioning. We refer to this step as initial EIM
and denote the resulting EIM struct by S0

EIM,J+1. Then, in line 6, we discard the

first basis function of S0
EIM,J+1 and distribute the remaining J functions that have

been selected by the initial EIM to the EIM structs SjEIM,1, j = 1, . . . , J , as initial
basis functions, respectively. Neglecting the first basis function of the initial EIM
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Algorithm 4 getOfflineAssignment(S1
EIM,M , . . . ,SJEIM,M ,Mtr)

1 I1 = . . . = IJ = {}
2 for n = 1 to ntr do
3 for j = 1 to J do

4 ε jM (µn) = getError(SjEIM,M , c(µn))

5 end for
6 i = arg inf

j
{ε jM (µn) | j = 1, . . . , J}

7 IiM = IiM ∪ {µn}
8 end for

is not crucial but, in our experiments, it led to a more balanced initial distribution
of the complexity to the subdomains.

In line 12 of Algorithm 3, we call the procedure getOfflineAssignment(·) that is
further described in Algorithm 4. For each subdomain j, the procedure returns a
set of assigned parameters IjM that refer to the corresponding functions in Mtr,
where the assignment is based upon the EIM approximation error. In detail, for
a given parameter µn, n ∈ {1, . . . , ntr}, we evaluate the EIM approximation er-
ror of the corresponding function c(µn) in all subdomains. This is performed in
Algorithm 4, line 3 to 5. Then, the parameter is assigned to the subdomain that
best approximates c(µn) in line 6 and 7. Note that we distinguish Pj used for
the hp-Partitioning from Ij . While Ij denotes a discrete set of parameters, Pj
provides the explicit description of the complete subdomain j.

The further steps work similar to Algorithm 2, but simultaneously for all sub-
domains. In line 15 of Algorithm 3, we evaluate the maximal error on each sub-
domain, or more precisely, the maximal error out of the set of currently assigned
functionsMj

tr := {c(µ) ∈Mtr |µ ∈ IjM}. In line 17, we check if all maximal errors
fall below the tolerance εtol. We do not stop the basis extensions until convergence
on all subdomains is obtained, i.e., even if the tolerance is reached on a certain
subdomain, we add more basis functions if the error on other subdomains still
exceeds the desired value. For M > 1, the basis extension is done in line 9. We
select the so far worst approximated function of the subdomain j, i.e., out ofMj

tr.

A new effect in comparison to the hp-Partitioning is that the basis extension
also changes the shape of the partitions. The selection of a new basis function
c(µjM ) for some µjM located close to the boundary of the subdomain j yields a
movement of the respective shape towards the just selected parameter since the
assignment of parameters is based upon the EIM approximation error. Functions
c(µ) close to c(µjM ) will be assigned to subdomain j in the next iteration.

This effect is illustrated in Figure 3. It provides the result of the MS IPM for
an explicitly given parametric function c : D × P → R on the spatial domain
D = [0, 1]2 and with parameters µ = (µ1, µ2) ∈ P = [0.3, 0.7]2, given by

c(x;µ) = e−50((x1−µ1)
2+(x2−µ2)

2). (7)

In detail, Figure 3 shows the partitions of the parameter domain after M = 1,
2, 60, and 120 iterations in the top row with a resolution of 40 · 40 pixels. The
respective parameters that have been selected for the bases extensions are provided
in the bottom row. The shapes of the subdomains change especially during the
first iterations. E.g., for M = 2, the black part selected a basis function that
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(a) M = 1 (b) M = 2 (c) M = 60 (d) M = 120

Fig. 3 MS IPM subdomains (top row) and selected parameters for basis extension (bottom
row) for four different basis sizes M .
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Fig. 4 Convergence of the MS IPM for J = 3 compared to a single EIM.

corresponds to a parameter from the lower left corner of the black subdomain
for M = 1. Therefore, it “takes over” huge parts of the other subdomains. In
the iterations M = 60 to M = 120, the basis extensions are mostly based upon
parameters inside the subdomains and the boundaries do not change significantly.

The objective of the subdomain reshaping is a more effective use of the ba-
sis functions. For fixed shapes, the first basis functions are usually selected at
the border of subdomains. Consequently, adjacent subdomains would select basis
functions that cover the same area. Furthermore, the reshaping results in a good
distribution of the complexity ofM on the different subdomains. The subdomains
are likely to be formed such that the respective numbers of basis functions neces-
sary for a given approximation tolerance differs only very slightly. In Figure 4, we
confirm this assumption for the given example. The figure shows the error conver-
gence of a single EIM without partitioning and the convergence result using the
MS IPM and J = 3 subdomains. More examples are provided in Section 6.

It can be observed in Figure 3(b) that two subdomains can select basis functions
close to each other in the same step which is not optimal but very difficult to avoid.
Successive instead of simultaneous basis extensions lead to extremely unbalanced
convergence. No general heuristic that works as a black box for all kind of input
functions is known but would be necessary in the case of unknown parameters.
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Algorithm 5 getOnlineAssignment(S1
EIM,M+ , . . . ,SJEIM,M+ , c(µ), M, M+)

1 for j = 1 to J do

2 θ j
M+ (µ) = getCoefficients(Sj

EIM,M+ , c(µ))

3 ∆j
M,M+ (µ) =

∑M+

m=M+1 |θ
j
m(µ)|

4 end for
5 i = arg inf

j
{∆j

M,M+ (µ) | j = 1, . . . , J}

6 return {i, θ i
M+ (µ)}

Even though we obtain very balanced convergence rates, we can not completely
prevent that two subdomains partially cover the same part of the parameter do-
main. It can be seen in Figure 3(c) and 3(d) that some of the selected basis
functions are separated and enclosed by a different subdomain. However, it is not
possible to discard such functions from the basis even for values of M where they
are separated from their subdomain. In other words, they still play an important
role for the approximation quality.

Let N be the number of degrees of freedom of the discretized functions in M.
Then, the complexity of an iteration in the offline stage of the MS IPM consists of
O(JM2 ·ntr) for the computation of the approximations of the training samples in
M, O(JM2 ·ntr ·N ) for the evaluation of the EIM errors, and O(J ·ntr) to assign
the training snapshots to the subdomains. Thus, the total complexity is given by
O(JM2ntrN ).

4.2 Online Assignment

In the online stage, it is not possible to evaluate the exact EIM approximation
errors independently of the dimensionN . Hence, the assignment is now based upon
the EIM error estimator. The straightforward procedure is given in Algorithm 5.
For a new parameter µ and an input function c(µ), we evaluate the coefficients
θ jM+(µ) and error bounds ∆jM,M+(µ) for all j = 1, . . . , J . Then, we select the
subdomain with the smallest error estimator. The algorithm returns the selected
subdomain i and the corresponding coefficients θ iM+(µ) that can be used for the
further processing of the input function c(µ).

It is clear that the assigned subdomain is not necessarily optimal in the sense
of the real error. However, it is not essential that we hit the best subdomain
but to select a sufficiently precise approximation. Figure 5(b) shows the online
assignment based upon the smallest error estimator for the example provided in
(7) for M = 60 and M+ = 66. In comparison to the partition based upon the exact
EIM approximation error in Figure 5(a), only minor deviations can be observed.
The use of more than 6 coefficients for the error estimates would furthermore lead
to results closer to the “true” partition.

4.2.1 Online Complexity

The online complexity for the assignment of a new parameter µ ∈ P to the appro-
priate subdomain according to Algorithm 5 consists of O(JM) for the evaluation
of c(µ) ∈ M at the interpolation points, O(JM2) for the computation of the
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(a) “True” partition (b) Online assignment
using Alg. 5

(c) Online assignment
using Alg. 6 and
εtol = 10−4

(d) First assignment
trial in Alg. 6

using arg max |θj1|

Fig. 5 MS IPM online assignments for M = 60 and M+ = 66.

coefficients and the error bounds, and O(J) for the actual assignment to the sub-
domain. Thus, the total complexity reads O(JM2), where it has been assumed
that M+ = O(M).

The assignment according to Algorithm 5 is independent of the dimension of
the parameter domain. Yet, compared to the hp-Partitioning, where the online
complexity for the assignment and the evaluation of the coefficients sums up to
O(p log J +M2), the costs seem to increase significantly. Nevertheless, the online
complexity of the MS IPM is acceptable. On the one hand, the number M of
basis functions decreases with increasing number J of subdomains. In the current
example, the run-time is approximately constant in J . On the other hand, the main
complexity in the context of RB methods commonly amounts to O(M2 ·N2+N3),
whereN denotes the number of basis functions for the reduced basis. Since separate
reduced bases are constructed for each subdomain, N is decreasing in J , too.
Hence, the most expensive computations in the RB context decrease significantly.

4.2.2 Improved Online Complexity

The key requirement of the assignment is to obtain adequate approximations but
not to find the best subdomain. As a consequence, it is possible to break the loop
over j in Algorithm 5 as soon as ∆jM,M+(µ) falls below εtol. Then, the average
online complexity is already reduced to half. In Algorithm 6, we present a heuristic
that provides a more suitable search order of the subdomains than just checking
the error estimators step by step.

The EIM is generated in a form such that the importance of the basis functions
decreases in M . In other words, the coefficients of the first basis functions are
usually larger than the following ones. At the same time, using a collateral basis
that does not fit to the input data, the coefficients are rather equally distributed
over all basis functions and the first coefficients are therefore comparatively small.
We use this effect for the search order heuristic. In line 2 of Algorithm 6, we
evaluate only the first coefficients θj1 of the affine approximations of a given input
function c(µ) for all subdomains j = 1, . . . , J . In line 4, we sort these coefficients in
descending order with respect to their absolute values and return an ordered list
of subdomains. Then, we iteratively check if the error estimator of the subdomains
fall below the tolerance εtol, starting with the subdomain with the largest coefficent
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Algorithm 6 getFastOnlineAssignment(S1
EIM,M+ , . . . ,SJEIM,M+ , c(µ),M,M+)

1 for j = 1 to J do

2 θj1(µ) = getCoefficients(SjEIM,1, c(µ), 1)

3 end for
4 {j1, . . . , jJ} = sortCoefficientsDescending(|θ11(µ)|, . . . , |θJ1 (µ)|)
5 for k = 1 to J do
6 θ

jk
M+ (µ) = getCoefficients(Sjk

EIM,M+ , c(µ), M+)

7 ∆
jk
M,M+ (µ) =

M+∑
i=M+1

|θjki (µ)|

8 if ∆
jk
M,M+ (µ) < εtol then return {jk, θ

jk
M+ (µ)} end if

9 end for

|θj1|. Once we find the first subdomain that approximates c(µ) sufficiently precise,
we return the subdomain and the corresponding coefficients.

Figure 5(c) shows the online assignment based upon Algorithm 6 for εtol =
10−4, M = 60, and M+ = 66. The partition reveals some larger deviations com-
pared to the “true” partition 5(a) and the direct assignment 5(b) based upon
Algorithm 5. Still, both the error estimator and the true error fall below εtol for
all parameters.

In Figure 5(d), the result of the heuristic of Algorithm 6 is provided. It shows
the first assignment attempt, i.e., the assignment based upon the largest first coef-
ficient. We can see that large parts coincide with the assignment in Figure 5(c). In
fact, 80.8% of the parameters in Figure 5(d) are associated to the same subdomain
as in Figure 5(c) and are therefore directly assigned after just one iteration. Hence,
in most cases, the online complexity reduces to O(J+M2). For another 17.6%, we
need two attempts until a subdomain is found that approximates the correspond-
ing function sufficiently well. For only 1.6% of the parameters, we have to evaluate
the coefficients for all subdomains. More examples are provided in Section 6.

4.3 Refinement Procedure

So far, we fixed the number of subdomains in advance, whereas for many appli-
cations, a certain maximal number Mmax of basis functions is desired and the
necessary number of subdomains is unknown. Thus, we start the MS IPM with an
initial guess J0 of needed subdomains. Once we detect that Mmax will be reached
but the error still exceeds the tolerance εtol, we need a refinement of the partition.
In contrast to the hp-Partitioning, it is not possible for the MS IPM to directly di-
vide a subdomain into several parts. Hence, a refinement now yields to a complete
restart of the procedure with an increased number of subdomains.

It is too expensive to perform the MS IPM until Mmax is reached before a
refinement is performed. We could directly adopt the idea of the hp-Partitioning
and define additional quantities Mh

max �Mmax and εhtol � εtol to separate h- and
p-part. However, the procedure may still be expensive and it is very difficult to
define εhtol and Mh

max such that the final number of subdomains is indeed sufficient.
Hence, it may happen that additional expensive refinements are needed.

Alternatively, we can adopt the prediction methodology from a different par-
titioning methodology presented in [6]. We start the MS IPM as described in
Algorithm 3 with an initial number J of subdomains. Let MJ(εtol) denote the
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number of basis functions that are necessary to reach the tolerance εtol using J
subdomains. After each basis extension, before line 17 of Algorithm 3, we predict
MJ(εtol) by extrapolating the maximal errors of the previous steps. We denote

the prediction of MJ(εtol) by Mpred
J (εtol). If Mpred

J (εtol) ≤ Mmax, we proceed
the basis extension. Otherwise, we increase the number of subdomains to some
Jnew > J and restart the MS IPM.

For the efficiency of this refinement procedure, it is crucial to appropriately se-
lect the new number of subdomains. In the ideal case, a perfectly separable family
of functions M, the relation J0MJ0

(εtol) = J1MJ1
(εtol) would hold. Hence, the

new number of subdomains should be determined by Jnew = JMpred
J (εtol)/Mmax.

However, this ideal case is very unrealistic and provides only a lower bound for
the actually needed number of subdomains. Instead, we assume a nonlinear de-
pendence and use

Jnew = J ·

(
Mpred
J (εtol)

Mmax

)α
(8)

for some α > 1. The exponent α depends on the separability of M. We therefore
start with a rather small α, e.g., α = 2. If further refinement steps are necessary,
α can be increased step by step.

5 Fixed Shapes IPM

In the previous section, we developed a partitioning method for unknown parame-
ter domains that is very flexible and automatically adapts the shapes to the given
problem. The convergence in the different subdomains is well-balanced, the online
assignments are adequate, and, for the majority of parameters, fast.

However, the refinement procedure can be relatively expensive since the bases
on all subdomains are discarded and a complete restart is necessary. Furthermore,
it is common in the EIM context to adaptively determine the number M of basis
functions. Coefficients are added until the error estimator is precise enough. This
can usually be done without an increased complexity. Since the use of more basis
functions may now yield a shift to a different subdomain, this adaptive selection
of M is difficult in the context of moving shapes.

The objective of the Fixed Shapes (FS) IPM in this section is the development
of an adaptive implicit partitioning method that fulfills the requirements of the
Implicit Partitioning Problem 1 but allows a fast refinement procedure and an
adaptive use of the number of basis functions M . Furthermore, the assignment of
parameters are supposed to be based upon a tree based structure. Altogether, we
could decrease offline and online complexity.

5.1 Outline of the Method

For the MS IPM, we accelerate the assignment using the heuristic introduced in
Algorithm 6 which is based upon the first coefficients of the affine approximations.
It seems to be an appropriate idea to use the heuristic not only in the online
stage but for the complete partitioning procedure. In other words, we already
base the splitting of a subdomain upon the largest coefficients. This assignment is
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Algorithm 7 FixedShapesIPM(SjEIM,M0
,Mj

tr, Mmax, εtol, J)

1 for M = M0 + 1 to Mmax do
2 SjEIM,M = addBasisFunction(SjEIM,M−1,M

j
tr)

3 εjM,max = getMaxError(SjEIM,M ,M
j
tr)

4 if εjM,max < εtol then return SjEIM,M end if

5 end for
6 {SJ+1

EIM,1, . . . ,S
J+Jadd
EIM,1 } = initialFirstBasisFunction(SjEIM,Jadd+1, Jadd)

7 {IJ+1, . . . , IJ+Jadd} = getCoefficientBasedAssignment(SJ+1
EIM,1, . . . ,S

J+Jadd
EIM,1 ,Mj

tr, M0)

8 Jnew = J + Jadd
9 for i = 1 to Jadd do

10 MJ+i
tr = {c(µ) ∈Mj

tr |µ ∈ IJ+i}
11 FixedShapesIPM(SJ+iEIM,M0

,MJ+i
tr , Mmax, εtol, Jnew)

12 end for

Algorithm 8 getCoefficientBasedAssignment(S1
EIM,M0

, . . . ,SJEIM,M0
,Mtr, M0)

1 I1 = . . . = IJ = {}
2 for n = 1 to ntr do
3 for j = 1 to J do

4 θjM0
(µ) = getCoefficients(SjEIM,M0

, c(µ), M0)

5 end for
6 i = arg max

j
{‖θjM0

(µ)‖1 , j = 1, . . . , J}

7 Ii = Ii ∪ {µn}
8 end for

independent of the actually used number of basis function. Thus, the subdomains
will be fixed and online and offline shapes exactly coincide.

The detailed procedure of this FS IPM is described in Algorithm 7. It re-
veals strong similarities to the hp-Partitioning of Algorithm 2. We assume that
the initialization of an arbitrary number J of subdomains has been performed
analogously to the initial step of the MS IPM, producing disjoint sub-training sets
Mj

tr ⊂ Mtr and the initial EIM structs SjEIM,1 with one basis function. In the
algorithm, we use a more general notation with an arbitrary initial number of
basis functions M0 that will be used later. For now, we constantly set M0 ≡ 1.
Algorithm 7 is started independently for each subdomain.

From line 1 to 5 of Algorithm 7, the already known EIM basis extension on
subdomain j is performed, using always the same set of training samples. Once the
maximal error falls below the tolerance εtol, the EIM struct SjEIM,M is returned
in line 4.

When Mmax is reached without convergence, a refinement procedure has do
be performed. Let Jadd denote the number of new subdomains. As in the initial
step of the MS IPM, we use the first Jadd + 1 selected basis functions of the
current subdomain to initialize the new EIM structs in line 6. Again, we omit
the first basis for a better distribution of the subdomains. In line 7, we assign
the functions in Mj

tr to the appropriate subdomain. The procedure is described
in Algorithm 8 and is based upon the introduced heuristic. In detail, we evaluate
the first coefficient of all training functions and for all new subdomains in line
4. In line 6 and 7, each parameter is assigned to the subdomain where the `1-
norm of the corresponding coefficients is maximal. We define the new training sets
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Algorithm 9 refineCoefficientBased(S1
EIM,1, . . . ,SJEIM,1,Mtr, S0

EIM,Mmax
, Jinit)

1 define δ ∈ [0, 1) % subdomain i will be rejected if |Ii| < δ
|Mtr|
J

2 for M0 = 1 to Mmax
0 do

3 {I1, . . . , IJ} = getCoefficientBasedAssignment(S1EIM,M0
, . . . ,SJEIM,M0

,Mtr, M0)

4 if |I1|, . . . , |IJ | > δ
|Mtr|
J

then return {Ij , SjEIM,M0
| j=1, . . . , J} end if

5 {SjEIM,M0+1 | j = 1, . . . , J} = doMSIPMStep(S1EIM,M0
, . . . ,SJEIM,M0

,Mtr)

6 end for
7 for j = 1 to J do

8 if |Ii| < δ
|Mtr|
J

then
9 Jinit = Jinit + 1

10 SjEIM,1 = newInitialBasisFunction(S0EIM,Mmax
, Jinit)

11 end if
12 end for
13 refineCoefficientBased(S1EIM,1, . . . ,S

J
EIM,1,Mtr, S0EIM,Mmax

, Jinit)

and recursively start Algorithm 7 for each new subdomain from line 9 to 12. For
additional accelerations of the offline stage, the method can be combined with the
hp methodology and/or the prediction techniques.

However, it is not always possible to directly apply the heuristic. Consider the
example problem used in [1] for the introduction of the EIM,

c(x;µ) = (x1 + µ1)2 + (x2 + µ2)2, (9)

x ∈ D = [0, 1]2, µ ∈ P = [0.01, 1]2. Independently of µ, the maximum of c is located
at xmax = (1, 1). Hence, each subdomains selects the same first EIM interpolation
knot t1 = xmax = arg maxx∈D q

j
1(x), where qj1 denotes the first basis function in

subdomain j. Then, for the approximation of a function c(µ), µ ∈ P, the first
coefficients in all subdomains are equal to c(xmax, µ) due to the L∞-normalization
of the basis functions. Hence, we follow a slightly different approach and use a
flexible and adaptive number of coefficients for the assignment.

5.2 Adaptive Refinement

The only change in Algorithm 7 occurs in line 7. Instead of the direct use of the
coefficient based assignment with M0 = 1, we call

{ IJ+i, SJ+iEIM,M0
| i=1, . . . , Jadd }

= refineCoefficientBased(SJ+1
EIM,1, . . . ,S

J+Jadd

EIM,1 , M
j
tr, S

j
EIM,Mmax

, Jadd+1)

that is provided in Algorithm 9 and described in the following. It automatically
detects the necessary number M0 of used coefficients for an appropriate splitting
of the domain.

Besides the initial EIM structs and the training functions, the input of the
procedure also includes the EIM struct of the parent subdomain and the index of
its last basis function that has been used as initial basis for a child subdomain.
It returns not only the sets of assigned parameters IJ+i but also updated EIM
structs SJ+iEIM,M0

, i = 1, . . . , Jadd, now with M0 ≥ 1 basis functions.
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Fig. 6 Refinement steps using the FS IPM of Algorithm 7 and Jadd = 2 ((a) – (e)). Conver-
gence of the FS IPM for compared to a single EIM (f).

In line 1 of Algorithm 9, we define the acceptance condition for a subdomain.
We require that the proportion of the number of assigned functions to a subdomain
|Ii| and the average number of functions per subdomain |Mtr|/J is larger than δ.
Otherwise, the subdomain is rejected. In our experiments, we use δ = 0.1.

We start using a single coefficient for the assignment. Generally, for a given
number M0 of used coefficients, the coefficient based assignment procedure is al-
ready given in Algorithm 8. We evaluate the vector θjM0

(µ) of the first M0 ap-
proximation coefficients for all subdomains j and return the subdomain where the
sum of the respective coefficients in absolute values is maximal.

If all subdomains fulfill the acceptance condition in line 4, we are done and
return. For each subdomain, we furthermore store the number M0 of coefficients
used for the assignment. If at least one of the subdomains is rejected, we discard
the assignment and try to use more coefficients. We perform one step of the MS
IPM in line 5 to determine one additional basis function for each subdomain. Then,
the assignment procedure is iterated.

Suppose a maximal number Mmax
0 of allowed coefficients is reached without an

appropriate assignment, we reset the subdomains with new initial bases from line
7 to 12. For each subdomain j with |Ij | < δ |Mtr|

J , we replace its initial basis by the
next function of the parent subdomain that has not been used for any initial basis.
we restart the whole procedure refineCoefficientBased(·) in line 13 with M0 = 1.
In other words, we discard all the selected basis functions except the first ones
and use only the (partially new) initial EIM structs. Suppose Jinit > Mmax, we
can not assign a new initial basis and the algorithm has to be stopped without
appropriate partitions.

In Figure 6, the refinements for the example provided in (7) with a desired
accuracy of εtol = 10−8 and a maximal number of basis function Mmax = 100 is
shown. The initial partition has been given by the complete parameter domain
and a constant number of Jadd = 2 has been used. After five refinements, the
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partition was fine enough. For the desired accuracy, the subdomains need between
75 and 96 basis functions. Hence, comparing with Figure 4, we can see that the
convergence is now less balanced than for the MS IPM.

5.3 Online Assignment and Complexity

As mentioned before, we use the tree of subdomains to perform a very efficient tree
search in the online stage. At the nodes in the tree, only M0 basis functions have
to be stored. Just for leaf subdomains, the complete EIM structs are stored. Let
c(µ) be a new input function. At each node, we evaluate the respective number M0

of coefficients θjM0
for all child subdomains j. The complexity reads O(JaddM

2
0 ) =

O(1) since both Jadd and M0 are very small compared to and independent of the
actually used number of basis functions M . We move to the child subdomain where
‖θjM0

‖1 is maximal until a leaf subdomain is reached. Hence, the assignment of a
function to the right leaf subdomain can be achieved with complexity O(log (J)).
In contrast to the hp-Partitioning, the complexity is independent of the dimension
of the parameter domain.

It is possible to combine both implicit partitioning methods. To save offline
run time but still generate flexible shapes and therefore a balanced convergence,
it could be useful to first perform some steps of the FS IPM and generate a tree of
subdomains. At some step, we switch to the MS IPM starting with the initial bases
on the generated leaf subdomains. In the online stage, we first perform an efficient
tree search to find the appropriate leaf subdomain. Then, the more expensive
online assignment based upon Algorithm 5 on the final partition is only used for a
smaller number of subdomains. Additionally, if in any case the FS IPM does not
terminate and rejects all subdomains, it is still possible to proceed with the MS
IPM to obtain the desired accuracy with less than Mmax basis functions.

6 Numerical Examples and Comparisons

In this section, we consider three different examples to illustrate the different
properties of the presented partitioning methods. For all examples, explicitly given
parameter domains have been used. An additional example for stochastic input
data can be found in [12]. We compare the results of the implicit partitioning with
the hp methods and discuss advantages and disadvantages.

The desired L∞ error tolerance in the construction of the partitions is given
by εtol = 10−8 for all examples. For the refinement steps of the FS IPM, Jadd has
been set to 2 for all cases to facilitate the comparison and to guarantee efficient
tree structures. We rejected partitions if one of the two subdomain obtained less
than 5% of the parameters of the parent subdomain. The maximal number of
coefficients used for the assignment has been set to Mmax

0 = 6.

No error prediction techniques to accelerate the offline process have been used
in order not to generate more subdomains than necessary and to obtain “optimal”
partitioning results. Consequently, we also used εhtol = εptol and Mh

max = Mp
max for

the hp-Partitioning.
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Fig. 7 Comparison: number of subdomains J necessary for a given maximal number of affine
terms Mmax for Example 1.
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Fig. 8 Partitioning results for Example 1 with Mmax = 80 and εtol = 10−8.

6.1 Example 1

We first consider the example adopted from [4] and already provided in (7). For
the spatial domain D = [0, 1]2 and the explicitly given parameter domain P =
[0.3, 0.7]2, the input function c : D × P → R is given by

c(x;µ) = e−50((x1−µ1)
2+(x2−µ2)

2).

For the discretization of the spatial domain, we used a uniform grid with edge
length 0.02 such that the number of degrees of freedom is given by N = 2601.
The parameter samples for the offline stage are selected using a logarithmically
distributed grid with 72 parameters in each direction and ntr = 5184 samples.

In Figure 7, we compare the efficiency of the implicit methods with the hp
results. For given maximal number of basis functionsMmax, the respective numbers
J of generated subdomains for the error tolerance εtol = 10−8 are displayed in
a logarithmic scale. We can see that the differences of the numbers of needed
subdomains for the shown methods are small. Especially the FS IPM generated
very similar results to the hp anchor point method with about the same offline and
online complexity but without any knowledge of the parameters. For all refinement
steps of the FS IPM, it was sufficient to use only M0 = 1 coefficient for the
assignment.

Figure 8 compares the partitioning result of the implicit partitioning methods
with the hp results for a given Mmax = 80 and εtol = 10−8. The hp gravity center
method is least flexible since only partitions with J = 4, 16 and 64 subdomains
could be obtained. Hence, it generates more than necessary subdomains for most
values Mmax. Furthermore, the determination of the gravity center is based upon
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the total number of Mmax parameters and may be less appropriate for Mh
max �

Mmax.

We tested the MS IPM online stage using a test sample set of 10,000 parameters
and the fast assignment of Algorithm 6. For J = 8 subdomains and εtol = 10−4, we
used M = 33 and M+ = 36 basis functions. Less than 1.39 assignment trials per
sample have been needed on average. For a second example with a large number
J = 64 of subdomains, εtol = 10−8, M = 40, and M+ = 44, the average number
of assignment trials was still less than 2. Hence, the procedure is very efficient.

6.2 Example 2

We now consider the example that has been used in [1] to introduce the idea
of the EIM and which has briefly been mentioned in Section ??. For a spatial
domain D = [0, 1]2 and the parameter domain P = [0.01, 1]2, the input functions
c : D × P → R are defined by

c(x;µ) = (x1 + µ1)2 + (x2 + µ2)2.

As for the Example 1, we use a uniform grid on D with edge length 0.02 and
N = 2601 degrees of freedom. The parameter domain P is sampled using a
logarithmically distributed grid with 72 parameters in each direction leading to
ntr = 5184.

We already mentioned that the maximum of c is located at xmax = (1, 1)
independently of µ. Since the first interpolation knot is located at the maximum
of the first basis function, all subdomains select the same first knot and therefore,
the first approximation coefficient θj1(µ) is identical for all subdomains j. Hence,
the coefficient based FS IPM needs at least two coefficients for the assignments. On
average over all performed runs and nodes, it selected about 2.8 coefficients which
still leads to a very efficient online assignment. Especially in the lower parts of the
subdomain trees, i.e., for very fine partitions, resets of the initial basis functions
occurred in order to obtain appropriate partitions.

In Figure 9, we compare again the numbers of generated subdomains for differ-
ent values of Mmax, where the numbers of subdomains are plotted logarithmically.
For this example, the MS IPM clearly outperforms the other methods whereas
on average, the FS IPM and the hp methods produced similar numbers of subdo-
mains. For the hp gravity center method, only the very few numbers of J = 4, 7, 16
and 25 could be reached at all.

In Figure 10, we compare the partitions generated by the different methods
for a desired number of Mmax = 55 basis functions. We observe that the shapes
and numbers of subdomains differ significantly, where the MS IPM in Figure 10(a)
seems to divide the parameter domain in the best way. It is also interesting to see
that some of the subdomains of the FS IPM in Figure 10(b) are divided into several
parts that are not connected. E.g., the “black subdomain” consists of parameters
in the lower left and lower right part of the parameter domain. For the construction
of this partition, two resets of the initial partition were necessary and the average
number of coefficients for the assignment was 2.75.
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Fig. 9 Comparison: number of subdomains J necessary for a given maximal number of affine
terms Mmax for Example 2.

(a) MS IPM:
J = 4

(b) FS IPM:
J = 9

(c) hp anchor point:
J = 8

(d) hp gravity center:
J = 7

Fig. 10 Partitioning results for Ex. 2 and desired Mmax = 55 and εtol = 10−8.

Example 3

In the last example of this section, we consider a special parameter dependency.
For the spatial domain D = [0, 1]2 and the explicitly given parameter domain
P = [0, 1]2, the input function c : D × P → R is given by

c(x;µ) = e
−50

((
x1−4

(
µ1−

1
2

)2
−µ2

2

)2
+x2

2

)
.

Now, for parameters µ ∈ P on the elliptic curves

4
(
µ1 − 1

2

)2
+ µ2

2 ≡ const,

the input functions c(µ) are identical. Hence, it is desirable that the partition-
ing methods detect this dependency and adjust the splitting of the subdomains
accordingly.

For the discretization of the spatial domain, we used again a uniform grid with
edge length 0.02 and obtain N = 2601 degrees of freedom. The parameter samples
for the offline stage are now selected using a uniform grid on P = [0, 1]2 with 72
parameters in each direction. Hence, we obtain ntr = 5184 uniformly distributed
samples.

A single EIM on the complete subdomain converged forM = 27 basis functions.
For Mmax = 18, the partitioning results of the MS IPM and the two hp methods
are provided in Figure 12. For the MS IPM, two subdomains are sufficient. We
provide the initial partition for M = 1 and the final partition for M = 18 in
Figures 12(a) and 12(b), respectively. In Figure 12(a), we also marked the two
parameters that have been used for the initial basis. It can directly be seen that
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Fig. 11 Comparison: number of subdomains J necessary for a given maximal number of affine
terms Mmax for Example 3.

(a) MS IPM initial:
J = 2

(b) MS IPM final:
J = 2

(c) hp anchor point:
J = 23

(d) hp gravity center:
J = 46

Fig. 12 Partitioning results for Example 3 and desired Mmax = 18 and εtol = 10−8.

(a) refinement 1 (b) refinement 2 (c) refinement 3 (d) refinement 4

Fig. 13 Tree structured refinement steps for Example 3 using the FS IPM.

the subdomains are defined by the band around the ellipse of parameters on which
the initial parameters are located.

Contrarily, the hp results in Figures 12(c) and 12(d) do not properly detect the
geometric parameter dependency of the input functions. Not even the symmetry
along the axis µ1 = 1

2 has been used. As a consequence, a huge number of subdo-
mains is needed. At the same time, many subdomains cover the same part of the
family of input functions. Especially for the hp anchor point method, one can see
that many small subdomains have been created along one parameter ellipse.

Also in Figure 11, it can be observed that the hp methods do not detect the
more special parameter dependency. On average, the anchor point method needs
about 10 times more subdomains to appropriately cover the complexity of M.
The number of subdomains created by the gravity center splitting procedure is an
additional factor of around two larger.

The number and shapes of the subdomains created for the MS IPM and the FS
IPM differ only slightly. In Figure 13, the tree structure of the FS IPM is provided.
In each step, one of the subdomains is divided into two parts. We see that shapes
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of the subdomains keep their elliptic appearance. For the parameter assignments,
one approximation coefficient was sufficient.

7 Conclusions

We developed implicit partitioning methods that assign arbitrary parametric in-
put functions to an appropriate subdomain without the knowledge of the actual
parameter or any other additional information. The subdomains are no longer de-
fined using distance measures with respect to the parameter but can rather be
seen as classes of similar functions. Hence, even non-parametric input functions
can be processed. On each subdomain, an EIM is performed that creates affine
approximations of the input functions with respect to the unknown parameter.

The methods automatically detect complex parametric structures such as sym-
metries or other patterns of the parametric dependency and the assignments are
independent of the dimension of the parameter domain. Hence, for wide classes of
problems, the implicit methods outperform other partitioning methods even for
known explicitly given parameters.
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