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DIMENSIONS

RÜDIGER KIESEL, ANDREAS RUPP, AND KARSTEN URBAN

Abstract. We introduce a new numerical approach to value structured finan-
cial products.

These financial products typically feature a large number of underlying as-

sets and require the explicit modelling of the dependence structure of these
assets. We follow the approach of Kraft and Steffensen (2006,[26]), who ex-

plicitly describe the possible value combinations of the assets via a Markov

chain with a portfolio state space.
As the number of states increases exponentially with the number of assets

in the portfolio, this model so far has been – despite its theoretical appeal –

not computational tractable.
The price of a structured financial product in this model is determined by

a coupled system of parabolic PDEs, describing the value of the portfolio for
each state of the Markov chain depending on the time and macroeconomic state

variables. A typical portfolio of n assets leads to a system of N = 2n coupled

parabolic partial differential equations. It is shown that this high number of
PDEs can be solved by combining an adaptive multiwavelet method with the

Hierarchical Tucker Format. We present numerical results for n = 128.

1. Introduction

The inadequate pricing of Asset-backed securities (ABS) and in particular Col-
lateralized Debt Obligations (CDOs), on which we focus, is widely viewed as a main
trigger of the financial crisis that started in 2007, [6, 17].

The lack of adequate mathematical models to capture the (dependency) risk
structure, [23], of these assets is consistently identified as the main reason for the
inaccurate pricing. Due to the complexity of a CDO portfolio, which arises from
the high number of possible default combinations, drastic simplifications of the
underlying portfolio structure had to be made in order to compute a price, [7, 9, 43].

We consider the CDO model of [26] where the value of a CDO portfolio is deter-
mined by a system of coupled parabolic PDEs, each PDE describing the portfolio
value for a specific default situation. These default situations are characterized
by a discrete Markov chain, where each state in the Markov chain stands for a
default state of the portfolio. Therefore, for a portfolio of n assets, there are
N = 2n possible combinations of defaults and, therefore, 2n states in the Markov
chain. It will later turn out to be convenient to label the states in the index set
N ∶= {0, . . . ,N − 1}. The value of the CDO portfolio in [26] is described by the
function u(t, y) = (u0(t, y), . . . , uN−1(t, y))T that satisfies the partial differential
equation for all t ∈ (0, T ) (T > 0 being the maturity) and all y ∈ Ω ⊂ RM . The y
variables are used to incorporate M economic market factors which describe the
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state of the economy.

ujt(t, y) = −
1

2
∇ ⋅ (B(t)∇uj(t, y)) −αT (t)∇uj(t, y) + r(t, y)uj(t, y)

− ∑
k∈N∖{j}

qj,k(t, y)(aj,k(t, y) + uk(t, y) − uj(t, y)) − cj(t, y),(1.1a)

u(t, y) = 0, t ∈ (0, T ), y ∈ ∂Ω,(1.1b)

u(T, y) = (u0
T (y), . . . , u

N−1
T (y))T , y ∈ Ω,(1.1c)

for all j ∈ N . The differential operator ∇ is to be understood w.r.t. the variable
y. Often the bounded domain Ω arises from localizing the problem from RM to a
bounded domain by truncation.

This is a generalized Black-Scholes PDEs with a linear coupling, homogeneous
Dirichlet boundary conditions (1.1b) in y (possibly after localization) and terminal
condition (1.1c). The remaining parameters can be interpreted as follows:

● The space variables y ∈ Ω ⊂ RM describe the current market situation by
means of variables which describe the market influence on the CDO port-
folio. This could be for example interest rates, foreign exchange rates,
macroeconomic factors and other factors depending on the composition of
the portfolio. These space variables are modelled via a market process
dY (t) = α(t)dt + β(t)dW (t), where W (t) is a M -dimensional standard
Brownian motion, the drift α(t) is a M -dimensional vector and the volatil-
ity β(t) ∈ RM×M . Then, we abbreviate B(t) ∶= β(t)β(t)T . By normaliza-
tion, we may assume w.l.o.g. Ω = [0,1]M .

● N is the state space of a Markov chain, where each state is a possible
combination of defaults of the underlying portfolio.

● The function r(t, y) describes the relevant market interest rate.

● The parameters qj,k ≥ 0 are the transition intensities, which is the instan-
taneous change in the transition probabilities, from state j into state k,
where j, k ∈ N . Moreover, for any state j, all intensities sum up to zero,
i.e., qj,j ∶= −∑k∈N∖{j} q

j,k. The default probability is assumed to increase
over time, see [26].

● The payments cj(t, y), j ∈ N , made by the CDO are assumed to be contin-
uous in time.

● The recovery payment, i.e., the distribution of the remaining funds of the
defaulted firm, is denoted by aj,k(t, y). It depends on the transition from
state j to state k, which means on the defaulted firm.

● Final payments at maturity can also be included. They also depend on the
state and the current market situation and are denoted by ujT (y).

All together, (1.1) is a system of N = 2n coupled time-dependent parabolic PDEs
each in dimension M . The difficulty of this pricing approach is primarily the high
number N = 2n of states in the Markov chain and, hence, the high number of
coupled partial differential equations. In the following it will be shown, that under
reasonable conditions, the high dimensionality resulting from the Markov chain can
be separated as a time dependent factor from the actual solution of the partial dif-
ferential equation. This allows to represent the system of coupled partial differential
equations in variational form as the variational formulation of a high dimensional
parabolic partial differential equation. We propose to use orthogonal multiwavelet
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bases to develop an equivalent discrete but infinite-dimensional system. This par-
ticular choice allows to write the system as a tensor product, which in turns leads
to decoupling the Markov chain ingredients from the market parameters, i.e., the
high dimensionality is separated from the integrals of the test and trial spaces.
The hierarchical Tucker Format (HTF), is then applied to this tensor structure.
To numerically approximate a solution for this system, multiwavelets ensure small
condition numbers regardless of the dimension of the process. Moreover, this choice
allows for asymptotically optimal adaptive schemes, see e.g. [24].

In the context of wavelet approximations of solutions of partial differential equa-
tions, the term “high dimensional” commonly refers to the dimension M of the
space variable, say M ≥ 5. In our problem at hand, we also have a huge number
N = 2n of coupled equations. As already mentioned, we will show that we can
separate both ingredients, namely the Markov chain state space N and the macro-
economic model Ω ⊆ RM . The latter one will be discretized by a tensor product
multiwavelet bases. In general, the dimension of the basis grows exponentially with
M – the curse of dimensionality. Thus, the number of macroeconomic variables
that can be used is often strongly limited by the available memory. This can be
seen in [13], where the number of degrees of freedom in 10 dimensions is not enough
to reach the optimal convergence rate. In [34] it can also be seen, that the number
of degrees of freedom which can be used in 5 dimensions is strongly limited. By ap-
plying principal component analysis, [35], the authors are able to solve a problem in
30 dimensions essentially by a reduction to 5 dimensions. In [22], 8 dimensions are
reached for a full rank Black Scholes model and 16 dimensions, when a stochastic
volatility model is considered.

The remainder of this paper is organized as follows. In Section 2, we derive a
variational formulation to (1.1) and prove its well-posedness. Section 3 is devoted
to the description of well-known multiwavelet bases and the collection of the main
properties that are needed here. The discretization in Section 4 is done in three
steps. First, we use the multiwavelet basis in order to derive an equivalent discrete
but infinite-dimensional system. We also show that this approach allows to decouple
the market variables from the Markov chain state space in terms of a tensor product.
The next two steps involve the discretization in time and market variables. Due
to the mentioned separation, we can handle large portfolios of companies by the
so-called Hierarchical Tucker Format (HTF) which is briefly reviewed in Section 5
concentrating on those properties that are relevant here. Finally, in Section 6, we
report on some numerical experiments for realistic market scenarios. We collect
some auxiliary facts in Appendix A.

2. Variational formulation

We start by deriving a variational formulation of the original system (1.1). We
start with some remarks on systems of elliptic partial differential equations. Let
V ↪ H ↪ V ′ be a Gelfand triple and V ∶= V N be the tensor product space. For
u = (u0, . . . , uN−1)T , v = (v0, . . . , vN−1)T ∈ V, let aj ∶ V × V → R be a multilinear
form and f j ∶ V → R, j = 0, . . . ,N − 1, a linear form. Then,

(2.1) u ∈ V ∶ aj(u, v) = f j(v) ∀ v ∈ V, j ∈ N ,
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is a coupled linear system of N equations. Defining a ∶ V ×V → R, f ∶ V → R we

a(u,v) ∶= ∑
j∈N

aj(u, vj), f(v) ∶= ∑
j∈N

f j(vj), u,v ∈ V,

obtain a variational problem

(2.2) u ∈ V ∶ a(u,v) = f(v) ∀v ∈ V,

which is well-posed provided the well-known Nečas conditions are valid, [32]. Note
that (2.1) and (2.2) are equivalent since using the test functions vjδj , where
δj = (δj,j′)

T
j′∈N (δi,j denoting the Kronecker delta) in (2.2) yields (2.1); the other

direction is trivial.
Next, we need to separate the high dimensional Markov chain parts from the

variational formulation. This means that the state dependent variables are com-
pound functions of a state dependent part (which might also depend on the time
t) and a mutual factor depending on the space variables y. Hence, we assume
that there exist functions q̃j,k, ãj,k, c̃j ∶ [0, T ] → R, constants ãj ∈ R and functions
hq, ha, hc, ha(T ) ∶ Ω→ R such that

qj,k(t, y) = q̃j,k(t)hq(y), aj,k(t, y) = ãj,k(t)ha(y),(2.3a)

cj(t, y) = c̃j(t)hc(y), aj(y) = ãj ha(T )(y),(2.3b)

for all j, k ∈ N , t ∈ [0, T ] and y ∈ Ω. This is a reasonable assumption from the
financial point of view since it states that the dependency on the market process
is the same for all points in time and for all states in the Markov chain. The fact,
that changes of the state of the Markov chain cannot alter the dependency of the
market process Y means that default of single firms in the CDO portfolio will not
change the market situation. Finally, we remark that there are methods available
in order to obtain an approximate representation of the form (2.3) even in cases
where the functions do not directly allow such a separation of variables, see e.g.
[4, 33].

We are now going to derive a variational formulation. We need one more ab-
breviation: If v ∶ (0, T ) × Ω → R is a function in time and space, we will always
abbreviate v(t) ∶ Ω→ R, where v(t)(y) ∶= v(t, y), y ∈ Ω.

Definition 2.1. Given assumption (2.3), a function u ∈ X ∶= L2(0, T ;H1
0(Ω)N) ∩

H1(0, T ;H−1(Ω)N) is called weak solution of (1.1) if

(2.4) {
(ut(t),v)0;Ω + a(u(t),v) = (f(t),v)0;Ω for all v ∈H1

0(Ω)N , t ∈ [0, T ]

u(T, y) = uT (y) ∶= (u0
T (y), . . . , u

N−1
T (y))T

where (w,v)0;Ω = ∑j∈N (wj , vj)0;Ω, a(w,v) ∶= ∑j∈N a
j(w, vj) with

aj(w(t), v) ∶=
1

2
(∇wj(t),B(t)∇v)0;Ω − (α(t)T∇wj(t) + γj(t)Tw(t), v)0;Ω(2.5)

the reaction coefficient (j, k ∈ N )

γjk(t, y) ∶= (γj(t, y))k ∶=

⎧⎪⎪
⎨
⎪⎪⎩

−q̃j,k(t)hq(y) if k /= j,

r(t) −∑k′∈N∖{j} q̃
j,k′(t)hq(y) if k = j.

and the right-hand side (f(t),v)0;Ω ∶= ∑j∈N (f j(t), vj)0;Ω with f j(t) ∶= −c̃j(t)hc(y)−

∑k∈N∖{j} q̃
j,k(t) ãj,k(t)ha(y)hq(y).
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Obviously, (2.4) is a system of instationary convection-diffusion-reaction equa-
tion and the linear coupling is in the zero-order (reactive) term.

Theorem 2.2. Let (2.3) hold. If u ∈ C1([0, T ]; (C2(Ω))N) is a classical solution
of (1.1), then it is also a weak solution in the sense of Definition 2.1. On the other
hand, if u is a weak solution and additionally u ∈ C1([0, T ]; (C2(Ω))N), then u is
also a classical solution of (1.1).

Proof. We multiply (1.1) with some vj ∈H1
0(Ω) and obtain

(ujt(t), v
j
)0;Ω = (r(t)uj(t), vj)0;Ω − (α(t)T∇uj(t), vj)0;Ω

−
1

2
(∇ ⋅ (B(t)∇uj(t)), vj)0;Ω

− ∑
k∈N∖{j}

∫
Ω
qj,k(t, y) (uk(t, y) − uj(t, y))vj(y)dy

−∫
Ω
{cj(t, y) + ∑

k∈N∖{j}
qj,k(t, y)aj,k(t, y)}vj(y)dy.

Using assumption (2.3), the (negative of the) last term reads

c̃j(t)∫
Ω
hc(y) v

j
(y)dy +∑

k∈N∖{j}
q̃j,k(t) ãj,k(t)∫

Ω
hq(y)ha(y) v

j
(y)dy = (f j(t), vj)0;Ω.

Integration by parts gives for the last term

1

2
(B(t)∇uj(t)),∇vj)0;Ω − (α(t)T∇uj(t), vj)0;Ω(2.6)

+∫
Ω
{r(t)uj(t, y) − ∑

k∈N∖{j}
q̃j,k(t)hq(y)(u

k
(t, y) − uj(t, y))}vj(y)dy,

where the last term is equal to (γj(t)Tu(t), vj)0;Ω. Summing over j ∈ N yields
(2.4). The above derivation also proves the claim. �

The next step is to prove well-posedness of the variational problem.

Theorem 2.3. If B(t) has rank M , then (2.4) is well-posed.

Proof. We need to show that the bilinear form a(⋅, ⋅) satisfies the G̊arding inequality
and is continuous. Then, the claim follows from the Lax-Milgram theorem. �

Remark 2.4. Note that (2.3) is not needed for the well-posedness of (2.4).

Finally, consider a space-time variational formulation of (2.4) by integrating over
time. With

b(u,v) ∶= ∫

T

0
[(ut(t),v1)0;Ω + a(u(t),v1)]dt + (u(T ),v2)0;Ω

f(v) ∶= ∫

T

0
(f(t),v1(t))0;Ω + (uT ,v2)0;Ω

for u ∈ X and v ∈ Y ∶= L2(0, T ;H1
0(Ω)N)×L2(Ω)N , v = (v1,v2) ∈ Y, the space-time

variational formulation reads

(2.7) u ∈ X ∶ b(u,v) = f(v) ∀v ∈ Y.

This latter problem is also well-posed following the arguments e.g. in [38, 46].
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3. Multiwavelets

Since we want to use multiwavelets for the discretization of the macroeconomic
variables, we briefly recall some facts of these function systems. A (standard, not
multi-) wavelet system is a Riesz basis Ψ ∶= {ψλ ∶ λ ∈ J } of L2(Ω), where λ = (`, k),
∣λ∣ ∶= ` ≥ 0 denotes the level (also steering the size of the support in the sense that

diam(supp ψλ) ∼ 2−∣λ∣) and k indicates the position of supp ψλ, e.g. the center of
the support. Wavelets are (among other parameters) characterized by a certain
order d of vanishing moments, i.e.,

(3.1) ∫
Ω
yr ψλ(y)dy = 0 ∀0 ≤ ∣r∣ ≤ d − 1 ∀λ ∈ J , ∣λ∣ > 0.

This means that wavelets necessarily oscillate which also explains the name. Note
that (3.1) only holds for ∣λ∣ > 0. Those functions ψλ with ∣λ∣ = 0 are not wavelets but
so-called scaling functions and those are generated by a single so-called generator
ϕ ∈ C0(Ω) in the sense that each ψλ, ∣λ∣ = 0, is a linear combination of (possibly to
Ω restricted) shifts ϕ(⋅ −k), k ∈ Z. The wavelets ψλ, ∣λ∣ > 0, are linear combinations
of dilated versions of scaling functions.

The difference of multiwavelets as opposed to wavelets is that linear combinations
of shifts of several generators ϕi, i = 1, . . . ,m, are allowed. The main advantage is
that corresponding multiwavelets may be constructed that are

● piecewise polynomial,
● L2-orthogonal,
● compactly supported with small support size.

These three properties are quite useful for numercial methods since they allow
an efficient evaluation of an approximation as well as well-conditioned and sparse
system matrices.

We use B-spline multiple generators and wavelets as constructed in [16, 19].
These functions are also adapted to finite intervals and allow for homogeneous
Dirichlet boundary conditions, the latter construction was introduced in [36]. We
faced some difficulties with the realization of the construction in [16] in partic-
ular for higher regularity. However, we finally came up with a realization using
Mathematica® for almost arbitrary regularity. Some functions are shown in Fig-
ures 1 and 2. Details can be found in [36].
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Figure 1: Wavelets generated by the piecewise cubic MRA having one continuous
derivative.
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Figure 2: Wavelets with homogeneous Dirichlet boundary conditions generated by
a piecewise cubic MRA on [0,1] with one continuous derivative.

Let us summarize some properties that we will need in the sequel.

Proposition 3.1 ([16]). Let Ψ = {ψλ ∶ λ ∈ J } be a system of multiwavelets on
Ω = [0,1] from [16] normalized in H1(Ω), i.e., ∥ψλ∥1;Ω ∼ 1. Then,

(a) Ψ is L2-orthogonal, i.e., (ψλ, ψµ)0;Ω = δλ,µ∥ψλ∥
2
0;Ω, λ,µ ∈ J ;

(b) ψλ ∈H
1
0(Ω), λ ∈ J ;

(c) The system Ψ is a Riesz basis for H1
0(Ω) with L2-orthogonal functions.

Finally, denoting J ∶= {(j, λ) ∶ j ∈ N ;λ ∈ J } = N × J (i.e., ∣J ∣ = N ∣J ∣),
λ ∶= (j, λ) ∈ J and ψλ ∶= ψλδj , λ = (j, λ) ∈ J , the system Ψ ∶= {ψλ ∶ λ ∈ J } is a
tensor product Riesz basis for H1

0(Ω)N .

4. Discretization

4.1. An equivalent `2-problem. The first step towards an adaptive multiwavelet
method is to rewrite the variational problem (2.4) and (2.7) in a discrete equivalent
problem on the sequence space `2(J ) for the multiwavelet expansion coefficients.
It turns out that the assumption (2.3) is particularly useful here, since it allows for
a separation of state and space (and time), so that the discrete operators are of
tensor product form. This also allows for an efficient numercial realization, also for
the space-time variational formulation [25] and in particular for larger M .

Using Ψ as defined in Section 3, the solution u of (2.4) has a unique expansion
of the form

u(t, y) = ∑
λ∈J

xλ(t)ψλ(y), t ∈ (0, T ), y ∈ Ω,

where xλ(t) = x
j
λ(t), λ = (j, λ), xj(t) = (xjλ(t))λ∈J ∈ `2(J ). The above sum is to

be understood componentwise, i.e., uj(t, y) = ∑λ∈J x
j
λ(t)ψλ(y) for j ∈ N . Then,

for λ = (j, λ) ∈ J , we get

aj(u(t), ψλ) = ∑
µ∈J

xµ(t){
1

2
(∇ψµ,B(t)∇ψλ)0;Ω − (α(t)T ∇ψµ, ψλ)0;Ω}

+ ∑
k∈N

(γjk(t)u
k
(t), ψλ)0;Ω.

Defining A(t) ∶= ( 1
2
(∇ψµ,B(t)∇ψλ)0;Ω − (α(t)T ∇ψµ, ψλ)0;Ω)

λ,µ∈J
, the first sum

can be abbreviated as A(t)xj(t). The remaining term can be further detailed as

∑
k∈N

(γjk(t)u
k
(t), ψλ)0;Ω = ∑

k∈N
∑
µ∈J

xkµ(t)(γ
j
k(t)ψµ, ψλ)0;Ω = [ ∑

k∈N
Cj,k

(t)xk(t)]
λ
,
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where we set Cj,k(t) ∶= ((γjk(t)ψλ, ψµ)0;Ω)
λ,µ∈J ∈ RJ×J .1 Next,

(ujt(t), ψλ)0;Ω = ∑
µ∈J

ẋµ(t) (ψµ, ψλ)0;Ω = ẋλ(t),

if the multiwavelets are L2-orthonormalized. Thus, we obtain

ẋj(t) +A(t)xj(t) + ∑
k∈N

Cj,k
(t)xk(t), j ∈ N ,

or, written as a system

(4.1) ẋ(t) + (A(t) + C(t))x(t) = f(t),

where A(t),C(t) ∈ RJ×J are given by A(t) = diag(A(t) . . . ,A(t)), (C(t))j,k =

Cj,k(t) and f(t) = ((f(t),ψµ)0;Ω)
µ∈J . Obviously, (4.1) is a coupled system of

ODEs in the sequence space `2(J ). We will now show that (4.1) is in fact a tensor
product problem. For that, we need to review some facts on tensor products, which
can be found in Appendix A. We detail the coupling term

[Cj,k
(t)]λ,µ = (γjk(t)ψλ, ψµ)0;Ω

=

⎧⎪⎪
⎨
⎪⎪⎩

−q̃j,k(t) (hqψλ, ψµ)0;Ω, if k ≠ j,

r(t)δλ,µ −∑k∈N∖{j} q̃
j,k′(t) (hqψλ, ψµ)0;Ω, if k = j,

=∶ dj,k(t)Mq
λ,µ + r(t) δj,k δλ,µ,

where (Mq)λ,µ ∶= (hqψλ, ψµ)0;Ω is a weighted mass matrix and

(4.2) R ∋ dj,k(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

−q̃j,k(t), if k ≠ j,

−∑m∈N∖{j} q̃
j,m(t), if k = j.

We denote D(t) ∶= (dj,k(t))j,k∈N .

Theorem 4.1. Let Assumption (2.3) hold and assume that Ψ satisfies the proper-
ties in Proposition 3.1. Then, (2.4) is equivalent to
(4.3)
(IN ⊗ IJ )ẋ(t)+ [(IN ⊗ [A(t)+ r(t)IJ ])+ (D(t)⊗Mq

)]x(t) = b(t)⊗g1
− c̃(t)⊗g2,

where II denotes the identity w.r.t. an index set I, b(t) = (bj(t))j∈N , bj(t) ∶=

−∑k∈N∖{j} q̃
j,k(t) ãj,k(t), c̃(t) ∶= (c̃j(t))j∈N , g1 = (g1

λ)λ∈J , g1
λ ∶= (hq ha, ψλ)0;Ω and

g2 = (g2
λ)λ∈J with g2

λ ∶= (hc, ψλ)0;Ω.

Proof. Let j ∈ N and λ ∈ J so that λ = (j, λ) ∈ J . Then,

(C(t)x(t))λ = ∑
k∈N

∑
µ∈J

[Cj,k
(t)]λ,µ x

k
µ(t)

= ∑
k∈N

∑
µ∈J

[dj,k(t)Mq
λ,µ + r(t)δj,kδλ,µ]x

k
µ(t)

= ∑
k∈N

∑
µ∈J

[Mq
λ,µx

k
µ(t)d

j,k
(t) + r(t)δλ,µx

k
µ(t)δj,k]

= (Mq x(t)D(t)T + r(t)IJ x(t)IN )
λ

= ([(D(t)⊗Mq
) + r(t)(IN ⊗ IJ )]x(t))

λ
,

1With a slight abuse of notation, we set RI = `2(I) for any countable (possibly infinite) set I
as well as RI×I as the set of linear operators from `2(I) into `2(I).
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where we have used Lemma A.4 in the last step. Note that D(t) ∈ RN×N , Mq ∈

RJ×J , thus (D(t)⊗Mq) ∈ R(N×J )×(N×J ) = RJ×J . Finally, we consider the right-
hand side. We obtain

(b(t)⊗ g1
− c̃(t)⊗ g2

)(j,λ)= bj(t) g1
λ − c̃

j
(t) g2

λ

= −∑
k∈N∖{j}

q̃j,k(t) ãj,k(t) (hq ha, ψλ)0;Ω − c̃j(t) (hc, ψλ)0;Ω

= (f j(t), ψλ)0;Ω,

so that the claim is proven. �

4.2. Temporal discretization. So far (4.3) is equivalent to the original PDE. As
a first step towards a (finite) discretization, we consider the time interval [0, T ],
fix some K ∈ N and set ∆t ∶= 1

K
as well as tk ∶= k∆t, k = 0, . . . ,K. Obviously,

(4.3) takes the form M ẋ(t) +A (t)x(t) = f(t), x(T ) = xT , to which we apply the
standard θ-scheme (θ ∈ [0,1]) to derive an approximation xk ≈ x(tk) by solving

xK = xT ,
1

∆t
M (xk+1

− xk) + θA (tk+1
)xk+1

+ (1 − θ)A (tk)xk = θf(tk+1
) + (1 − θ)f(tk),

for k = K − 1, . . . ,0. Obviously, the second equation amounts solving the following
linear system in each time step

(4.4) (M +∆t(θ−1)A (tk))xk = (M +∆t θA (tk+1
))xk+1

+θf(tk+1
)+ (1−θ)f(tk).

4.3. Wavelet Galerkin methods. The last step towards a fully discrete systems
in space and time is the discretization with respect to the economic variable y ∈ Ω.
After having transformed (2.4) into the discrete but infinite-dimensional system
(4.3), this can easily be done by selecting a finite index set Λ ⊂ J . Hence, we
obtain

MΛ ∶= IN ⊗ IΛ, AΛ(t) ∶= IN ⊗ [AΛ(t) + r(t)IΛ] +D(t)⊗Mq
Λ,

which is then inserted into (4.4) for M and A (t), respectively, in order to get a
finite system. We denote by AΛ(t) ∶= A(t)∣Λ = (aλ,µ(t))λ,µ∈Λ the restriction of the
original bi-infinite operator A(t) to a finite index set Λ ⊂ J , ∣Λ∣ <∞ (and similarly
IΛ, Mq

Λ). The choice of Λ is done in an adaptive manner, i.e., we get a sequence

Λ(0) → Λ(1) → Λ(2) → ⋯ by one of the known adaptive wavelet schemes that have
been proven to be asymptotically optimal, [11, 10, 12, 24, 37, 45].

5. The Hierarchical Tucker Format (HTF)

In this section, we briefly recall the main properties of the Hierarchical Tucker
Format (HTF) and describe key features of our implementation. We concentrate
on those issues needed for the pricing problem under consideration and refer e.g.
to [20, 21, 27, 36] for more details.

We call w ∈ RK, K = ⨉j∈N Kj with entries wi ∈ R, i = (i0, . . . , iN−1)
T = (ij)j∈N ,

ij ∈ Kj , a tensor of order N .2 Note that we will consider the cases Kj = Ij (a vector-
tensor) as well as Kj = Jj × Ij (a matrix-tensor), where Ij and Jj are suitable
(possibly adaptively chosen) index sets. Storing and numerically manipulating
tensors exactly is extremely expensive since the amount of storage and work grows

2The indexation here is adapted to our problem at hand and thus differs from the standard

literature on the Hierarchical Tucker Format.
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exponentially with the order. Hence, one wishes to approximate a tensor w (or
vec(w), which denotes the vector storage of w using reverse lexicographical order
w.r.t. the indices) by some efficient format. One example is the Tucker Format,
[44], where one aims at determining an approximation

(5.1) vec(w) ≈ V vec(c) = (VN−1 ⊗⋯⊗ V0) vec(c), Vj ∈ RIj×Jj , j ∈ N ,

with the so called core tensor c ∈ RJ , J = ⨉j∈N Jj . It is known that the High-
Order Singular Value Decomposition (HOSVD) (see (5.2) below) yields a ‘nearly’
optimal solution to the approximation problem (5.1) which is also easily numerically
realizable, [36]. However, the storage amount for the core tensor c still grows
exponentially with N . This is the reason to consider alternative formats such as
the HTF which provides an efficient multilevel format for the core tensor c. In order
to be able to describe the HTF, it is useful to introduce the concept of matricization
as well as to describe the HOSVD in some more detail.

The direction indices 0, . . . ,N − 1 of a tensor w ∈ RI are also called modes.
Consider a splitting of the set of all modes {0, . . . ,N − 1} = N into disjoint sets,
i.e., N = t ⊍ s, t = {t1, . . . , tk}, s = {s1, . . . , sN−k} = t∁, then the matricization

w(t) ∈ RIt×I∁t of the tensor w w.r.t. the modes t is defined as follows

It ∶=
k

⨉
i=1

Iti , I∁t ∶=
N−k
⨉
i=1

Isi , (w(t))(it1 ,...,itk ),(is1 ,...,isN−k ) ∶= wi.

Note that vec(w) = w(N ). A special case is the µ-matricization for µ ∈ N , where

t = {µ} and I∁µ = I0 ×⋯ × Iµ−1 × Iµ+1 ×⋯ × IN−1. We set rµ ∶= rank(w(µ)) and call

r = (r0, . . . , rN−1)
T the rank of w.

One idea to obtain an approximation w̃ of w requiring less storage is a low-rank
approximation, i.e., to determine a tensor w̃ of rank r̃ with r̃µ ≤ rµ ≤ #Iµ. This can

be achieved by a truncated SVD of each w(µ) in the sense that w(µ) ≈ UµΣµV
T
µ ,

i.e., Uµ ∈ RIµ×r̃µ contains the most significant r̃µ left singular vectors of w(µ). Then

(5.2) vec(w) ≈ vec(w̃) ∶= (UN−1 ⊗⋯⊗U0) vec(c)

with the core tensor vec(c) ∶= (UTN−1 ⊗ ⋯ ⊗ UT0 ) vec(w) ∈ Rr̃0×r̃N−1 and the mode
frames Uµ, µ ∈ N . The approximation in (5.2) is precisely the HOSVD and this
choice of c can easily be shown to minimize ∥w−w̃∥2 for given orthonormal matrices
Uj . Moreover,

∥w − w̃∥2 ≤
√
N inf{∥w − v∥2 ∶ v ∈ RI , rank(v(µ)) ≤ r̃µ, µ ∈ N}.

The main idea behind the HTF is to construct a hierarchy of matricizations and
to make use of the arising multilevel structure. It has been shown in [20, Lemma

17] that for t = t` ⊍ tr, t ⊆ N , we have span(w(t)) ⊆ span(w(tr) ⊗ w(t`)).3 This

result has the following consequence: If we consider w(t), w(t`) and w(tr) as defined
above and denote by Ut, Ut` and Utr any (column-wise) bases for the corresponding
column spaces, then the result ensures the existence of a so called transfer matrix
Bt ∈ Rrt`rtr×rt such that Ut = (Utr ⊗Ut`)Bt, where rt, rt` and rtr denote the ranks
of the corresponding matricizations. Obviously tr and t` provide a subdivision
of a mode t. If one recursively applies such a subdivision to vec(w) = UN , one
obtains a multilevel-type hierarchy. One continues until t`, tr become singletons.

3By span(A) we denote the linear span of the column vectors of a matrix A.
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The corresponding general decomposition is formulated in terms of a so called
dimension tree.

Definition 5.1 ([27, Def. 2.3]). A binary tree TN with each node represented by a
subset of N is called a dimension tree if the root is N , each leaf node is a singleton,
and each parent node is the disjoint union of its two children. We denote by L(TN )

the set of all leave nodes and by I(TN ) ∶= TN ∖L(TN) the set of inner nodes.

Now, we define those tensors that can exactly be represented in HTF, called
Hierarchical Tucker Tensor (HTT).

Definition 5.2. Let TN be a dimension tree and let r ∶= (rt)t∈TN ∈ NTN , rt ∈ N
be a family of non-negative integers. A tensor w ∈ RI , I = ⨉j∈N Ij, is called
Hierarchical Tucker Tensor (HTT) of rank r if there exist families

(i) U ∶= (Ut)t∈L(TN ) of matrices Ut ∈ RIt×rt , rank(Ut) ≤ rt (a nested frame
tree),

(ii) B ∶= (Bt)t∈I(TN ) of matrices (the transfer tensors),

such that vec(w) = UN and for each inner node t ∈ I(TN ) with children t`, tr it
holds that Ut = (Utr ⊗Ut`)Bt with Bt ∈ Rrt`rtr×rt .

In order to keep track of the dependencies, we will write w = (T w
N , r

w,Uw,Bw).

Remark 5.3.

(a) By Definition 5.2, we obtain a Tucker representation vec(w) = (U{N−1} ⊗
⋯⊗U{0}) vec(c) with vec(c) formed as a multilevel product of the transfer
tensors.

(b) For the numerical realization, it turns out that it is useful to consider dif-
ferent representation of tensors in terms of different matricizations. This
can be seen as different views on the tensor with the same data:
(i) The ‘standard’ view, i.e., Bt ∈ Rkt`ktr×kt ;
(ii) The ‘tensor view’, Bt ∈ Rkt×kt`×ktr , where Bt = B

({2,3})
t ;

(c) The storage of an HTT thus requires N matrices Uµ ∈ RIµ×kµ , µ ∈ N and
(N − 1) = #I(TN ) transfer tensors Bt, t ∈ I(TN ).

(d) From (i) it follows that rank(w(µ)) ≤ rµ.
(e) An HTT for a vector w ∈ RI is called HT-vector and for a matrix A ∈ RI×I

HT-matrix.

Computing with hierarchical tensors. We are now going to describe some of the
algebraic operations for HTT’s that are required for the numerical realization of an
adaptive wavelet method. Some issues are similar to existing software [27], some
are specific due to our wavelet discretization. Our numerical realization is described
in detail in [36], where also the source code is available.

Lemma 5.4 ([20]). Let v = (TN , r
v,Uv,Bv) and w = (TN , r

w,uw,Bw) be HTT’s
of order N w.r.t. the same dimension tree TN . Then, the sum reads v + w =

(TN , r
v + rw,Uv+w,Bv+w), where Uv+w

t = (Uv
t U

w
t ) ∈ RI

v
t ∪I

w
t ×(r

v
t +r

w
t ) and Bv+w

t ∈

R(r
v
t +r

w
t )×(r

v
t`
+rwt`)×(r

v
tr
+rwtr ) for t = t` ⊍ tr is given by

(Bv+w
t )i,j,k =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(Bv
t )i,j,k, 1 ≤ i ≤ rvt ,1 ≤ j ≤ r

v
t`
,1 ≤ k ≤ rvtr ,

(Bw
t )i,j,k, rvt < i ≤ rvt + r

w
t , r

v
t`
< j ≤ rvt` + r

w
t`
, rvtr < k ≤ r

v
tr + r

w
tr ,

0, otherwise,
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for t ∈ I(TN ) ∖N and

(Bv+w
N )1,j,k =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(Bv
N )1,j,k, 1 ≤ j ≤ rvt` ,1 ≤ k ≤ r

v
tr ,

(Bw
N )1,j,k, rvt` < j ≤ r

v
t`
+ rwt` , r

v
tr ≤ k < r

v
tr + r

w
tr ,

0, otherwise.

at the root node t = N .

It is particularly worth mentioning that the HTF of the sum of two HTF only
requires a reorganization of the data and no additional computational work. On
the other hand, however, we see that the rank of the sum is the sum of the ranks.
We will come back to that point later. Let us now consider the matrix-vector
multiplication.

Lemma 5.5 ([27]). Let A = (TN , r
A,UA,BA) ∈ RJ×I be a matrix HTT and

w = (TN , r
w,Uw,Bw) ∈ RI be a vector HTT w.r.t. the same dimension tree TN .

Then, the matrix-vector product reads Aw = (TN , r
Aw,UAw,BAw), where

● rAw
t = rAt r

w
t , t ∈ TN ;

● V
(i)
t ∈ RJt×It is chosen such that (UA

t )i = vec(V
(i)
t ) for t ∈ L(TN) (reinter-

pretation of the columns of the leaf bases as matrices);

● UAw
t = [V

(1)
t Uw

t , . . . , V
(rAt )
t Uw

t ] ∈ RJt×r
A
t r

w
t ;

● BAw
t = BA

t ⊗Bw
t , t ∈ I(TN).

Again, the computational work is almost negligible. Note again, that the rank
grows and is the product of the two original ranks. It should be noted that the
HT-matrix A has to be represented in the same hierarchical order as the HT-
vector w (i.e., w.r.t. the same dimension tree). This might require a conversion
of a given matrix into the HTF given by w, see Figure 3. If we can efficiently

1
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9

1

2

3

4

1
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4

1

2

3
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1
2
3

4
5
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7
8
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1
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3
1
2
3
1
2
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1
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1
2
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1
2
3
2
1
2
1
2
1

3

2

1

Figure 3. Conversion of a matrix. The left picture shows the
hierarchical order of the matrix blocks which have to be converted
into vectors, the right picture the hierarchical order of a vector
that is multiplied with the matrix.

realize a conversion from RJ×I to RJ ⋅I , where J ⋅ I ∶= ⨉j∈N (Jj × Ij), then we can
use a standard matrix-vector-multiplication for each j ∈ N . Such a transformation
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can be done by a reverse lexicographical ordering of the indices, i.e., applying the
vec-routine to a matrix-tensor.

Lemma 5.6. Let A = (TN , r
A,UA,BA) ∈ RI×I be a square HTT-matrix, then

DA = diag(A) ∈ RI is given as DA = (TN , r
A,UDA ,BA), where UDA

t ∈ RIt×r
A
t is

obtained from UA
t ∈ R(It×It)×r

A
t , t ∈ TN , by (UDA

t )i,k ∶= (UA
t )(i,i),k, k = 1, . . . , rAt ,

i ∈ It.

Lemma 5.7. Let AAA = ∑
m
k=1⊗µ∈N Ak,µ ∈ RK be a Kronecker tensor, then AAA =

(TN , r
AAA ,UAAA ,BAAA ), where

● UAAA
µ ∶= Ak,µ, k = 1, . . . ,m, µ ∈ L(TN ), rAAAµ ∶= k;

● for t ∈ I(TN ) ∖ {N}: BAAA
t ∈ Rm×m×m, rAAAt ∶=m and

(BAAA
t )i,j,` ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1, if i = j = `,

0, else;

● (BAAA
N )i,j,` = δj,`, B

AAA
N ∈ R1×k×k, rAAAN ∶= 1.

Remark 5.8. Since the Kronecker sum in Definition A.6 is a special case of a
Kronecker tensor, Lemma 5.7 also provides an HTF for Kronecker sums.

Truncation of Tensors. We have seen that vector-vector addition and matrix-vector
multiplication can be efficiently done for tensors in HTF. However, by Lemmata 5.4
and 5.5 the hierarchical rank grows with each addition or multiplication, so that
only a certain number of such operations can be done in a numerical (iterative)
scheme until the resulting HTTs get too large to be handled efficiently. Thus, a
truncation is required.

The basic idea is to apply a singular value decomposition (SVD) on the matri-

cizations w(t) of the tensor w and restrict these to the dominant singular values.
This can be realized without setting up w(t) explicitly. Since, by construction, the
columns of the mode frames Ut contain a basis for the column span of w(t) there

is a matrix Vt ∈ RI
(t)×rt such that w(t) = UtV

T
t . Only the left singular vectors of

the SVD of w(t) are thus needed. Thus, the symmetric singular value decomposi-
tion of w(t)(w(t))T = UtV

T
t VtU

T
t =∶ UtGtU

T
t yields the same result. The matrices

Gt ∶= V
T
t Vt ∈ Rrt×rt are called reduced Gramian. They are always of small size and

can be computed recursively within the tree structure. In [20, Lemma 4.6] it is
shown, that the reduced Gramians correspond to the accumulated transfer tensors
for orthogonal HTTs. This statement also holds for general HTTs, see also [27].

The truncation of an HTT can then be computed by the computation of the QR
decomposition Ut = QtRt for t ∈ L(Td) or (ŜTtlRtl ⊗ Ŝ

T
trRtr)Bt = QtRt for t ∈ I(Td).

Subsequently, the symmetric eigenvalue decomposition of RtGtR
T
t = StΣ

2STt is

computed and the truncated matrix is then given by Ut = QtŜt, t ∈ L(Td), or

Bt = QtŜt, t ∈ I(Td), where Ŝt is a restriction of St to the first rt columns. Finally,
we recall a well-known estimate for the truncation error.

Lemma 5.9. Let w = (TN , r,U,B) be an HTT and let w̃ = (TN , r̃, Ũ, B̃) be the

truncation of w such that rank(w̃(t)) = r̃t ≤ rt. Then, for It = {1, . . . , nt}, we have

∥w − w̃∥2 ≤
⎛

⎝

nt

∑
i=rt+1

σ2
i

⎞

⎠

1/2

≤
√

2d − 3 inf
v∈H(r̃)

∥w − v∥2 ,
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where H(r) ∶= {v = (TN , r,U,B) ∶ rank(v(t)) ≤ rt, t ∈ TN } and σi are the sigular

values of w(t) such that σi ≥ σj if i < j, i = 1, . . . , nt.

Together with the vector-vector and matrix-vector addition as well as the trun-
cation, the linear solver can be realized, [2]. The main difference is that after each
addition or multiplication a truncation has to be made in order to keep the hierar-
chical rank small, which is not always easy to realize, [27]. For the HTF a Matlab
implementation is available, [27]. We have developed an HT library in C++ in [36]
based on BLAS, [8, 14, 15, 28] and LAPACK [1] routines, which are efficiently ac-
cessed via the FLENS interface, [29, 30, 31]. The reason for our implementation is
that FLENS is the basis of the LAWA library (Library for Adaptive Wavelet Appli-
cations), [40]. The coupling of the proposed adaptive wavelet scheme with the HT
structure could thus be efficiently realized. All subsequent numerical experiments
have been performed with this software.

6. Numerical experiments

We report on numerical experiments, first (in order to describe some fundamental
mechanisms) for a simple CDO and then in a more realistic framework.

6.1. Encoding of defaults. We are given n assets and hence the state dimension
is N = 2n. Let j ∈ N and let j ∈ N ∶= {0,1}n be its binary representation, i.e.,
a binary vector (j1, . . . ,jn)

T of length n, where ji = 1 means that asset number
i is defaulted. For j, k ∈ N with binary representation j,k ∈ N and j∣k denoting
the bitwise XOR, the number of ones in j∣k corresponds to the number of assets
that change their state. This easy encoding is the reason why we used the labeling
N = {0, . . . ,N − 1}.

Once defaulted, always defaulted. For our numerical experiments, we assume for
simplicity that an asset that is defaulted, stays defaulted for all future times, it can-
not be reactivated (the theory and our implementation, however, is not restricted to
this case). This means that qj,k(t, y) = 0 if there exists an index 1 ≤ i ≤ n such that
ji = 1, ki = 0. Both in the usual and in the binary ordering this last statement means
qj,k(t, y) = 0 if j > k, which in turns means that the Q(t, y) ∶= (qj,k(t, y))j,k∈N is an

upper triangular matrix. Moreover, recall that qj,j(t, y) = −∑k∈N ,k>j q
j,k(t, y), so

that Q can be stored as a strict lower triangular matrix, i.e., Q = (qj,k)k>j ∈ RN×N .

Independent defaults. We will always assume that we have independent defaults.
If defaults are independent, the transition of asset i from one state to another is
independent of the state for all other assets as long as their states remain unchanged.
Before we are going to formalize this, the following example may be helpful for the
understanding.

Example 6.1. If a portfolio consists of 3 assets, asset 2 defaults when changing
from state 0 = (000)2 to state 2 = (010)2, from state 1 = (001)2 to state 3 =

(011)2, from state 4 = (100)2 to state 6 = (110)2 and from state 5 = (101)2 to
state 7 = (111)2. These are all transitions where only asset 2 defaults. When
independent defaults are assumed, it follows that q0,2 = q1,3 = q4,6 = q5,7. Note that
0∣2 = 1∣3 = 4∣6 = 5∣7 = (010)2.
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Let j, k ∈ N , then j∣k indicates a state change of asset i if the i-th component of
j∣k is one. Hence, if j1∣k1 = j2∣k2, then the same assets change their state. Since
the change 1→ 0 is not allowed, we obtain that

j1∣k1 = j2∣k2 ⇒ qj1,k1 = qj2,k2 .

Only one default at a time. If only one asset can default at a time, the transition
intensity qj,k is zero if j∣k has more than one “1”. On the other hand, if j∣k has
only one “1”, then j∣k must be a power of 2. Since qj,k(t, y) = 0 for j > k, it suffices
to consider the case k > j (qj,j is determined by the condition on the sum over all
intensities). For k > j being j∣k a power of 2 means that log2(k − j) ∈ N. In this
case, we have j∣k = 0∣(k∣j), so that for j, k ∈ N we have

qj,k(t, y) = {
q0,k∣j(t, y), if k > j and log2(k − j) ∈ N,
0, otherwise.

6.2. A model problem. The idea of our first numerical example is to showcase the
numerical manageability, where the focus is on the combination of the multiwavelet
components and the high dimensional Markov chain components. To this end, we
start with a simplified CDO:

● The macroeconomic process Y is one dimensional with parameters α and
β, that are constant in time. This implies that A(t) ≡ A and B(t) ≡ B.

● The interest rate r(t) ≡ r is constant in time and does not depend on the
macroeconomic process Y .

● The state dependent parameters qi,j(t, y) and cj(t, y) are constant in time
and do not depend on the macroeconomic process Y , i.e., hq(y) ≡ 1 and

hc(y) ≡ 1, hence qj,k(t, y) ≡ q̃j,k and cj(t, y) ≡ c̃j . This means that Q(t, y) ≡

Q = Q̃, where Q̃ = (q̃j,k)k>j;j,k∈N .

● There is no recovery and no final payments, i.e., aj,k(t, y) ≡ 0 for all j, k ∈ N
and aj(y) = 0 for j ∈ N .

● There is only one tranche covering the entire CDO portfolio.

This means that all involved matrices are time-independent. In particular, we
have Cj,k(t) ≡ γjk ((ψλ, ψµ)0;Ω)λ,µ∈J = γjkIJ . Moreover (Mq)λ,µ = (hqψλ, ψµ)0;Ω =

δλ,µ and D(t) ≡ D = (dj,k)j,k∈N . Next, we have by aj,k(t, y) ≡ 0 that bj(t) ≡ 0,
c̃j(t) ≡ c̃j , g1

λ = g
2
λ = (1, ψλ)0;Ω (= 0 for ∣λ∣ > 0) so that (4.3) simplifies to

(6.1) (IN ⊗ IJ )ẋ(t)+ [(IN ⊗ [A+ rIJ ])+ (D⊗ IJ )]x(t) = (−c̃)⊗ ((1, ψλ)0;Ω)λ∈J .

For later reference, recall that (4.2) in this case implies dk,k = −∑m∈N∖{k},m>k q̃
k,m.

In turns, this means that

D = Q̃ + diag(Q̃1N ), where 1N ∶= (1, . . . ,1)T ∈ RN .

Note that even though D is time-independent, the huge dimension requires storage
as an HT-matrix (in particular, it is impossible to store D directly). We use a stan-
dard implicit θ-scheme for the time-discretization of this Sylvester-type equation,
[42]. The Barlets-Steward algorithm [5], is a well-known method for solving such
Sylvester equations. It is based on a Schur decomposition. However, we cannot
use this method here, since, to the best of our knowledge, there is no algorithm for
the QR decomposition of HT-matrices available. Alternatively, an iterative scheme
(CG, GMRES or BiCGStab) may be used. We have used BiCGStab as D is (in gen-
eral) not symmetric. While generally GMRES yields faster convergence in terms
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of iteration numbers, it requires more computational steps and therefore, in the
context of HT-matrices, more truncations are needed, which is computationally ex-
pensive. For systems with small condition numbers, BiCGStab requires only a few
iterations, [41]. Using any iterative solver requires matrix-vector multiplications,
here of the type (IN ⊗A+D⊗ IJ )x, where x = x1⊗x2 is also a Kronecker product
of the appropriate dimension. Then, we obtain

(IN ⊗A +D⊗ IJ )(x1 ⊗ x2) = x1 ⊗Ax2 +Dx1 ⊗ x2,

which can be represented as a Kronecker product of an HT-matrix and a matrix.
For details of the implementation, we refer to [36].

6.2.1. Construction of the intensity matrix D. We describe the representation of
D into HTF in case of independent defaults and only one default at a time. Recall
that D = Q̃+diag(Q̃1N ) and Q̃ = (q̃j,k)k>j ∈ RN×N . Hence, we start by deriving a

Kronecker sum representation for Q̃.

Theorem 6.2. In case of independent defaults and one default at a time, the matrix
Q̃ ∈ RN×N can be written as a Kronecker sum (see Definition A.6 below)

(6.2) Q̃ =
n

⊕
k=1

(
0 q0,2n−k

0 0
) =

n

∑
k=1

{
k−1

⊗
`=1

I2×2 ⊗ (
0 q0,2n−k

0 0
)⊗

n

⊗
`=k+1

I2×2} ,

where I2×2 ∈ R2×2 denotes the identity matrix of corresponding size.

Proof. The k-th summand of the Kronecker sum on the right-hand side of (6.2)
reads

Q̃k ∶=
k−1

⊗
`=1

I2×2 ⊗ (
0 q0,2n−k

0 0
)⊗

n

⊗
`=k+1

I2×2.

It is readily seen that Q̃k is a matrix having the entries q0,n−k at the positions

(2n−k+1
(ν − 1) + µ, 2n−k+1

(ν − 1) + µ + 2n−k),

for ν = 1, . . . ,2k−1 and µ = 1, . . . ,2n−k, i.e., 2k−1 ⋅2n−k = 2n−1 entries. Note that 2n−1

is the number of all combinations with a state change of asset k. Since 2n−k+1(ν −
1) + µ ≠ 2n−k for all possible ν and µ, we obtain that j∣k has exactly one “1” at

position i = n − k. This, in turns, means that qj,k = q0,n−k. This shows that Q̃k

contains all transition intensities corresponding to asset k at the right positions.
It remains to show that the sum over all Q̃k does not cause overlapping indices.

Since ⊕k−1
`=1 I2×2 ∈ R2k−1×2k−1 , each Q̃k is a block matrix with blocks at different

positions. Thus ⊕n
k=1 Q̃k collects the transition intensities for all assets k. �

Having the Kronecker sum (6.2) at hand, the next step is to derive the HTF of D.

As we have seen in Lemma 5.7 and Remark 5.8, the HTF of Q̃ can easily be derived
from the Kronecker sum representation. Next, note that RN ∋ 1N = ⊗

n
k=1(1,1)

T ,

so that the HTF of Q̃1N can be obtained via Lemma 5.6 and the HTF of D by
Lemma 5.4. Finally, it is easily seen that c̃ =⊕

n
k=1(c̃k,0)

T so that the HTF of the
right-hand side is easily be derived.
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6.2.2. Results. We have used fictional data as marked data is generally not pub-
licly available for CDOs. The fictional CDO portfolio consists of n = 128 assets,
which is a reasonable size. The macroeconomic process is assumed to be one di-
mensional. This leads to a system of N = 2128 coupled partial differential equations.
The maturity is assumed to be T = 1 and the time interval is discretized into 20
time steps. For the Galerkin approximation, piecewise cubic L2-orthonormal Multi-
wavelets with Dirichlet boundary conditions. We have fixed the lowest and highest
level to j0 = 2 and J = 4. This turned out to be sufficient in this example due to
the smoothness of the right-hand side. For the θ-scheme, the parameter θ = 0.5 has
been chosen (Crank-Nicholson). To solve the linear system, BiCGStab has been
used. The stopping criterion of the linear solver has been set as a relative error of
the L2-norm of the residual to 10−13 and HTTs are truncated to a rank of 5.
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Figure 4. CDO portfolio value in a portfolio of 128 assets. First
state (no defaults, left) and state (all firms have defaulted, right).
Note the scaling of the vertical axis in the right figure.

In Figure 4, left, the portfolio value depending on the time t and the macroeco-
nomic state y of the CDO in the first stage, where no firm has defaulted, is shown.
Whenever a firm defaults, the Markov chain changes its state and the portfolio
value jumps to a lower value due to the immediate loss of all future continuous pay-
ments. To illustrate the jumps of the portfolio value, when a default has occurred,
the values of all states of a portfolio of 2 assets have been combined in Figure 5,
left. The last stage is used for error analysis, since here the portfolio value has to
be zero as all firms have defaulted. Figure 4 shows on the right the portfolio value
in the last state of this simulation. This can be interpreted as the relative error
arising from the Galerkin approximation with the L2-orthonormal multiwavelets
and the truncation of the HTTs after each addition or multiplication. It can be
observed, that the relative error of this computation is smaller than 10−13, which
corresponds to the stopping criterion of the linear solver. In each time step, the
BiCGStab algorithm took on average 54 iterations.

The computations were performed on a Dell XPS with Intel T9300 Dual Core
CPU and 3GB storage and took about 1 hour, the runtime for different portfolio
sizes is summarized in Figure 5, right. We observe a linear scaling with respect to
n, i.e., only a logarithmic scaling compared to the number of equations N = 2n.

6.3. A realistic scenario. The example presented in the previous section corre-
sponds to a simplified and idealized situation. As we will show now, the extension
to a realistic scenario (given sufficient data), is not too difficult. In fact:

● Observe, that time-dependent parameters do not affect the runtime of the
pricing as the condition number of the matrix is not affected, assuming the
parameters are sufficiently smooth in the time t.
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Figure 5. CDO portfolio value of all states in a portfolio of 2
assets (left) and runtime of the pricing of a CDO portfolio of N ∈

{2,4,8,16,32,64,128} assets.

● The matrices A(t) and D(t) need to be setup for any time instant tk. For
D(t), this only amounts constructing an HTF exactly as described in the
previous section. For the matrix A(t), we have to compute integrals of the
type (∇ψµ,B(t)∇ψλ)0;Ω and (α(t)T ∇ψµ, ψλ)0;Ω for any tk followed by a
transformation to HTF. All these operations can be performed efficiently.

● Space dependent parameters, however, will affect the condition of the linear
system and possibly will require the use of a preconditioner. The construc-
tion of such a preconditioner in HTF will thus be discussed in the following
subsection.

Furthermore, independent defaults are a very restrictive assumption. Other
HTFs of dependency structures have to be developed for each given dependency
structure. If no explicit HTF can be set up, the transition matrix can as well be
approximated using the so-called Black Box Algorithm, [3, 18, 36].

6.3.1. Preconditioning. One of the features of wavelet Galerkin schemes is the avail-
ability of asymptotically optimal preconditioners, see e.g. [45, Ch. 6]. This means
that the matrix AΛ(t) from Section 4 has a uniformly bounded condition number,
i.e., κ2(AΛ(t)) = O(1) as ∣Λ∣→∞. This, however, does not immediately imply that
AΛ(t) is well-conditioned. We propose to use a simple Jacobi-type preconditioner,
i.e.,

(6.3) DΛ(t) ∶= diag(AΛ(t))−1/2
= [(IN ⊗ [AΛ(t) + r(t)IΛ] +D(t)⊗Mq

Λ)
−1/2
λ,λ

]
λ∈Λ

One reason for this choice is the fact that the HTF of such a preconditioner can
efficiently be derived. Moreover, the numerical performance has been quite satis-
factory, at least in our experiments. The computation of the HTF of a diagonal
matrix is provided by Lemma 5.6. The sum in (6.3) can be transformed into HTF
by Lemma 5.4 so that we are left determining the HTF of the four matrices IN ,
DN and AΛ, MΛ. The first two ones are trivial or have been derived above and for
the second two ones we are using again the Black Box Algorithm. Finally, also the
power −1/2 of a tensor can be transformed into HTF by the Black Box Algorithm.

6.3.2. Computing CDO tranches. So far, only single tranche portfolios were con-
sidered. However, in practice, a CDO is usually sold in tranches such that the first
defaults only affect a certain tranche. Therefore, by construction, this is the riskiest
tranche, the so called equity tranche. As soon as this first tranche has defaulted
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completely, subsequent defaults begin to affect a second trance. Therefore, this sec-
ond tranche, called mezzanine tranche, is less risky than the first one. And finally, if
this second tranche also has defaulted, the last tranche, the so called senior tranche
is affected. Sometimes, these three tranches can be further split into sub-tranches.
To compute the price of a CDO tranche, the cash flows of (1.1a) have to be adapted
to the cash flows which affect the tranche under consideration. The construction
of these adapted parameters is described in the following.

Given a portfolio of n assets with nominal values π1, . . . , πn, the S tranches are
defined by their upper boundary bs, s = 1, . . . , S, given in percentages b0 = 0 <

b1 < ⋯ < bS−1 < bS = 1 of the total portfolio nominal Π ∶= ∑
n
i=1 πi. Let Lj be the

accumulated loss in state j ∈ N , i.e., Lj = ∑i∈D(j) πi, where

D(j) ∶= {i ∈ {1, . . . , n} ∣ ∃xk ∈ {0,1}, k = 1, . . . , n, xi = 1 ∶ j =
n

∑
k=1

xk2k−1
}

denotes the set of all defaulted firms in state j. Then, the cash flows are distributed
as follows:

● The amount of the state dependent continuous payments cj which is as-
signed to the s-th tranche, s = 1, . . . , S, in state j ∈ N can be computed as
the percentage of the nominal of the tranche divided by the accumulated
nominals of the assets not in default:

(6.4) c̃js(t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

c̃j(t)Π(bs−bs−1)
Π−Lj if Lj < Πbs−1

c̃j(t)Π(1−bs)−Lj
Π−Lj if Πbs−1 ≤ L

j < Πbs,

0 otherwise.

● The final payments ujT are distributed to the tranches in the same way as

the continuous payments c̃, i.e., (6.4) holds with c̃js(t) replaced by ujT,s, the
final payment of tranche number s.

● The recovery payments are paid out as a single payment to the tranche in
which the default occurred.

If several tranches are affected, the recovery is paid out proportional to
their nominals. This means

ãj,ks (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ãj,k(t) if Πbs−1 < L
j < Lk ≤ Πbs,

ãj,k(t)L
k−Πbs−1
Lk−Lj if Lj ≤ Πbs−1 < L

k ≤ Πbs,

ãj,k(t)Πbs−Πbs−1
Lk−Lj if Lj ≤ Πbs−1 < Πbs < L

k,

ãj,k(t)Πbs−Lj
Lk−Lj if Πbs−1 < L

j ≤ Πbs < L
k.

In this setting only recoveries are considered, when a default occurs. How-
ever, the model also allows for firms to be in default only temporarily. This
means, there can also be payments if Lk < Lj . These cases are omitted in
the following as they can be handled exactly as the cases where Lj < Lk.

The difficulty of computing the payoffs of the s-th tranche is that certain specific
states within the huge amount of states of the Markov chain have to be found.
Therefore, we define vectors 1<s , 1

=
s and 1>s , by

(1<s)j ∶= χ{Lj<Πbs−1}, (1=s)j ∶= χ{Πbs−1≤Lj<Πbs}, (1>s)j ∶= χ{Lj≥Πbs}, j ∈ N .

In order to explain the realization of some required operations, we introduce the
following short-hand nottaion for HTTs. Let w ∈ RK be a tensor with HTF w =
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(TN , r,U,B), then we abbreviate by H(w) its HTF without specifying the quanti-
ties involved in the HTF. For A ∈ RK×K and b ∈ RK, we indicate by H(A)H(u) =

H(b) that u ∈ RK is determined as the solution of the linear system Au = b
but only with numerical routines using the HTF-variants. Finally, we abbreviate
D(w) ∶=H(diag(w)) ∈ RK for w ∈ RK, where (diag(w))i,j ∶= δi,j wi, i ∈ K.

Now, denote L ∶= (Lj)j∈N . Then, we need to compute the reciprocal value of each

component of the vector R ∶= Π − L ∈ RN in HTF denoted by R(−1). This can be
achieved by solving the linear system D(H(R))x =H(1) for x. Then H(R(−1)) ∶= x
and

H(c̃s(t)) = D(H(c̃(t))D(H(R−1
))H(1<µ)Π(bs − bs−1)

+D(H(c̃(t))D(H(R−1
))D(H(1=µ))(Π(1 − bs)H(1) −H(L)).

We obtain a similar formula for the final payments (ujT,s)j∈N . The HTF of the

matrix Ãs(t) ∶= (ãj,ks (t))j,k∈N can be set up similarly. Therefore, the matrix

S ∶= (Lk − Lj)j,k∈N is required. The HTF of this matrix can be obtained by
H(S) = H(1 ⋅ 1T )D(H(L)) − D(H(L))H(1 ⋅ 1T ). As before, the HTF of the

matrix S(−1) containing the reciprocals of the entries of S can be found by solv-
ing D(S)x = H(1) for x and setting H(S(−1)) ∶= x. Defining finally A (v,w) ∶=

D(H(v))H((ãi,j(t))i,j∈N )D(H(w)), we obtain

H(Ãs(t)) = A (1=s ,1
=
s)

+D(A (1<s ,1
=
s))D(H(S(−1)

))(H(1 ⋅ 1T )(D(H(L)) −D(H(1))Πbs−1))

+D(A (1<s ,1
>
s))D(H(S(−1)

))(H(1 ⋅ 1T )(D(H(1))Π(bs − bs−1))

+D(A (1=s ,1
>
s))D(H(S(−1)

))(H(1 ⋅ 1T )(D(H(1))Πbs) −D(H(L))).

With these adapted payments, the value of a portfolio tranche can now be deter-
mined. A key point of this approach is the construction of the HTF of the vectors
1<s , 1

=
s and 1>s . This can be computed by

H(1<s) ∶= max{Πbs−1H(1) −H(L),0} (Πbs−1H(1) −H(L))
−1,

H(1>s) ∶= max{H(L) −ΠbsH(1),0} (H(L) −ΠbsH(1))−1,

H(1=s) ∶=H(1) −H(1<s) −H(1>s).

The component-wise maximum max{H(⋅),0} of any HT-vector can be determined
by the relation max{H(⋅),0} = 1

2
(H(⋅) + ∣H(⋅)∣). The absolute value ∣H(w)∣ can be

computed by the component-wise Newton iteration

H(w(n+1)
) =H(w(n)) −D((H(w(n)))−1

)D(H(w))H(w).

Note, that each iteration step requires the component-wise inversion of an HT-
vector, i.e., the solution of a linear system. Let ν be such that w(ν) is of the desired

accuracy, then ∣H(w)∣ ≈ H(w(ν)). Essentially, this corresponds to ∣x∣ =
√
x2, the

well-known Babylonian method, which converges quadratically for non-zero values.
Moreover, for vectors w(0) with positive entries, it always converges to the positive
solution.

Appendix A. The Kronecker Product

The Kronecker product is a well-known technique when dealing with high dimen-
sional problems, as it often allows the decomposition of a high dimensional problem
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into a product of problems of low dimension. The following facts can be found in
[39, 47].

Definition A.1. The Kronecker product A ⊗ B ∈ RmAmB×nAnB of two matri-
ces A ∈ RmA×nA and B ∈ RmB×nB is defined by (A ⊗ B)(µ1−1)mB+µ2,(ν1−1)nB+ν2 ∶=
Aµ1,ν1Bµ2,ν2 .

We note that the above definition and all subsequent properties can also be
extended to (infinite) countable index sets J .

Lemma A.2. Let A ∈ RmA×nA , B ∈ RmB×nB , C ∈ RmC×nC , D ∈ RmD×nD and ν ∈ R.
Then,

(1) (A⊗B)T = AT ⊗BT ,
(2) (A⊗B)−1 = A−1 ⊗B−1,
(3) (A⊗B)(C ⊗D) = AC ⊗BD, if nA =mC and nB =mD,
(4) A⊗ (B ⊗C) = (A⊗B)⊗C,
(5) A⊗ (B +C) = A⊗B +A⊗B and (B +C)⊗A = B ⊗A +C ⊗A,
(6) ν(A⊗B) = (νA)⊗B = A⊗ (νB),
(7) tr(A⊗B) = tr(A)tr(B),
(8) if mA = nA and mB = nB, then det(A⊗B) = (det(A))

nB (det(B))
nA ,

(9) rank(A⊗B) = rank(A)rank(B).

Definition A.3. Let A ∈ RmA×nA , then its vectorization is defined as vec(A) =

(AT⋅,1, . . . ,A
T
⋅,nA)

T , where A⋅,i, i ∈ {1, . . . , nA}, is the i-th column of the matrix A.

Lemma A.4 ([47, (2)]). Let A ∈ RmA×nA ,B ∈ RmB×nB ,C ∈ RmB×mA ,X ∈ RnB×nA ,
then (A⊗B)vec(X) = vec(C)⇔ BXAT = C.

Definition A.5. Let Ak,µ ∈ RKµ , µ ∈ N , k = 1, . . . ,m, m ∈ N. Then, we define the
Kronecker tensor as

AAA ∶=
m

∑
k=1

⊗
µ∈N

Ak,µ ∈ RK.

Definition A.6. Let A1, . . . ,Am be matrices Ak ∈ Rnk×nk . Then, the Kronecker
sum of A1, . . . ,Am is defined as

(A.1)
m

⊕
k=1

Ak ∶=
m

∑
k=1

{
k−1

⊗
`=1

In`×n` ⊗Ak ⊗
m

⊗
`=k+1

In`×n`} ∈ R(n1⋯nm)×(n1⋯nm).

Obviously, the Kronecker sum is a special case of the Kronecker tensor, where
Ak,µ = δk,`Ak + (1 − δk,`)In`×n`
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[21] W. Hackbusch and S. Kühn. A new scheme for the tensor representation. Journal of Fourier
Analysis and Applications, 15(5):706–722, 2009.

[22] N. Hilber, S. Kehtari, C. Schwab, and C. Winter. Wavelet finite element method for option

pricing in highdimensional diffusion market models. Research Report 01, ETH Zürich, 2010.
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