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Abstract. We use asymptotically optimal adaptive numerical methods (here

specifically a wavelet scheme) within the offline phase of the Reduced Ba-
sis Method (RBM). The resulting parameter-dependent discretizations do not

permit the standard RB “truth space”, but allow for error estimation of the
RB approximation with respect to the exact solution of the considered pa-

rameterized partial differential equation. The evaluation of the estimators is

also performed adaptively. This RBM with adaptive offline computations is
analyzed. We show that multiple selection of snapshots may occur and devise

strategies to avoid this. Numerical experiments for stationary and instationary

problems show potential and challenges of this approach.

1. Introduction

Reduced Basis Methods (RBMs) have nowadays become a widely accepted and
used tool for realtime and/or multi-query simulations of parameterized partial dif-
ferential equations (PPDEs). By using an offline-online decomposition, the main
idea is to use a high fidelity, detailed, but costly numerical solver offline to com-
pute approximations to the PPDEs for certain parameter values. The selection of
these parameters is done by an error estimator which is efficiently computable and
thus allows one to determine the ‘worst’ parameters out of a possible rich so-called
training set. For those ‘bad’ parameters, the high fidelity model is used in order
to determine approximations, so-called snapshots. These few snapshots form the
reduced basis which is then capable to produce approximations for any new param-
eter value extremely rapidly (online). The error estimator can also be used online
in order to certify this RB approximation. Both the variety of applications and the
amount of recent results in RBMs go well beyond the scope of such an introduction.

The success of the RBM relies on the assumption that the high fidelity model in
the offline phase is sufficiently accurate for all parameters. The same discretization
is used for all snapshots and all error estimators. This may have some possible
drawbacks: (1) If this high fidelity model is not accurate enough, also the RB-
approximation cannot be good. (2) The other extreme is that a sufficiently accurate
approximation for all possible parameters may require a high fidelity model whose
dimension is too large even for an offline phase. (3) The error estimate usually
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controls the difference to the high fidelity solution, not w.r.t. the exact solution of
the PPDE (with one recent exception in [25] to be discussed below).

On the other hand, there are adaptive numerical methods available that guar-
antee an approximation of the exact solution of a PDE within a preselected toler-
ance. Such methods can be based upon finite element or wavelet discretizations,
[6, 7, 18, 23]. We use such an adaptive method (we choose wavelets) for computing
both snapshots and error estimators in the offline phase. This offers some features
that we think are of interest, namely: (a) We use different discretizations for each
parameter allowing for a minimal amount of work for any chosen parameter. (b)
We can bound the RB error w.r.t. the exact solution of the PPDE.

Using adaptivity (or different discretizations) in the offline phase implies some
additional sophistication of the method, at least from the conceptual point of view.
The question arises under which circumstances such adaptivity might pay off. It
is known e.g. from [6] that adaptive methods show faster convergence rates if the
Besov regularity of the solution in a certain scale exceeds the Sobolev regularity.
For the offline RB setting this means that the regularity of the solution with respect
to the parameter is of crucial importance. If one single discretization is sufficient
for approximating the solution u(µ) well enough for all possible parameters µ, then
adaptivity seems not to make sense. On the other hand, if u(µ) significantly differs
w.r.t. µ, a joint discretization may be too fine. This is e.g. the case if u(µ) has
parameter-dependent local effects. Our numerical examples are guided by these
considerations.

The remainder of this paper is organized as follows. In Section 2, we review
the main facts of the ‘classical’ Reduced Basis Method. We set the framework
for PPDEs and collect those facts that are needed here. Section 3 is devoted to
the use of adaptive methods for the generation of the reduced basis in the offline
phase. At this point, we only require the availability of a certain adaptive solver
SOLVE and do not specify which specific method is used. We have used an Adap-
tive Wavelet Galerkin Method (AWGM). Since it is not absolutely necessary to
describe the precise adaptive method within the RB framework in Section 3, we
have collected a brief description of the AWGM in Appendix A. Finally, in Sec-
tion 4 we describe numerical experiments for two different examples, namely heat
conduction in a thermal block with several local heat sources and time-dependent
convection-diffusion-reaction using a space-time variational formulation.

2. Reduced Basis Methods (RBMs)

In order to highlight differences and challenges of using adaptively computed
basis functions within the Reduced Basis Method (RBM), it makes sense to briefly
review ‘standard’ RBMs.

2.1. Parameterized Partial Differential Equations (PPDEs). Let Ω ⊂ Rn
be a bounded domain on which we consider function spaces X = X (Ω), Y = Y(Ω)
arising from a variational formulation of a partial differential equation. Denoting by
D ⊂ RP the set of parameters, this means that we consider a differential operator
B : X × D → Y ′ resp. a bounded bilinear form b : X × Y × D → R, where
b(w, v;µ) := 〈B[w;µ], v〉Y′×Y for w ∈ X , v ∈ Y and µ ∈ D. In particular, we
assume the existence of constants γ(µ) ≤ γUB <∞ such that

(2.1) b(w, v;µ) ≤ γ(µ) ‖w‖X ‖v‖Y , w ∈ X , v ∈ Y.
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For a given g(µ) ∈ Y ′, the problem is then to find a u = u(µ) ∈ X such that
B[u(µ);µ] = g(µ) in Y ′, or, in variational form

(2.2) b(u(µ), v;µ) = f(v;µ) ∀ v ∈ Y,

where f(v;µ) := 〈g(µ), v〉Y′×Y . It is required that a numerical solver for (2.2) is
available, e.g. finite volume, finite element or wavelet methods.

We assume that (2.2) is well-posed for all µ ∈ D, which is equivalent to the so-
called Nečas condition on b(·, ·;µ), [17, 18], i.e. there exist inf-sup constants β(µ)
and a lower bound βLB such that

(2.3) β(µ) = inf
w∈X

sup
v∈Y

b(w, v;µ)

‖w‖X ‖v‖Y
= inf
w∈Y

sup
u∈X

b(w, v;µ)

‖w‖X ‖v‖Y
≥ βLB > 0

for all µ ∈ D.

Remark 2.1. (a) It is worth mentioning that (2.2) includes elliptic problems, where
e.g. X = Y = H1

0 (Ω) (or other boundary conditions), b(·, ·;µ) being coercive with
constant α(µ) > 0, as well as parabolic initial value problems in space-time for-
mulation, i.e. with the Bochner spaces X = W0(0, T ;V ) := {u ∈ L2(0, T ;V ) :
ut ∈ L2(0, T ;V ′), u(0) = 0 ∈ H}, Y = L2(0, T ;V ), so that X ( Y, and also time-
periodic problems, see also Section 4 below.
(b) Instead of a space-time formulation for a parabolic initial value problem, one
could also use a standard time-stepping scheme. There are corresponding RBMs
available for such problems [11, 12]. In principle, our subsequent findings can be
extended also to those settings, but in order to keep notations simple, we restrict
ourselves to (2.2).

2.2. Some Basics on ‘Classical’ RBMs. Any numerical scheme for the solution
of (2.2) involves a discretization of X , Y. In a standard RB setting these finite-
dimensional discrete spaces, the so-called truth spaces, are denoted by XN ⊂ X ,
YN ⊂ Y.a Then, the following Galerkin projection is considered:

(2.4) Find uN (µ) ∈ XN : b(uN (µ), v;µ) = f(v;µ) ∀ v ∈ YN .

Often, XN , YN are spanned by local basis functions such as finite elements or
wavelets and their dimension N = dim(XN ) = dim(YN )b is usually large, so
that solving (2.4) repeatedly for many different parameters would be too costly or
realtime computations would be impossible.

Remark 2.2 (Fixed discretization). We stress that in the standard RB setting, the
spaces XN , YN are a-priorily fixed and are the same for all parameters µ ∈ D.
Moreover, it is assumed that the discretization error ‖u(µ)−uN (µ)‖X is negligibly
small for all µ ∈ D. Thus, typical RBMs view uN (µ) as ‘truth’, which means
e.g. that all error estimates are typically w.r.t. uN (µ) and do not take u(µ) into
account. Just recently a first paper appeared introducing error bounds w.r.t. u(µ)
in a specific case, using techniques, however, that do not seem to be applicable in
a general framework, [25].

aWe always use calligraphic symbols for high-(even ∞)-dimensional spaces.
bFor simplicity, we assume that trial and test spaces are of the same dimension. Otherwise,

one would need to use a least squares approach.
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The idea behind (standard) RBMs is the construction of low-dimensional spaces
XNN ⊂ XN , Y NN ⊂ YN , N � N ,c from so-called snapshots, i.e. solutions of (2.4)
for selected parameters, i.e.

(2.5) XNN := span{uN (µi), i = 1, . . . , N} =: span{ζNi , i = 1, . . . , N},

and Y NN := span{ξNi , i = 1, . . . , N} is such that the N -dimensional reduced problem

Find uNN (µ) ∈ XNN : b(uNN (µ), v;µ) = f(v;µ) ∀ v ∈ Y NN
is stable. Stability in the discrete setting is ensured by the fulfillment of a discrete
inf-sup condition [1], i.e.,

(2.6) inf
wN∈XNN

sup
vN∈Y NN

b(wN , vN ;µ)

‖wN‖X ‖vN‖Y
≥ β̄ > 0,

with β̄ independent of N as N →∞. We abbreviate

(2.7) SN := {µ1, . . . , µN}

as the set of parameter values corresponding to the snapshots. The system {ζNi , i =
1, . . . , N} may arise by orthonormalization of the snapshots.

The inf-sup condition (2.3) gives rise to rigorous a posteriori error bounds, i.e.
N -independent quantities ∆NN (µ) with

(2.8) ‖eNN (µ)‖X := ‖uN (µ)− uNN (µ)‖X ≤ ∆NN (µ) =
‖rNN (·;µ)‖Y′

β(µ)
,

where rNN (·;µ) : YN → R is the residual with respect to the reduced solution, i.e.

rNN (v;µ) := f(v;µ)− b(uN (µ), v;µ), ∀ v ∈ YN .

The involved dual norms ‖rNN (·;µ)‖Y′ are computed with the help of the Riesz
representations prNN (µ) ∈ YN solving

(2.9)
(
prNN (µ), v

)
Y = rNN (v;µ) ∀ v ∈ YN .

The efficient N -independent computation of ‖rNN (·;µ)‖Y′ = ‖r̂NN (µ)‖Y relies on an
offline-online decomposition, see §2.4 below. It is easily seen that this error bound
is also effective. In fact, we have for any v ∈ YN that

(r̂NN (µ), v)Y = rNN (v;µ) = f(v;µ)− b(uNN (µ), v;µ) = b(uN (µ)− uNN (µ), v;µ)

= b(eNN (µ), v;µ).

Inserting v = r̂NN (µ) and using the boundedness (2.1) yields

‖r̂NN (µ)‖2Y = b(eNN (µ), r̂NN (µ);µ) ≤ γ(µ)‖eNN (µ)‖X ‖r̂NN (µ)‖Y ,

hence ‖r̂NN (µ)‖Y ≤ γ(µ)‖eNN (µ)‖X , so that the error estimator ∆NN (µ) =
‖r̂NN (µ)‖Y
β(µ)

and the error ‖eNN (µ)‖X are in fact equivalent:

(2.10) ‖eNN (µ)‖X ≤ ∆NN (µ) ≤ γ(µ)

β(µ)
‖eNN (µ)‖X .

cLow-dimensional spaces are denoted by usual (non calligraphic) symbols.
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Remark 2.3. We point out (for later reference in §3.4 below) that uNN (µ) = uN (µ)
for all µ ∈ SN , i.e., snapshots are reproduced by the standard RBM. In fact, we have
Petrov-Galerkin orthogonality, i.e., b(uN (µ) − uNN (µ), vN ;µ) = 0 for all vN ∈ Y NN .
Since uN (µ) ∈ XNN for µ ∈ SN , we have that eNN (µ) = uN (µ) − uNN (µ) ∈ XNN and
then (2.6) yields

β̄‖eNN (µ)‖X ≤ sup
vN∈Y NN

b(eNN (µ), vN ;µ)

‖vN‖Y
= 0,

i.e., uN (µ) = uNN (µ) for all µ ∈ SN . �

2.3. Basis Construction via the Greedy Algorithm. The choice of the RB
basis functions ζNi , i = 1, . . . , N , i.e. the selection of the corresponding parameter
values µ1, . . . , µN , is often done using a Greedy algorithm: Given µ1, . . . , µn, n < N ,
the next parameter value µn+1 is chosen as

µn+1 = arg max
µ∈Ξtrain

∆NN (µ),

where Ξtrain ⊂ D is a finite training set. The key point for the efficiency of this
approach is the fact that the greedy selection is done w.r.t. the N -independent
error estimator. Only for the chosen parameter values µ1, . . . , µN the (expensive)
truth has to be computed. The corresponding algorithm is displayed in Algorithm
1. Note that this procedure is also called weak Greedy training, in contrast to an
(inefficient) strong Greedy where the true error ‖eNN (µ)‖X is used in line 2. More
precisely, if ‖eNN (µ)‖X ≤ γ∆NN for some γ > 0, then Algorithm 1 is called weak
Greedy with parameter γ.

Algorithm 1 [XNN ] = Greedy[tol, Nmax, Ξtrain]

1: for N = 0, 1, . . . , Nmax do
2: Choose µ∗ := argmaxµ∈Ξtrain

∆NN (µ).

3: if ∆NN (µ∗) < tol then return
4: N ← N + 1.
5: Compute ‘truth’ snapshot uN (µ∗), update basis: XNN = XNN−1 ∪ {uN (µ∗)}.
6: end for

Remark 2.4. As an alternative to the Greedy algorithm one could determine µ∗ by
nonlinear optimization, [4, 24]. If feasible, this approach avoids a training set.

2.4. Offline-online Decomposition. A crucial assumption for the efficiency of
the RBM (in particular the efficient computation of uNN (µ) and of ∆NN (µ)) is that
the bilinear form and the right-hand side are affine in the parameter, i.e.

(2.11) b(u, v;µ) =

Qb∑
q=1

θ
(q)
b (µ) b(q)(u, v), f(v;µ) =

Qf∑
q=1

θ
(q)
f (µ) f (q)(v).

Techniques like the Empirical Interpolation Method (EIM) [2] can construct an
approximation of such an affine decomposition if assumption (2.11) is not met.
Affine forms as in (2.11) enable an efficient offline-online decomposition of the
calculations in the following sense: The parameter-independent components of the

linear system, namely B
(q)
N :=

[
b(q)(ζNi , ξ

N
j )
]
i,j=1,...,N

, q = 1, . . . , Qb, and F
(q)
N :=
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f (q)(ξNj )

]
j=1,...,N

, q = 1, . . . , Qf , can be precomputed (offline) so that the assembly

and solution of the reduced system BN (µ)uN (µ) = FN (µ) with

(2.12) BN (µ) :=

Qb∑
q=1

θ
(q)
b (µ) B(q), FN (µ) :=

Qf∑
q=1

θ
(q)
f (µ) F(q),

for a new parameter µ 6∈ SN then only involves N -dimensional matrix-vector
products and can be done online (with complexity independent of N ). Since
BN (µ) ∈ RN×N is usually densely populated, the linear system (2.12) for

uNN (µ) =

N∑
i=1

u
(i)
N (µ) ζNi , uN (µ) = [u

(i)
N (µ)]i=1,...,N ,

can be solved with O(N3) operations – independent of N � N .
Also the error estimate can be computed online-efficient (independent of N ).

This can again be achieved by using (2.11) as follows: The problems

Find pbq,iN ∈ Y
N :

(
pbq,iN , v

)
Y = −b(q)(ζNi , v) ∀ v ∈ YN ,(2.13a)

Find pfq
′

N ∈ Y
N :

(
pfq
′

N , v
)
Y = f (q′)(v) ∀ v ∈ YN ,(2.13b)

are solved offline (with complexity O(N )) for all q = 1, . . . , Qb, i = 1, . . . , N ,
q′ = 1, . . . , Qf , and the inner products[(

pfqN ,
pfq
′

N
)
Y

]Qf
q,q′=1

,
[(

pfqN ,
pbq
′,i
N
)
Y

]Qf ,Qb
q,q′=1

,
[(

pbq,iN ,
pbq
′,i′

N
)
Y

]Qb
q,q′=1

, i, i′ = 1, . . . , N,

are computed and stored. During the online phase, the parameter-dependent norm
‖rNN (·;µ)‖Y′ = ‖prNN (µ)‖Y with

prNN (µ) =

Qf∑
q=1

θ
(q)
f (µ) pfqN +

N∑
i=1

u
(i)
N (µ)

Qb∑
q=1

θ
(q)
b (µ)pbq,iN

can be computed using only N -dependent matrix-vector products and simple func-
tion evaluations for any reduced solution uNN (µ). These offline/online-techniques
are incorporated into the Greedy scheme in a straightforward manner.

3. Adaptive Reduced Basis Generation

In this section, we describe those issues that arise when avoiding fixed truth
spaces XN and YN and use adaptive methods instead. We assume that we have
the following routine SOLVE at our disposal. In Appendix A below, we detail one
possibility to realize SOLVE by an Adaptive Wavelet Galerkin Method (AWGM),
but one could also use other schemes with the above properties such as adaptive
finite element methods, see e.g. [18] for an overview.

SOLVE: [A, b, ε] 7→ xε: Approximation of x = A−1b with ‖x− xε‖X ≤ ε and in
linear complexity.
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3.1. Adaptive Snapshot Computation. We assume that we have an (adaptive)
numerical solver SOLVE at our disposal that computes so-called ε-exact approxi-
mations uε(µ) of u(µ) ∈ X , i.e. that constructs parameter-dependent discrete spaces
X εµ , Yεµ of (possibly) arbitrary finite (from an RB point of view ‘large’, but in a
certain sense minimal) dimension N (µ, ε) with

(3.1) uε(µ) ∈ X εµ : b(uε(µ), v;µ) = f(v;µ) ∀ v ∈ Yεµ
and

(3.2) ‖u(µ)− uε(µ)‖X ≤ ε.

The lack of common truth spaces for all parameters necessitates a re-interpreta-
tion of some RB ingredients which we will describe now. The reduced space is now
spanned by approximate snapshots computed during the offline training phase, i.e.

(3.3) Xε
N := span{uε(µi), i = 1, . . . , N} =: span{ζεi , i = 1, . . . , N},

and the reduced solution uεN (µ) ∈ Xε
N is the Petrov-Galerkin projection onto this

space (and the corresponding reduced inf-sup-stable test space Y εN ).
The adaptive setting now also allows us to consider the error with respect to the

exact solution in X , i.e.

(3.4) eεN (µ) := u(µ)− uεN (µ),

and not (only) the error w.r.t. a fixed and a priori given truth discretization. In
fact, using standard arguments as above yields

(3.5) ‖eεN (µ)‖X ≤ ∆ε
N (µ) =

‖rεN (·;µ)‖Y′
β(µ)

≤ γ(µ)

β(µ)
‖eεN (µ)‖X ,

with the residual defined as rεN (v;µ) := f(v;µ) − b(uεN (µ), v;µ) for v ∈ Y. This
means that ∆ε

N (µ) is a surrogate for the true error ‖eεN (µ)‖X . Note, however, that
the computation of ∆ε

N (µ) requires the solution of an infinite-dimensional problem,
namely the determination of the Riesz representation on Y.

On the other hand, in this setting, the truth spaces X εµ , Yεµ corresponding to
uε(µ) are not known a priori, so that neither the set of involved local basis functions
for representing uε(µ) (with parameter-dependent dimension N (µ, ε)) nor the Riesz
representation of the corresponding residual rεN (·;µ) can be determined without
computing uε(µ) itself.

Remark 3.1. The above formulated adaptive framework can also be interpreted as
using different finite element meshes for different µ ∈ D in the snapshot generation.

3.2. Adaptive Computation of the Error Estimator. Now we consider the
computation of the error estimator which consists of the constant β(µ) and the
dual norm of the residual. We aim at using adaptivity for approximating both. As
for the residual, the norm of rεN (·;µ) would require computations on the infinite-
dimensional space Y. Hence, it seems natural also to use an adaptive method
for computing the Riesz representions which are given in the infinite-dimensional
setting as

(3.6) Find prεN (µ) ∈ Y : (prεN (µ), v)Y = rεN (v;µ) ∀ v ∈ Y.

This is the reason why we need to approximate ∆ε
N by some ∆ε

N,δ, where we need
to choose the tolerance δ > 0 appropriately. We start by analyzing in which sense
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we need to approximate the residual or, slightly more general, an error estimator
which is not completely computable.

Lemma 3.2. Assume ∆N ≥ 0 is an equivalent bound for an error eN ≥ 0, i.e.
there are absolute constants 0 < ce ≤ Ce

<∞ with

(3.7) ceeN ≤ ∆N ≤ C
e
eN .

Let δ ∈ [0, 1) and ∆N,δ be an approximation of ∆N satisfying

(3.8) |∆N −∆N,δ| ≤ δ ·
{

∆N,δ, if ∆N > 0,
0, if ∆N = 0.

Then, the approximate error estimator ∆N,δ is equivalent to the error in the sense

(3.9)
ce

1 + δ
eN ≤ ∆N,δ ≤

C
e

1− δ
eN .

Proof. If ∆N = 0, then eN = 0 and ∆N = ∆N,δ = 0, thus (3.9) holds. Now let

∆N 6= 0, then (1− δ)∆N,δ ≤ ∆N ≤ C
e
eN , hence the upper inequality of (3.9). On

the other hand, we have (1 + δ)∆N,δ ≥ ∆N ≥ ceeN , the lower bound in (3.9). �

Remark 3.3. (a) We apply Lemma 3.2 to eN = ‖eεN (µ)‖X = ‖u(µ)− uεN (µ)‖X and

∆N = ∆ε
N (µ) =

‖prεN (µ)‖Y
β(µ) so that (3.8) means

(3.10)
∣∣‖prεN (µ)‖Y − ‖prεN,δ(µ)‖Y

∣∣ ≤ δ‖prεN,δ(µ)‖Y .

Obviously, (3.10) requires an adaptive method with a relative error bound.
(b) The right-hand side of the relative error criterion (3.8) only depends on the
online computable quantity ‖prεN,δ(µ)‖Y . Thus, (3.8) can be verified a posteriori for
all µ ∈ D.
(c) The explicit knowledge of the equivalence constants yields the equivalence

(3.11)
1

1 + δ
‖eεN (µ)‖X ≤ ∆ε

N,δ(µ) ≤ 1

1− δ
γ(µ)

β(µ)
‖eεN (µ)‖X ,

i.e., also the computable error ∆ε
N,δ(µ) can be used as a surrogate for the true

error ‖eεN (µ)‖X . Of course, we have to take into account that the amount of work
required to compute ∆ε

N,δ(µ) grows as δ → 0. Finally, in the Greedy training
phase, the equivalence of an error estimator is more important than its rigor, as the
main requirement on the surrogate ∆ε

N,δ(µ) is a correct choice of the next snapshot
parameter in terms of the maximization. �

We have seen that SOLVE provides us with an adaptive scheme for an absolute
error. It is not hard to see how to use it to derive a relative error tolerance.

Lemma 3.4. Let a > 0 and (bρ)ρ>0 be a sequence with |a− bρ| ≤ ρ. Moreover, let
δ ∈ (0, 1) be given. Then, choosing ρ∗(δ) < δ a2 yields |a− bρ∗(δ)| ≤ δ|bρ∗(δ)|.

Proof. Since δ < 1 we have |a − bρ∗(δ)| < a
2 , thus bρ∗(δ) ∈ (a2 ,

3a
2 ), in particular

bρ∗(δ) >
a
2 > 0. Then, |a− bρ∗(δ)| ≤ ρ∗(δ) < δ a2 < δ bρ∗(δ) = δ |bρ∗(δ)|, which proves

the claim. �

Note, however, that in the RB setting, a is usually unknown, so that ρ∗(δ) cannot
be determined a priorily.
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3.3. Adaptive Greedy Algorithm. Now we have all ingredients at hand to for-
mulate a fully adaptive version of the Greedy algorithm in Algorithm 2. The
adaptive computations take place in line 2 concerning the error estimator and in

line 5 for the snapshot. If Algorithm 2 terminates, we get ∆ε
N,δ(µ) < t̃ol for all

µ ∈ Ξtrain, hence

max
µ∈Ξtrain

‖eεN (µ)‖X ≤ (1 + δ)t̃ol.

Fixing some δ ∈ (0, 1), one has to use t̃ol = tol
1+δ in line 3 in order to reach a desired

tolerance tol for the true error on Ξtrain. (Note that as usual, the quality of Ξtrain

is important in order to control the error for all µ ∈ D.)

Algorithm 2 [Xε
N,δ] = AdaptGreedy[t̃ol, Nmax, ε, δ, Ξtrain]

1: for N = 0, 1, . . . , Nmax do
2: Choose µ∗ := argmaxµ∈Ξtrain

∆ε
N,δ(µ).

3: if ∆ε
N,δ(µ

∗) < t̃ol then return
4: N ← N + 1.
5: Compute snapshot uε(µ∗).
6: Update reduced basis: Xε

N,δ = Xε
N−1,δ ∪ {uε(µ∗)}.

7: end for

It seems natural that the tolerance ε > 0 bounds the reduction error eεN (µ) =
u(µ) − uεN (µ) from below in the sense that the error cannot be smaller than the
accuracy of the snapshot approximations. A result from [3] shows that this can
lead to a stalling of the Greedy training at a certain level. As usual, the benchmark
for the Greedy algorithm is the Kolmogorov n-width for some Σ ⊂ X , i.e.,

dn(Σ) := inf
dim(Xn)=n

sup
f∈Σ

min
g∈Xn

‖f − g‖X .

Theorem 3.5 ([3]). Let M(µ) := {u(µ) : µ ∈ D} be compact and suppose that
d0(M(µ)) ≤M , dn(M(µ)) ≤Mn−θ for some M , θ > 0. Then, the approximation

Xε
N,δ = AdaptGreedy[t̃ol, Nmax, ε, δ, D] satisfies

sup
σ∈M(µ)

min
g∈XεN,δ

‖σ − g‖X ≤ C max{Mn−θ, ε}, γ :=
1− δ
1 + δ

ce

C
e

with a constant C = C(θ, γ). �

This result tells us that the RB Greedy training converges quasi-optimally com-
pared to the Kolmogorov n-width until an ε-dependent error level is reached. Even
though this is a worst case result, we have observed in several numerical tests that
AdaptGreedy indeed reaches a terminal stage (a “plateau” related to Cε). This
happens when in the snapshot selection in line 2 a previously chosen parameter is
re-selected. As we will discuss below, this is not an effect of inaccurate numerical
computations, but inherently linked to the adaptive setting and can be improved
by appropriate snapshot accuracy strategies.
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3.4. (Non-)Reproduction of Snapshots. As we have pointed out in Remark
2.3, on a fixed truth discretization we have that ∆NN (µ) = 0 (up to numerical
influences) for all µ ∈ SN , i.e. the error bound vanishes on the set of snapshot
parameters, as all snapshots uN (µ) ∈ XN , µ ∈ SN , can be reconstructed exactly
from the basis functions and the Riesz representation for the error estimator is only
based upon XN , YN . As we will explain now this is not the case in the adaptive
framework. The reason is that uε(µ) ∈ X εµ but uεN (µ) 6∈ X εµ . In fact, we only have

(3.12) uεN (µ) ∈
⋃
µ̃∈SN

X εµ̃ =: X ε,SN ,

and similarly Y εN * Yεµ. Hence, the argument using Petrov-Galerkin orthogonality
as in Remark 2.3 fails. In fact, note that eεN (µ) = u(µ) − uεN (µ) is the error
w.r.t. the unknown solution u(µ), whereas eNN (µ) = uN (µ) − uNN (µ) involves the
‘truth’ solution, which is in principle computable (up to numerical precision). This
is important since in the ‘classical’ case uN (µ) is used as a snapshot, whereas
in the adaptive setting u(µ) cannot be computed and has to be replaced by an
approximation uε(µ). Hence, b(uε(µ) − uεN (µ), vεN ;µ) will in general not vanish!
This means that –as opposed to the ‘classical’ RBM– snapshots are not reproduced
in the adaptive setting. Reproduction of RB basis functions is not a consequence
of the fact that the RB spaces are spanned by those functions, but a consequence
of the Petrov-Galerkin orthogonality.

Of course, one could use X ε,SN defined in (3.12) as a joint common truth space.
However, if the discretizations for different µ are significantly different, this would
be by far too costly, in particular because already computed snapshots would have
to be updated to the new truth space in each iteration.

Hence, we face a reproduction error, which is now investigated a little further.

Proposition 3.6. Let b(·, ·;µ) : X × X → R be inf-sup stable on Xε
N × Y εN with

inf-sup constant βN (µ). Then for all µi ∈ SN , we have

(3.13) max {‖u(µi)− uεN (µi)‖X , ‖uε(µi)− uεN (µi)‖X } ≤
γ(µi)

βN (µi)
ε(µi),

where ε(µi) denotes the accuracy of snapshot uε(µi).

Proof. Let µi ∈ SN . As Xε
N ⊂ X , Y εN ⊂ Y, we have Petrov-Galerkin orthogonality

w.r.t. the exact solution, i.e. b(u(µ) − uεN (µ), vN ;µ) = 0 for all vN ∈ Y εN . This
implies the quasi-best approximation property ([18], cf. Céa’s Lemma) ‖u(µ) −
uεN (µ)‖X ≤ γ(µ)

βN (µ) infwN∈XεN ‖u(µ) − wN‖X . As snapshots uε(µi), µi ∈ SN are in

Xε
N , the first inequality follows with infwN∈XεN ‖u(µ) − wN‖X ≤ ε(µi). Moreover,

we have

βN (µi) ≤ inf
uN∈XεN

sup
vN∈Y εN

b(uN , vN ;µi)

‖uN‖X ‖vN‖Y
≤ sup
vN∈Y εN

b(uε(µi)− uεN (µi)± u(µi), vN ;µi)

‖uε(µi)− uεN (µi)‖X ‖vN‖Y

= sup
vN∈Y εN

b(uε(µi)− u(µi), vN ;µi)

‖uε(µi)− uεN (µi)‖X ‖vN‖Y
≤ γ(µi)ε(µi)

‖uε(µi)− uεN (µi)‖X
.

�

As a consequence, it may happen that µ∗ := arg maxµ̃∈Ξtrain
∆ε
N+1,δ(µ̃) ∈ SN if

ε γ(µ∗)
α(µ∗) ≥ maxµ̃∈Ξtrain\SN ∆ε

N+1,δ(µ̃). The first idea is to replace line 2 in Algorithm
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2 by

(3.14) Choose µ∗ := argmaxµ∈Ξtrain\SN ∆ε
N,δ(µ)

i.e. to remove already chosen snapshot parameters from the training set Ξtrain.
Theorem 3.5 suggests equal tolerances ε for all snapshots, as the error plateau is

determined by the worst case estimate. However, the parameter-dependent scaling

factor γ(µi)
βN (µi)

in Prop. 3.6 indicates that µ-dependent accuracies might be more

appropriate. Another idea is therefore to start with a common tolerance ε(µ) ≡ ε(0)

and to adjust this if a repeated selection of µ∗ ∈ SN signals that the bound in (3.13)
is too large. This leads us to the following snapshot refinement strategy:

(SR) Given ε(0), set for some pre-specified reduction factor %u ∈ (0, 1)

(3.15) ε(n+1) :=

{
%u · ε(n) if µ∗ ∈ Sn,
ε(n) else.

3.5. Adaptive Offline-online Decomposition. As in the ‘standard’ RBM, we
assume an affine decomposition of b(·, ·;µ) and f(·;µ) as in (2.11).

3.5.1. Computation of the RB Solution. It is readily seen that uεN (µ) can be com-
puted online-efficient like in the standard case. In fact, the matrix and right-hand

side terms B
(q)
ε,N :=

[
b(q)(uε(µi), u

ε(µj))
]
i,j=1,...,N

, q = 1, . . . , Qb, and F
(q)
ε,N :=[

f (q)(uε(µj))
]
j=1,...,N

can be computed offline. Then, Bε,N (µ) and Fε,N (µ) are

formed as in the classical case and the solution uε,N (µ) = [uε,nN (µ)]n=1,...,N of the
linear system corresponding to (2.12) yields the RB solution uεN (µ).

3.5.2. Error Estimator. In principle we could follow the same path as above and
solve the analogue to (2.13), i.e.,

Find pbq,n ∈ Y :
(
pbq,n, v

)
Y = −b(q)(ζεn, v) ∀ v ∈ Y,(3.16a)

Find pfq ∈ Y :
(

pfq, v
)
Y = f (q)(v) ∀ v ∈ Y.(3.16b)

Note that (3.16a) and (3.16b) are again variational problems on the infinite-dimensio-
nal space Y. Using corresponding adaptive schemes yield (for given tolerancs

δbq,n , δfq > 0) approximations pbq,nδ , pfqδ satisfying

‖pbq,n −pbq,nδ ‖Y < δbq,n , ‖ pfq − pfqδ ‖Y < δfq .

As in §2.4, we could compute the required inner products and would obtain an

approximation, say ∆ε,aff
N,δ (µ) of ∆ε

N (µ). However, we need to verify the relative

accuracy in (3.8). This can be done as follows. Denoting by δfq , δbq,n the accuracies

of pfqδ and pbq,nδ , respectively, it holds that

‖prN (µ)− praff
N,δ(µ)‖2Y =

∥∥∥∥Qf∑
q=1

θ
(q)
f (µ) [ pfq − pfqδ ] +

N∑
n=1

uε,nN (µ)

Qb∑
q=1

θ
(q)
b (µ) [pbq,n −pbq,nδ ]

∥∥∥∥2

Y

≤
Qf∑

q,q′=1

(
θ

(q)
f (µ) θ

(q′)
f (µ)

)+

δfq δfq′ + 2

N∑
n=1

Qf∑
q=1

Qb∑
q′=1

(
uε,nN (µ) θ

(q)
f (µ) θ

(q′)
b (µ)

)+

δfq δbq′,n

+

N∑
n,n′=1

Qb∑
q,q′=1

(
uε,nN (µ)uε,n

′

N (µ) θ
(q)
b (µ) θ

(q)
b (µ)

)+

δbq,n δbq′,n′ =: δr
aff(µ)2.
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If then δr
aff(µ) < ‖praff

N,δ(µ)‖Y , criterion (3.8) is fulfilled. Note that we can arrange

δr
aff(µ) > 0 to be as small as we wish by using sufficiently small tolerances δfq , δbq,n

— at the expense of possibly high numerical cost. It is however not possible to do
this completely offline, since δr

aff(µ) is µ-dependent. This means that we possibly
need to update the adaptive approximations during the online-phase. Thus, we
verify the validity of (3.8) a posteriori as follows: Since we can compute δr

aff(µ), we
check if δr

aff(µ) ≤ ρ‖praff
N,δ(µ)‖Y for a given ρ ∈ (0, 1). If not, we decrease the involved

tolerances. Due to the convergence of the used adaptive schemes, this approach in
fact converges and results in an approximate estimate ∆ε

N,δ(µ) which is equivalent to

‖eεN (µ)‖X as in (3.11). However, the above estimate of ‖prN (µ)−praff
N,δ(µ)‖Y in terms

of δr
aff(µ) is rather crude so that we expect non-optimal numerical performance — as

we shall also see in our numerical experiments below. Yet, if we store the adaptive
approximation (i.e., the ‘active’ wavelet coefficients) of each Riesz representation,
we only need to update those discretizations if the choice of µ requires additional
accuracy.

4. Numerical Experiments

4.1. Data for the Experiments. As numerical examples, we consider an elliptic
problem as well as a parabolic (time-periodic) one in space-time formulation. Both
settings are described below in detail.

4.1.1. Elliptic Equation. We consider heat conduction in a 2D thermal block Ω =
(0, 1)2 consisting of two subdomains Ω0 = [0.5, 1]× [0, 1], Ω1 = [0, 0.5]× [0, 1], with
different conductivities µ0 = 1, µ1 ∈ [0.01, 100], [19]. The heat influx is modeled

as a constant local source on different parts Ω̃i, i = 1, . . . , 9, of the domain, where
the current location depends on a (discrete) parameter µ2 ∈ {1, . . . , 9}, see Figure
1a. We impose homogeneous Dirichlet boundary conditions on ΓD := ∂Ω ∩ {x =
0 ∨ x = 1} and homogeneous Neumann conditions on ΓN := ∂Ω ∩ {y = 0 ∨ y = 1}.
The variational formulation then reads: Find u ∈ X := H1

D(Ω) = {v ∈ H1(Ω) : v =
0 on ΓD} such that∫

Ω0

∇u · ∇v + µ1

∫
Ω1

∇u · ∇v = (f(µ2), v)L2(Ω) ∀ v ∈ X , f(µ2) :=

9∑
i=1

δµ2,i1{Ω̃i}.

Ω1 Ω0
Ω̃1

Ω̃2

Ω̃3

Ω̃4

Ω̃5

Ω̃6

Ω̃7

Ω̃8

Ω̃9

ΓN

ΓD

ΓN

ΓD

(a) Thermal block with 9 local
sources.
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(b) Basis functions for µ1 = 0.01, µ2 = 8 (left)
and µ1 = 0.01, µ2 = 5 (right).

Figure 1. Domain of the thermal block example and selected
(non-orthogonalized) snapshots.
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We employ a multitree-based AWGM (see Appendix A below) with a tensor
basis consisting of bi-orthogonal B-spline wavelets from [9] of order dx = mx = 2d

and L2(0, 1)-orthonormal (multi-)wavelets as in [20] of order dy = my = 2, with
homogeneous boundary conditions. In Figure 1b, we display snapshots correspond-
ing to two different parameter values. It is obvious that an adaptive discretization
is useful in this example.

4.1.2. Parabolic Periodic Space-Time Equation. As a second example, we consider
the time-periodic convection-diffusion-reaction (CDR) equation

ut − uxx + µ1β(x)ux + µ2u = cos(2πt) on Ω = (0, 1),

u(t, 0) = u(t, 1) for all t ∈ [0, T ],

u(0, x) = u(T, x) = 0 on Ω,

with coefficient function β(x) = 0.5 − x. Setting V := H1
0 (Ω), H1

per(0, T ) :=

{v ∈ H1(0, T ) : v(0) = v(T )}, we define the spaces Y := L2(0, T ;V ) and X :=
L2(0, T ;V ) ∩H1

per(0, T ;V ′), i.e.,

X = {v ∈ L2(0, T ;V ) : vt ∈ L2(0, T ;V ′), v(0) = v(T ) in H},(4.1)

where X is equipped with the norm ‖v‖2X := ‖v‖2L2(0,T ;V ) + ‖vt‖2L2(0,T ;V ′), v ∈
X . Note that v(0), v(T ) are well-defined due to H1(0, T ) ⊂ C([0, T ]) and {v ∈
L2(0, T ;V ) : vt ∈ L2(0, T ;V ′)} ⊂ C(0, T ;H), e.g. [8]. We obtain the variational
problem:

Find u ∈ X : b(u, v;µ) = f(v) ∀ v ∈ Y, µ = (µ1, µ2),(4.2)

with forms b(·, ·;µ) : X × Y ×D → R, f(·) : Y → R given by

b(u, v;µ) :=

∫ T

0

[〈v(t), ut(t)〉V×V ′ + a(u(t), v(t);µ)]dt,(4.3)

f(v) :=
∫ T

0
cos(2πt)〈v(t), 1〉V×V ′dt and a(φ, η;µ) = (φx, ηx)L2(Ω)+µ1(βφx, η)L2(Ω)+

µ2(φ, η)L2(Ω).
As bases we use space-time tensor functions: In time, we use a collection of bi-

orthogonal B-spline wavelets on R of order dt = mt = 2, periodized onto [0, T ], [23].
The spatial basis is chosen as bi-orthogonal B-spline wavelets of order dx = mx = 2
with homogeneous boundary conditions from [9]. The test basis is a tensor product
of the above mentioned linear B-spline wavelets with 2 vanishing moments from [9]
with homogenous boundary conditions in the univariate spatial basis.

In this example, the snapshots have different temporal evolutions. Since time is a
‘normal’ variable in a space-time variational formulation, this means that different
discretizations for the snapshots in space-time pay off. This justifies adaptivity.

4.2. Strong Adaptive Greedy Training and Snapshot Strategies. We start
by investigating the snapshot selection in a Greedy training. In order to distinguish
the effects of approximative snapshots from those of approximative error estimators,
we first consider only strong Greedy methods, i.e. using the error eεN (µ) instead of
the estimate ∆ε

N (µ) (or its approximation ∆ε
N,δ(µ)) for the snapshot selection.

This is done by computing a sufficiently accurate approximation to each u(µ). We
compare a standard training with different snapshot accuracies, denoted by (SF),

dThe meaning of the parameters d and m are explained in Appendix A below.
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with the search (Sw/o) over the restricted parameter set as in (3.14) as well as the
snapshot refinement strategy (SR) from (3.15), using ρu = 0.1. The results for both
examples are shown in Figure 2. As we see, there are plateaus due to the multiple
selection of snapshots as described in §3.4 above and these plateaus appear later
for increased snapshot accuracies, as expected. Moreover, we see that the strategy
(Sw/o) can avoid the plateaus but does not admit the quasi-optimal convergence
rate of the Greedy training. The update (SR) proves very effective in the CDR
example while reducing the total computational cost in comparison to (SF) with
fixed small tolerance ε = 0.005.

0 2 4 6 8

10−0.5

100

100.5

N

m
ax
µ
∈

Ξ
t
r
a
in
‖e
ε N

(µ
)‖

(SF), ε ≡ 0.5

(Sw/o), ε ≡ 0.5

(SR), ε0 = 0.5

(SF), ε ≡ 0.005

(Sw/o), ε ≡ 0.005

(a) Thermal block

0 2 4 6 8 10 12

10−2

10−1

N

m
ax
µ
∈

Ξ
t
r
a
in
‖e
N

(µ
)‖

(SF), ε ≡ 0.5

(Sw/o), ε ≡ 0.5

(SR), ε0 = 0.5

(SF), ε ≡ 0.005

(Sw/o), ε ≡ 0.005

(b) Space-time convection-diffusion

Figure 2. Strong Greedy error in adaptive RB computation.

4.3. Weak Adaptive Greedy Training and Error Estimator Strategies.
To investigate the performance of the approximate error estimator ∆ε

N,δ(µ), we
compare the strong Greedy benchmark from §4.2 with weak Greedy trainings. Here,
we compute the error estimator ∆ε

N,δ(µ) directly, i.e. via adaptive solutions of (3.6)

for each parameter, denoted by (ED). Further, we use the affine decomposition from
§3.5.2, testing if δr

aff(µ) is small enough for each µ ∈ Ξtrain, called (EA). Note that
both estimators can be (and are) scaled by 1 + δ to be rigorous (we use δ = 0.99
to minimize computational cost). However, the direct computation is of course
not online efficient, while the affine version suffers from possibly large offline cost.
The results are shown in Figures 3, 4. We see in Fig. 3a, 4a that the effectivies
of (ED) are very good: less than 10 in the case of the CDR example and almost
exact for the thermal block. The affine bounds (EA) perform less well and show
a significantly weaker convergence (CDR example) or a large overestimation factor
(thermal block).
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Figure 3. Thermal block – Weak Greedy training, rigorous bounds.
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Figure 4. CDR example – Weak Greedy training, rigorous bounds.

That the poorer performance of (EA) is only an issue of the error bound sharp-
ness is shown in Figures 3b, 4b. Here, we compute the “true” maximum error
maxµ∈Ξtrain‖eεN (µ)‖ with respect to the reference solutions as an indicator of the
real RB basis quality. It is obvious that the constructed bases are very near the
benchmark of the strong Greedy scheme. This is equally true for the bases con-
structed using (EA) – here, even though the error estimate is worse, the same
snapshot parameters are selected (in case of the thermal block in a slightly different
order), so that the bases obtained from (ED) and (EA) do not or almost not differ.

Additionally, we consider for the second example two heuristic estimators that
are both based on the affine decomposition (3.16). For the first, denoted by (HF),
we fix the accuracies δbq,n , δfq > 0 in the adaptive computations for the Riesz
representations and combine them to an error indicator without checking if δr

aff(µ)
is below the desired tolerance, so that equivalence and rigor are not guaranteed.
The second, called (HR), mirrors the snapshot update strategy (SR): Starting with

δ
(0)
bq,n = δ

(0)
fq , we reduce both tolerances by factors %f , %b ∈ (0, 1) if a parameter is

re-chosen, i.e.

δ(n+1)

fq :=

{
%f · δ(n)

fq if µ∗ ∈ Sn,
δ(n)

fq else,
δ(n+1)

bq,n :=

{
%b · δ(n)

bq,n if µ∗ ∈ Sn,
δ(n)

bq,n else,

using %f = %b = 0.1. The results are displayed in Figure 5.
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Figure 5. CDR example – Weak Greedy training, heuristic bounds.

We see that the efficiency of the heuristic error estimators is close to that of
the rigorous and equivalent bound (ED) and significantly better than the certified
equivalent affine bound (EA), Fig. 5a. The heuristic indicator (HF) mirrors the
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errors in the different snapshot scenarios correctly: for a refined snapshot (SR) the
error indicator is smaller than in scenario (SF). However, the snapshot selection
is less optimal: the same parameter (µ = (0,−9)) is selected repeatedly, which is
reflected in the almost identical “true” error of both bases depicted in Fig. 5b. The
update (HR) is a remedy in this case: using a more exact error indicator ∆ε

N,δ(µ)
avoids the termination of the Greedy scheme as it selects a different parameter. The
so constructed basis is even comparable to the strong Greedy benchmark (which
includes only snapshots with original accuracy ε0).

N 1 2 3 4 5 6 7
(ED) (av. over Ξtrain) 175 183 200 251 509 684 1611
(EA) 2335 76 876 85 100 106 997 517 771 667 823 –
(HF) 41 127 59 705 62 648 74 459 74 529 76 082 –
(HR) 52 604 70 010 72 812 84 409 521 927 656 590 956 996

Table 1. Example 2 – Number of active wavelets for the compu-
tation of the Riesz representations prN,δ(µ) in scenario (SR).

It thus appears that the heuristic estimators can prove valid substitutes for the
certified equivalent estimators (ED), (EA). In Table 1, we compare the respective
offline computational work needed for the construction of ∆ε

N,δ(µ) in the CDR

example, measured by the (total) size of the (parameter-independent) local adap-
tive wavelet bases constructed during the computations of the Riesz representors.
For the parameter-dependent bases of the direct estimate (ED), we indicate the
average size over µ ∈ Ξtrain. The large discrepancy between the average parameter-
dependent representor size for (ED) and that for the union of the representor compo-
nents in the affine decompositions underlines the twofold problem that the estimate
δr
aff(µ) is rather crude and that additionally the representor accuracy is oriented on

the worst parameter case, so that the individual discretizations are extremely (and
overly) fine. This effectively leads to even offline infeasible cost for the equivalent
estimator (EA), while it is large but manageable for (HR).

Obviously, there is still room and need for improvements. We will investigate
this further in the near future.

Appendix A. Adaptive Wavelet Galerkin Methods (AWGMs)

To obtain an adaptive approximation for the snapshots uN (µ) as well as the
error estimators ∆NN (µ) we employ adaptive wavelet Galerkin methods (AWGMs)
that have first been introduced in [6, 7] for stationary problems and extended to
space-time variational parabolic problems in [21]. Here, we used multitree-based
versions developed in [13, 14, 15, 16], which we briefly review. Let A : X → Y ′ be
a linear differential (or integral) operator which may or may not depend on µ ∈ D.
Given some b ∈ Y ′, we look for x ∈ X such that

(A.1) Ax = b in Y ′.

A.1. Equivalent Bi-infinite Matrix-Vector Problem. Variational equations
of the form (A.1) can be reformulated as equivalent `2-problems by considering
Riesz bases of the Hilbert spaces X , Y. We call Υ := {γi : i ∈ N} ⊂ Z a Riesz basis
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for a separable Hilbert space Z if its linear span is dense in Z and if there exist
c,C > 0 such that

(A.2) c‖v‖2`2(N) ≤ ‖v‖
2
Z ≤ C‖v‖2`2(N) ∀v = (vi)i∈N ∈ `2(N), v =

∞∑
i=1

viγi.

For X , Y, we denote these Riesz wavelet bases by

(A.3) pΨX :=
{

pψXλ : λ ∈ pJ
}
⊂ X , qΨY :=

{
qψYλ : λ ∈ qJ

}
⊂ Y,

for countable index sets pJ , qJ . Such bases can be constructed by first building
univariate wavelet bases Ψ = {ψλ : λ ∈ J } for L2(0, 1) that are sufficiently smooth
to constitute (after a proper normalization) also Riesz bases for a whole range
of Sobolev spaces Hs(0, 1), s ∈ (−γ̃, γ), where γ, γ̃ > 0 depend on the choice of
the wavelets, cf. [23]. Typically the index takes the form λ = (j, k), where |λ| := j
denotes the level (e.g. | supp ψλ| ∼ 2−|λ|) and k the location in (0, 1), e.g. the center
of its support. We consider piecewise polynomial wavelets of order d (degree plus
one). Wavelets are oscillating (“small waves”) which is reflected by their degree m

of vanishing moments, i.e.,
∫ 1

0
xrψλ(x) dx = 0 for all |λ| > 0 and all 0 ≤ r ≤ m− 1,

where |λ| = 0 denotes the coarsest level, 0 = minλ∈J |λ|. Those functions are no
‘true’ wavelets but e.g. splines (scaling functions). The above mentioned constants

γ and γ̃ are determined by d, m and d̃, m̃, which are the corresponding parameters

of the dual wavelet basis ψ̃ = {ψ̃λ : λ ∈ J } with
∫ 1

0
ψλ(x) ψ̃λ(x) dx = δλ,λ̃ for all

λ, λ̃ ∈ J with |λ|, |λ̃| > 0.
Tensorization of the univariate functions then allows for appropriate bases in

higher dimensions as well as for a vast range of Bochner spaces arising in the
formulation of parabolic PDEs, see e.g. [21]. Constructions for more complicated
domains Ω are also available.

Then, we equivalently formulate (A.1) as the discrete, but infinite-dimensional
equation

(A.4) Find x ∈ `2( pJ ) : Ax = b, b ∈ `2( qJ ),

where A := 〈 qΨY ,A[ pΨX ]〉, b =
[
b( qψYλ )

]
λ∈ qJ and x are the coefficients of the

(unique) expansion x = x> pΨX .

A.2. Adaptive Methods and Nonlinear Approximation. In order to approx-
imately solve the infinite-dimensional equation (A.4), AWGMs iteratively construct

a sequence of nested finite index sets (pΛk)k ⊂ pJ , (qΛk)k ⊂ qJ , to which (A.4) is
restricted. Considering (just for ease of presentation) a linear self-adjoint opera-

tor A[·;µ] : X → X and pΨ = pΨX = qΨY , in each iteration the finite-dimensional
problem

(A.5) Find x
pΛk
∈ `2(pΛk) :

pΛk
A

pΛk
x

pΛk
= b

pΛk
, b

pΛk
∈ `2(pΛk),

is solved, where for Λ ⊂ J , vΛ := v|Λ denotes the restriction of v ∈ `2(J ) to `2(Λ)
and ΛAΛ := (AEΛ)|Λ with trivial embedding E : `2(Λ)→ `2(J ) the restriction of
A in both rows and columns.

The extension of Λk to Λk+1 is then based on the residual rk := b−AxΛk and
its norm ‖rk‖`2(J ) which forms an equivalent error estimator, since

(A.6) ‖A‖−1‖rk‖`2( pJ ) ≤ ‖x− x
pΛk
‖`2( pJ ) ≤ ‖A

−1‖‖rk‖`2( pJ ).
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Note that rk is supported on the infinite-dimensional set pJ even if xΛk is finitely
supported. Hence we have to use appropriate approximation methods for the resid-
ual evaluation in order to arrive at an implementable AGWM, see §A.3 below.

The next index set is obtained by a so-called bulk-chasing : Choose Λk+1 ⊃ Λk as
the smallest index set such that ‖rkΛk+1

‖`2(Λk+1) ≥ c‖rk‖`2(J ) for some 0 < c < 1.

This implies that the indices of the largest residual coefficients are added to Λk and
the adaptive index set is steered into the direction of the largest error.

Under appropriate assumptions on the exactness and computational cost of the
solution of (A.5), the approximation of rk and the implementation of the bulk
chasing process, a quasi-optimality result is known. In order to formulate it, we
introduce the nonlinear approximation class

(A.7) As :=
{
v ∈ `2( pJ ) :‖v‖As :=sup

ε>0
ε·
[

min{N ∈ N0 :‖v−vN ‖`2( pJ ) ≤ ε}
]s
<∞

}
with vN being the best N -term approximation on v, consisting of the N largest
coefficients in modulus of v.

Theorem A.1 (cf. [10, 22]). There exist implementable routines and parameters

such that the (approximate) computations of x
pΛk

, rk and pΛk+1 can be performed
with controllable tolerances and computational cost: If the AWGM is terminated
when ‖rk

pΛk
‖`2( pΛk) ≤ ε/‖A

−1‖, the output xε := x
pΛk

satisfies ‖x−xε‖`2( pJ ) ≤ ε. If,

moreover, x ∈ As for some s > 0, it holds for Nk := #pΛk that

(A.8) ‖x− xε‖`2( pJ ) ≤ C ‖x‖
1/s
As N

−s
k , # supp xε ≤ C ε−1/s‖x‖1/sAs .

If s is small enough, the computation of xε can be realized with a computational cost

that is bounded by an absolute multiple of ε−1/s‖x‖1/sAs , i.e., linear complexity. �

Theorem A.1 states that AWGMs are quasi-optimal in the sense that the optimal
convergence rate for best N -term approximations of x can be realized up to some
constant within linear computational complexity. These techniques can be extended
to problems that are neither symmetric nor positive-definite by considering the
normal equations A>Ax = A>b. This includes Petrov-Galerkin problems as they
arise e.g. in space-time formulations of parabolic PDEs, even if the wavelet bases
pΨX , qΨY for X and Y differ not only in scaling but are even obtained from different
sets of wavelets [5, 14].

A.3. Multitree-based Implementations. Several different implementations of
quasi-optimal AWGMs have been proposed. The algorithms in [6, 7] use a thresh-
olding step in order to retrieve the optimal computational complexity in Theorem
A.1, which in the case of [7] is combined with an inexact Richardson iteration on
the infinite-dimensional equation (A.4). In [10] a residual approximation method is
employed that does not require thresholding and can thus be proven to be more effi-
cient. However, like the afore-mentioned algorithms it relies on the application of a
so-called APPLY routine in order to approximate the arising infinite-dimensional

matrix-vector products Av ∈ `2( pJ ). Such routines are based on wavelet compres-
sion schemes, require certain characteristics of the wavelet bases as well as com-
pressibility results for the operator A and are in general quantitatively demanding.
For these reasons, we employ multitree-based matrix-vector product evaluations in
the solution of (A.5) and the approximation of the residual rk, as proposed in
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[15, 16]. That is, we restrict the index sets pΛk to multitrees in the sense of the
following definition.

Definition A.2. (i) For a univariate uniformly local, piecewise polynomial wavelet
basis Ψ = {ψλ : λ ∈ J }, a set Λ ⊂ J is called a tree if for any λ ∈ Λ with |λ| > 0
it holds that supp ψλ ⊂

⋃
µ∈Λ;|µ|=λ−1 supp ψµ. (ii) An index set Λ ∈ J belonging

to a tensor product wavelet basis Ψ = {ψλ : λ ∈ J } is called a multitree if for all
i ∈ {0, . . . , n} and all indices µj ∈ J (j) for j 6= i, the index set

(A.9) Λ(i) := {λi ∈ J (i) : (µ0, . . . , µi−1, λi, µi+1, . . . , µn) ∈ Λ} ⊂ J (i)

is either the empty set or a tree. �

The restriction to such index sets preserves the quasi-optimality of the AWGM
[15] in the constrained approximation class Asmtree defined w.r.t. ‖v‖Asmtree

:=

supε>0 ε ·
[

min{N ∈ N0 : ‖v − vN ‖`2( pJ ) ≤ ε ∧ supp vN is a multitree}
]s

and al-

lows a computationally very efficient evaluation of finite-dimensional matrix-vector
products:

Theorem A.3 ([16, Theorem 3.1]). Let A be a linear differential operator with

polynomial coefficients and let pΛ ⊂ pJ , qΛ ∈ qJ be multitrees. Then, for any v
pΛ ∈

`2(pΛ), the product
qΛA

pΛ v
pΛ can be computed in O(#pΛ + #qΛ) operations.

Moreover, we obtain the following approximation result for the residual:

Theorem A.4 ([15]). Let 0 < ω < 1, let A be a differential operator with polyno-
mial coefficients and let x ∈ Asmtree for some s > 0. Then, for all finite multitrees
pΛ ⊂ pJ and all w

pΛ ∈ `2(pΛ), there exists a multitree qΞ = qΞ(pΛ, ω) ⊂ qJ such that

for r := b
qΞ − qΞA

pΛ w
pΛ it holds that #qΞ ≤ C #pΛ + ‖r‖−1/s

`2( qJ )
and

(A.10) ‖(b−Aw
pΛ)− r‖`2( qJ ) ≤ ω‖r‖`2( qJ ).

Thus, the computational cost for the residual approximation is of the order

O(#pΛ+‖r‖−1/s

`2( qJ )
) if the right hand side coefficients b

qΞ can be computed efficiently.

Explicit constructions of qΞ are discussed in [15] and [14], where the multitree-based
AWGM is extended to the normal equations. In particular, such AWGM satisfies
the conditions posed for the routine SOLVE in Section 3. We used AWGM for all
adaptive computations (snapshots, Riesz representations, error estimates).
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