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A new proof of variance-optimal hedging in incomplete time

discrete markets Part I: Valuation Model
Börge Thiel1 in cooperation with Ulm University

This article presents a new proof for the existence and uniqueness of a variance-
optimal trading strategy to hedge square integrable claims in incomplete and
time discrete markets provided the underlying price process ful�lls the mean-
variance-tradeo� condition (nondegeneracy condition) of Martin Schweizer.
The variance-optimal hedging is described as the minimum problem of an
energy functional and the existence and uniqueness of the variance-optimal
trading strategy is done by the theorem of Lax-Milgram.

Introduction The fundamental theorem of asset pricing states, that if the market is
free of arbitrage, then there exists a martingale measure equivalent to the given physical
probability measure (see [18] and the literature therein). And if the market is complete,
i.e. the payo� of every claim can be replicated by a self-�nancing trading strategy of the
underlying risky securities and a risk free bank account, then the martingale measure is
also unique and the fair price of every claim is the expected value under the martingale
measure. As an example, the market underlying the option pricing model of Black and
Scholes is free of arbitrage and complete and therefore every claim can be priced uniquely.
Now completeness of a market is a very restrictive assumption and is not achieved in
almost all cases. So choosing an equivalent martingale measure is still possible but there
is no unique choice. Hence a change of measure does not solve the problem of hedging
and pricing derivatives in incomplete markets.

Based on the work of many authors, in 1994 M. Schäl published a solution of the
variance-optimale hedging problem in his article On quadratic cost criteria for opti-
on hedging (see [19] and the literature therein). His solution is based on the assumption
that the price process {S∗t ; t = 0, 1, . . . , T}2 de�ned on the �ltered probability space
(Ω, {Ft; t = 0, 1, . . . , T},F , P ) ful�lls the so called deterministic mean-variance-tradeo�.
This means that the standardized drift coe�cient µ∗t/σ

∗
t with µ∗t = E[∆S∗t |Ft−1] and

σ∗t = V ar[∆S∗t |Ft−1] of the underlying price process is bounded and deterministic, i.e.
there exists M > 0 with |µ∗t (ω)|/σ∗t (ω) ≤M and |µ∗t (ω)|/σ∗t (ω) is not a random variable
for all t = 0, 1, . . . , T .

In 1995 M. Schweizer published a complete solution of the variance-optimal hedging
problem in his article Variance-optimal hedging in discrete time (see [20]). His solution
is based on the nondegeneracy condition which nowadays is called the mean-variance-
tradeo� (see the de�nition below). The idea is as follows: Let c ∈ R be any real number
and {ϑt; t = 1, 2, . . . , T} any trading strategy, i.e. the amount of capital invested in
the risky security at time t − 1 is given by ϑt and let ϑt∆S

∗
t be square integrable for

1boerge-thiel@t-online.de
2The precise de�nition of the price process and the other variables will given belove.
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all t. Then the pro�t and loss c +
∑T

t=1 ϑt∆S
∗
t for a given c ∈ R and trading strategy

{ϑt; t = 1, 2, . . . , T} is a square integrable random variable. Let G(Θ) ⊆ L2(Ω,F , P ) be
the subspace of all such pro�ts and losses. M. Schweizer proves that G(Θ) is a closed
subspace of L2(Ω,F , P ), provided the price process ful�lls the mean-variance-tradeo�
respectively the nondegeneracy condition. The existence and uniqueness of the optimal
trading strategy, i.e. minimizing the variance of the pro�t and loss, follows by the projec-
tion theorem of Hilbert spaces. Furthermore he solves the projection equation (see [23])
and gives an explicit formula for the optimal trading strategy and the initial investment.
Finally he gives a counterexample for the case that the price process does not satisfy
the nondegeneracy condition.

In the last two decades many articles were published concerning the problem of variance-
optimal hedging in incomplete time discrete markets. These articles range from the
calculation of the variance-optimal trading strategy for speci�ed price processes to the
transfer of variance-optimal hedging to other markets such as the electricity market. See
for example [2, 3, 4, 5, 6, 9, 11, 13, 14, 15, 16, 17, 22] and the literature therein. A
very interesting current article is Best-estimate claims reserving in incomplete markets,
written by S. Happ, M. Merz and M.V. Wüthrich (see [17]), due to the connection with
article 75 of the solvency II directive [1], which states:

a) assets shall be valued at the amount for which they could be exchanged between
knowledgeable willing parties in an arm's length transaction;

b) liabilities shall be valued at the amount for which they could be translated, or settled,
between knowledgeable willing parties in an arm's length transaction.

To value any cash �ow based on article 75 of the directive the �rst step is that the
parties reach an agreement about the investment universe3. Then they can calculate
hedging portfolios and the pro�t and loss process for any given initial investment and
trading strategy. However the amount of pro�t of one party is equivalent to the amount
of loss of the counterparty and vice versa. Therefore both parties search for trading
strategies which minimize their own expected loss. This is only possible if they search
for trading strategies which minimizing the expected pro�t and loss of both parties
simultaneously. In the sequel we will show that the trade-o� between the two parties can
be characterized as a minimum problem of an energy functional and that the existence
and uniqueness of the minimum of the energy functional can be given by the theorem
of Lax-Milgram provided the underlying price process ful�lls the mean-variance-tradeo�
of Martin Schweizer.

The rest of the paper is organized as follows. The �rst paragraph describes the invest-
ment universe and the de�nition of the mean-variance-tradeo�. The second paragraph
describes the pro�t and loss process and mean-self-�nancing trading strategies as one
possible generalisation of self-�nancing trading strategies and formulates the optimisa-

3It is easy to see that for the investment universe it is enough to consider one risky asset and a bank
account.
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tion problem as a minimum problem of an energy functional. The next two paragraphs
present a proof for the existence and uniqueness of the minimum of the energy functio-
nal by the theorem of Lax-Milgram and an explicit calculation of the optimal trading
strategy and the initial investment. The last paragraph describes the calculation of the
shareholder value as an application of the valuation model and gives an interpretation
of the Economic Value Added (EVA).

The investment universe Let (Ω,F , P ) be a probability space with a �ltration
{Ft; t = 0, 1, . . . , T} and w.l.o.g. F0 = {∅,Ω}. We assume that all stochastic proces-
ses are square integrable and adapted to the �ltration.

In order to build portfolios for hedging claims there need to be given a risk free asset and
risky assets. The risk free asset is a predictable bank account process {At; t = 0, 1, . . . , T}
with A0 = 1 and At > 1 P-a.s. for all t. The risky assets are given by price processes
{Si,t; t = 0, 1, . . . , T} for i = 1, 2, . . . , n. One can combine the price processes to a n-
dimensional vector-valued process {(S1,t, S2,t, . . . , Sn,t)

′; t = 0, 1, 2, . . . , T}, where ′ is the
transposition of vectors. For every ω ∈ Ω the price Si,t(ω) ∈ R is called the market price
of the i-th risky asset at time t in state ω. A trading strategy is a predictable stochastic
processes {(ϑ1,t, ϑ2,t, . . . , ϑn,t, ηt); t = 1, 2, . . . , T} with ϑi,t, ηt ∈ L0(Ω,Ft−1, P ) for i =
1, 2, . . . , n and t = 1, 2, . . . , T . ϑi,t is the proportion of capital which is invested in the i-th
security at time t−1 and ηt is the proportion which is invested in the risk-free security at
the same time. We consider only trading strategies with ϑi,t∆Si,t, ηt∆At ∈ L2(Ω,F , P )
for all (i, t) ∈ {1, 2, . . . , n} × {1, 2, . . . , T}.

Let (ϑ1,t, ϑ2,t, . . . , ϑn,T , ηt) be a trading strategy with portfolio value Vt−1 = ϑ1,tS1,t−1 +
· · ·+ϑn,tSn,t−1 +ηtAt−1. Then ϑ1,tS1,t−1 + · · ·+ϑn,tSn,t−1 is the risky invested capital with
value ϑ1,tS1,t + · · ·+ϑn,tSn,t at time t. It is assumed that ϑ1,tS1,t−1 + · · ·+ϑn,tSn,t−1 6= 0.
Then ϑt = ϑ1,t+ϑ2,t+· · ·+ϑn,t 6= 0 and with αi,t = ϑi,t/ϑt one gets Vt−1 = ϑt(α1,tS1,t−1 +
· · · + αn,tSn,t−1) + ηtAt−1. The sum α1,tS1,t−1 + · · · + αn,tSn,t−1 is the price process of a
risky asset. Denoting this by {St; t = 0, 1, . . . , T} with ST = α1,TS1,T + · · · + αn,TSn,T
one gets Vt−1 = ϑtSt−1 + ηtAt−1. This shows that it is su�cient to build hedge portfolios
with only one risk free and one risky asset {St; t = 0, 1, 2, . . . , T}.

By discounting St with At one gets the discounted price process {S∗t ; t = 0, 1, 2, . . . , T}.
This process is square integrable because of At(ω) ≥ 1 for all (t, ω) ∈ {1, 2, . . . , T} × Ω.

De�nition 1 The price process {S∗t ; t = 0, 1, 2, . . . , T} satis�es the mean-variance-
tradeo� (MVT) if there is a real number δ ∈ [0, 1), so that

(E[∆S∗t |Ft−1](ω))2

E[(∆S∗t )
2|Ft−1](ω)

≤ δ

is valid for all (t, ω) ∈ {1, 2, . . . , T} × Ω.
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Substituting δ = C/(1 + C) for some C > 0 the de�nition of MVT is the same as
(µ∗t )

2 ≤ C(σ∗t )
2, where µ∗t = E[∆S∗t |Ft−1] is the conditional expectation and (σ∗t )

2 =
Var[∆S∗t |Ft−1] is the conditional variance of ∆S∗t . Adding to E[(∆S∗t )

2|Ft−1] the equation
(E[∆S∗t |Ft−1])2 − (E[∆S∗t |Ft−1])2 = 0 one gets the inequality E[(∆S∗t )

2|Ft−1] ≤ (1 +
C)(σ∗t )

2. In this paper we only consider price processes which satisfy P (σ∗t = 0) = 0
P-a.s. for t = 1, 2, . . . , T .

The pro�t and loss process Let {Z∗t ; t = 1, 2, . . . , T} be a square integrable discoun-
ted payment process or cash �ow. For a given trading strategy {(ϑt, ηt); t = 1, 2, . . . , T}
we can hedge the payments Z∗t as good as possible by the portfolio process {V ∗t ; t =
0, 1, 2, . . . , T} de�ned by

V ∗t =

{
ϑt+1S

∗
t + ηt+1 , t = 0, 1, . . . , T − 1

0 , t = T

with initial investment V ∗0 . At time t we have the value ϑtS
∗
t + ηt of the portfolio to pay

Z∗t and to buy the portfolio V ∗t for the next period. This gives the pro�t and loss

g∗t = ϑtS
∗
t + ηt − V ∗t − Z∗t

With the de�nitions ϑ0 = η0 = 0 and Z∗0 = 0 one has the pro�t and loss for the initial
investment g∗0 = −V ∗0 . And with ηt = V ∗t−1 − ϑtS∗t−1 we have

g∗0 = −V ∗0
g∗t = ϑt∆S

∗
t −∆V ∗t − Z∗t , t = 1, 2, . . . , T

The accumulated pro�t and loss process is given by

G∗0 = −V ∗0
G∗t = g∗0 + g∗1 + · · ·+ g∗t , t = 1, 2, . . . , T

and with g∗t and g
∗
0 de�ned as above we have

G∗t =
t∑

j=1

ϑj∆S
∗
j − V ∗0 −

t∑
j=1

∆V ∗j −
t∑

j=1

Z∗j

=
t∑

j=1

ϑj∆S
∗
j − V ∗t −

t∑
j=1

Z∗j

If {(ϑt, ηt); t = 1, 2, . . . , T} is a self-�nancing trading strategy then we have g∗t = 0 for
t = 1, 2, . . . , T and one gets

T∑
t=1

Z∗t =
T∑
t=1

ϑt∆S
∗
t
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On the left hand-side of the equation we have the square integrable random variable
H∗T ∈ L2(Ω,Ft, P ) and on the right hand-side we have a discrete stochastic integral of
the price process {S∗t ; t = 0, 1, . . . , T}. One can show that this equation is not true for
all square integrable random variable XT ∈ L2(Ω,FT , P ) (see [20] for a proof). This
means that the hedge of H∗T with a self-�nancing trading strategy is not always possible.
Therefore we consider mean-self-�nancing trading strategies. Such trading strategies
have the property

E[∆G∗t |Ft−1] = 0

for t = 1, 2, . . . , T (see [19]). For a mean-self-�nancing trading strategy the accumulated
pro�t and loss process is a martingale.

Let {ϑt; t = 1, 2, . . . , T} be an arbitrary trading strategy. Given the martingale property
of the accumulated pro�t and loss process one can proof that the portfolio process is
given by

V ∗t =
T∑

t=t+1

E
[
Z∗j − ϑj∆S∗j |Ft

]
, t = 0, 1, . . . , T

with the empty sum equal to 0. Now let E[G∗T ] = −V ∗0 be and de�ne the portfolio process
by the given formula. Then the accumulated pro�t and loss process is a martingale. This
proves that a mean-self-�nancing trading strategy is not uniquely de�ned by the mar-
tingale property of the accumulated pro�t and loss process. For the uniqueness we need
a second condition. The di�erence between a mean-self-�nancing trading strategy and
a self-�nancing trading strategy is minimal, if E[

∑T
t=1{∆G∗t}2] is minimized. Therefore

we consider the optimisation problem

E[
T∑
t=1

{∆G∗t}2]→ Min!

With the tower property of conditional expectations and the martingale property of the
accumulated pro�t and loss process we have E[∆G∗s∆G

∗
t ] = 0 for s 6= t P-a.s. So we can

replace the sum
∑T

t=1{∆G∗t}2 by the square (G∗T −G0)2. Therefore we have E[G∗T ] = G∗0
and we see that E[(G∗T −G∗0)2] is equal to the variance of the random variable G∗T −G∗0.
If we set ϑ0 = V ∗0 and H∗T =

∑T
t=1 Z

∗
t then the di�erence G∗T −G∗0 is

G∗T −G∗0 = ϑ0 +
T∑
t=1

ϑt∆S
∗
t −H∗T

We de�ne ϑ = (ϑ0, ϑ1, . . . , ϑT ) where ϑ0 ∈ R is the initial investment and {ϑt; t =
1, 2, . . . , T} is a trading strategy with ϑt∆S

∗
t ∈ L2(Ω,FT , P ) for t = 1, 2, . . . , T . We are

searching for such ϑ minimizing the term

E[(G∗T −G0)2] = E[(ϑ0 +
T∑
t=1

ϑt∆S
∗
t −H∗T )2]
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With the de�nition AT (ϑ) = ϑ0 +
∑T

t=1 ϑt∆S
∗
t this reads

E[(G∗T −G0)2] = E[(ϑ0 +
T∑
t=1

ϑt∆S
∗
t −H∗T )2]

= E[A2
T (ϑ)]− 2E[AT (ϑ)H∗T ] + E[(H∗T )2]

and because E[(H∗T )2] being a real number we can also search for ϑ that minimizes the
so called energy functional

J(ϑ) = E[A2
T (ϑ)]− 2E[AT (ϑ)H∗T ]

If ϑ∗ minimizes the energy functional J(ϑ) we call ϑ∗ the optimal mean-self-�nancing
trading strategy.

The minimum of the energy functional Energy functionals often occur in physics
and technology related to the solutions of partial di�erential equations, where the �rst
term of the energy functional is given by a continuous and coercive bilinear form and
the second term by a linear, continuous functional each de�ned on a suitable Hilbert
space. For an energy functional given by a continuous and coercive bilinear form and a
continuous linear functional the existence and uniqueness of a solution for the minimum
of the energy functional follows from the theorem of Lax-Milgram. Therefore the essential
step for solving the minimum problem of the above energy functional is to construct
a suitable Hilbert space so that a(ϕ, η) = E[AT (ϕ)AT (η)] is bilinear, continuous and
coercive and b(ϕ) = E[AT (ϕ)H∗T ] is linear and continuous.

Let Hσ be the space of all (T + 1)-tuples ϑ = (ϑ0, ϑ1, . . . , ϑT ) with the following proper-
ties:

1. ϑ0 ∈ R

2. {ϑt; t = 1, 2, . . . , T} is a predictable and adapted stochastic process with ϑt ∈
L0(Ω,Ft−1, P ) for t = 1, 2, . . . , T

3. For t = 1, 2, . . . , T the random variable ϑtσ
∗
t is square integrable, i.e. ϑtσ

∗
t ∈

L2(Ω,Ft−1, P ) where σ∗t is the square root of V ar[∆S
∗
t |Ft−1]

If α, β ∈ Hσ and if α0 = β0 and αt = βt P-a.s. for t = 1, 2, . . . , T then α, β are identi�ed
with each other. It is easy to see that Hσ is a linear space. Given α, β ∈ Hσ then

(α, β) = α0β0 +
T∑
j=1

E[αjβj(σ
∗
j )

2] (1)

de�nes a weighted inner product on Hσ
4. We write ‖ · ‖σ for the norm given by the

inner product on Hσ.

4We have assumed that P (σ∗
t = 0) = 0 P-f.s. for t = 1, 2, . . . , T . Without this assumption one must

also demand that ϑt is equal to 0 on the set {σ∗
t = 0}.
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Theorem 1 With the weighted inner product (1) de�ned as above, Hσ is a Hilbert space.

Proof: Let (ϑn)n≥1 be a Cauchy sequence inHσ. Then for every ε > 0 there exists n0 ∈ N
with ‖ϑn − ϑm‖σ ≤ ε for all n,m ≥ n0. By the de�nition of the weighted inner product
(ϑ0,n)n≥1 is a Cauchy sequence in R and is therefore convergent to an element ϑ0 ∈ R.
For every t = 1, 2, . . . , T we have that (ϑt,nσ

∗
t )n≥1 is a Cauchy sequence in L2(Ω,Ft−1, P )

and is therefore convergent to an element αt ∈ L2(Ω,Ft−1, P ) by the completeness of the
space L2(Ω,Ft−1, P ). With the de�nition ϑt = αt(σ

∗
t )
−1 we have ϑtσ

∗
t ∈ L2(Ω,Ft−1, P ),

ϑ = (ϑ0, ϑ1, . . . , ϑT ) ∈ Hσ and ϑn → ϑ for n→∞. o

Theorem 2 If the price process {S∗t ; t = 0, 1, 2, . . . , T} ful�lls the MVT then the map

AT : Hσ → L2(Ω,F , P )

ϑ 7→ ϑ0 +
T∑
j=1

ϑj∆S
∗
j

is linear, continuous and injective and AT (Hσ) is a closed subspace of L2(Ω,F , P )5.

Proof:

(1) The linearity of AT is clear. For ϑ ∈ Hσ we have

E[(ϑt∆S
∗
t )

2] = E[ϑ2
tE[(∆S∗t )

2|Ft−1]]

≤ (1 + C)E[ϑ2
t (σ
∗
t )

2]

by the predictability of ϑt and because the price process ful�lls the MVT. Moreover
ϑtσ

∗
t is square integrable by the de�nition of Hσ and this shows that AT (ϑ) is square

integrable. With the Minkonwski inequality and the de�nition of AT we get ‖AT (ϑ)‖L2 ≤
|ϑ0| +

∑T
j=1 ‖ϑj∆S∗j ‖L2 in the L2 norm. With the inequality shown above and because

of E[ϑ2
t (σ
∗
t )

2] ≤ ‖ϑ‖σ for t = 0, 1, . . . , T we have ‖AT (ϑ)‖L2 ≤
√

(T + 1)(1 + C)‖ϑ‖σ so
AT is continuous.

(2) To show that AT is injective let AT (ϑ) = 0. By the de�nition of AT (ϑ) it is easy
to see that AT (ϑ) = AT−1(ϑ) + ϑT∆S∗T . If we multiply with ∆S∗T − µ∗T and calculate
the conditional expectation, given FT−1, and use the assumption AT (ϑ) = 0 and the
FT−1-measurability of AT−1(ϑ) it follows that ϑT (σ∗T )2 = 0. Moreover σ∗T is P-a.s. not
equal 0, so we get ϑT = 0 P-f.s. Now we have AT−1(ϑ) = 0 and the result that ϑ = 0
P-a.s. follows by backward induction.

(3) Finally we will show that AT (Hσ) is a closed subspace of L2(Ω,F , P ). Let u ∈
AT (Hσ), so there exists a sequence un ∈ AT (Hσ) with ‖un − u‖L2 → 0 for n→∞. For
every un ∈ AT (Hσ) there exists a ϑn ∈ Hσ with AT (ϑn) = un. Moreover the sequence

5Remember that all equations are only true P-a.s.
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(ϑn)n≥1 is a Cauchy sequence in Hσ. To proof this, let ε > 0. Then there exists n0 ∈ N, so
that ‖un−um‖L2 ≤ ε is true for all n,m ≥ n0. Now we have |ϑ0,n−ϑ0,m| ≤ ε and ‖(ϑt,n−
ϑt,m)∆S∗t ‖L2 ≤ ε for t = 1, 2, . . . , T and with the inequality (σ∗t )

2 ≤ E[(∆S∗t )
2|Ft−1] we

see that (ϑn)n≥1 is a Cauchy sequence in Hσ. By the completeness of Hσ there exists
ϑ ∈ Hσ so that (ϑn)n≥1 is convergent to ϑ and because of the continuity of AT it follows
that AT (ϑ) = u. This proves that AT (Hσ) is closed in L2(Ω,F , P ). o

From the last theorem it follows that AT is a continuous, linear and bijective map from
the Banachspace Hσ to the Banachspace AT (Hσ). With the open mapping theorem
it follows that A−1

T is a linear and continuous map (see [8]), i.e. there exists k > 0
with the property ‖A−1

T (u)‖σ ≤ k‖u‖L2 for all u ∈ AT (Hσ). But this is the same as
‖AT (ϑ)‖L2 ≥ m‖ϑ‖σ for a real number m > 0 and all ϑ ∈ Hσ. Now letM ⊆ Hσ be a
nonempty, convex and closed subset of Hσ. Then the best least-square approximation
of x ∈ Hσ is given by u ∈ M so that ‖x − u‖σ = infv∈M ‖x − v‖σ is true. The best
least-square approximation de�nes a continuous map PM : Hσ →M with the property
‖PM(x)−PM(y)‖σ ≤ ‖x−y‖σ for all x, y ∈ Hσ. Let x ∈ Hσ then PM(x) = u also ful�lls
the variational inequality (x− u, v − u) ≤ 0 ∀v ∈M.

Theorem 3 IfM⊆ Hσ is a nonempty, convex and closed subset of Hσ and if the price
process ful�lls the MVT then for every square integrable and adapted payment process
{Z∗t ; t = 1, 2, . . . , T} there exists a unique ϑ∗ ∈ M with the property that J(ϑ∗) is the
minimum of the energy functional.

Proof: To proof the theorem we muss show that E[AT (ϕ)AT (η)] is a symmetric, bounded
and coercive bilinear form and E[AT (ϕ)H∗T ] is a bounded linear functional. With the
de�nition

a : Hσ ×Hσ → R
(ϕ, η) 7→ E[AT (ϕ)AT (η)]

we have a symmetric bilinear form. By the continuity of AT and the Cauchy-Schwarz
inequality a(ϕ, η) is bounded. And because A−1

T is continuous there exists a real number
m > 0 so that ‖AT (ϕ)‖L2 ≥ m‖ϕ‖σ for alle ϕ ∈ Hσ. This proves a(ϕ, ϕ) ≥ m2‖ϕ‖2

Hσ for
all ϕ ∈ Hσ, so a is coercive. Let

b : Hσ → R
ϕ 7→ E[AT (ϕ)H∗T ]

Then b(ϕ) is a continuous linear functional onHσ. This follows from the Cauchy-Schwarz
inequality and the continuity of AT and because H∗T =

∑T
t=1 Z

∗
t is a square integrable.

o

ForM = Hσ the minimum ϑ∗ ∈ Hσ is the solution of the equation a(ϑ∗, ϑ) = b(ϑ) ∀ϑ ∈
Hσ [7] and if we use the de�nition for AT (ϑ∗) we have

E
[(
ϑ∗0 +

T∑
t=1

ϑ∗t∆S
∗
t −H∗T

)
AT (ϑ)

]
= 0 ∀ϑ ∈ Hσ
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In his paper [20] M. Schweizer proves this equation directly using the projection theorem
of Hilbert spaces [23] by showing that GT (Θ) de�ned by

1. GT (Θ) ⊆ L2(Ω,F , P ),

2. u ∈ GT (Θ) if and only if there is a predictable stochastic process {ϑt; t =
1, 2, . . . , T} with ϑt∆S∗t square integrable for all t and u =

∑T
t=1 ϑt∆S

∗
t ,

is closed in L2(Ω,F , P ) if the price process ful�lls the MVT. With this approach the
structure of the problem remains hidden. That is the reason why the results of the
present paper are not only a new proof for the variance-optimal hedging in incomplete
and time discrete markets but also a slight generalization.

The existence and uniqueness for the minimum problem of the energy functional is often
proven using the Banach �xed point theorem. Since this also is an algorithm by which
the optimal trading strategy - at least in principle - can be calculated in a numerical
way, this will be formulated as a theorem. Previously we gave another discription for
a(ϕ, ψ) and b(ψ). By the theorem of Ritz there exists a linear and continuous map
A : Hσ → Hσ with a(ϕ, ψ) = (A(ϕ), ψ) for all ϕ, ψ ∈ Hσ. Furthermore there exists
f ∈ Hσ with b(ψ) = (f , ψ) for all ψ ∈ Hσ [7]. Hence the optimal trading strategy is the
solution of the equation

A(ϑ∗) = f (2)

which we solve in the next section [12]. With the de�nitions ∆S∗0 = 1, σ∗0 = 1 and
F−1 = {∅,Ω} one gets

b(ψ) = E[AT (ψ)H∗T ]

=
T∑
t=0

E[ψt∆S
∗
tH
∗
T ]

=
T∑
t=0

E[ψt
E[∆S∗tH

∗
T |Ft−1]

(σ∗t )
2

(σ∗t )
2]

= (ψ, f)

i.e.

f =

(
E[H∗T ],

E[∆S∗1H
∗
T |F0]

(σ∗1)2
, . . . ,

E[∆S∗TH
∗
T |FT−1]

(σ∗T )2

)

In the same way one showes

A(ϕ) =

(
E[AT (ϕ)],

E[∆S∗1AT (ϕ)|F0]

(σ∗1)2
, . . . ,

E[∆S∗TAT (ϕ)|FT−1]

(σ∗T )2

)

Now we proof the following theorem.
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Theorem 4 If M ⊆ Hσ is a nonempty, convex and closed subset of Hσ and the pri-
ce process ful�lls the MVT then the unique de�ned trading strategy ϑ∗ ∈ M given by
Theorem (3) is the �xpoint of the map Φ :M→M de�ned by

Φ(ϑ) = PM(λf − λA(ϑ) + ϑ) (3)

with λ > 0 arbitrary. Starting with any trading strategy ϑ ∈M and with a suitably chosen
λ > 0 one can calculate ϑ∗ at speci�ed accuracy by the �xpoint theorem of Banach.

Proof: By theorem (3) there exists an optimal trading strategy ϑ∗ which ful�lls the
inequality a(ϑ∗, ϑ− ϑ∗) ≥ b(ϑ− ϑ∗) for all ϑ ∈ M. With A and f de�ned as above we
have (A(ϑ∗), ϑ− ϑ∗) ≥ (f , ϑ− ϑ∗). Multiplication with an arbitrary real number λ > 0
and subtracting the term on the left hand-side to the right hand-side gives(

λf − λA(ϑ∗), ϑ− ϑ∗
)
≤ 0 ∀ϑ ∈M

Now expand the �rst slot in the inner product with ϑ∗ − ϑ∗ to get({
λf − λA(ϑ∗) + ϑ∗

}
− ϑ∗, ϑ− ϑ∗

)
≤ 0 ∀ϑ ∈M

This means ϑ∗ is the best least-square approximation to λf − λA(ϑ∗) + ϑ∗ ∈ Hσ and
this is the same as ϑ∗ = PM(λf − λA(ϑ∗) + ϑ∗). Therefore ϑ∗ is a �xpoint of Φ(ϑ). By
the continuity of the projection PM we have

‖Φ(ϕ)− Φ(η)‖2
Hσ ≤ ‖λf − λA(ϕ) + ϕ− (λf − λA(η) + η)‖2

Hσ
= ‖ϕ− η − λ(A(ϕ)−A(η))‖2

Hσ
= ‖ϕ− η‖2

Hσ − 2λ(ϕ− η,A(ϕ− η)) + λ2‖A(ϕ− η)‖2
Hσ

≤ (1− 2λm2 + λ2M2)‖ϕ− η‖2
Hσ

The last inequality is given by the continuity of ‖A(ϕ)‖Hσ ≤M‖ϕ‖Hσ and the coercivity
of a(ϕ, ψ), i.e. (A(ϕ), ϕ) ≥ m2‖ϕ‖2

Hσ . If we choose 0 < λ < 2m2

M2 we have (1 − 2λm2 +
λ2M2) < 1 and therefore Φ(ϑ) is a contraction mapping. o

If we know the projection map PM then we can start with an arbitrary ϑ0 ∈ M to
calculate the trading strategies ϑn+1 = PM(λf − λA(ϑn) + ϑn) for n = 0, 1, . . . itera-
tively. The number of iterations result from the desired accuracy of the approximation
concerning the optimal trading strategy ϑ∗. At �rst glance this looks like a very easy
possibility to calculate the optimal trading strategy. However we have to calculate A(ϑn)
and PM(λf − λA(ϑn) + ϑn) in every calculation step. And this can be massy because
of the complex structure of the map A and the projection map PM. Additionally the
convergence speed to the �xpoint can be very slow for small values of λ. So we must cal-
culate a lot of iterations to approximate the optimal trading strategy in order to achieve
acceptable accuracy. In the case of M = Hσ one can solve the equation (2) explicitly.
This will be done in the next section.
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Calculation of ϑ∗ in the case M = Hσ In this section we solve the equation

A(ϑ∗) = f

in the case of M = Hσ. To do this, let ϑ∗ = (ϑ∗0, ϑ
∗
1, . . . , ϑ

∗
T )′ be the optimal trading

strategy. With the de�nition of A(ϑ∗) and f one gets the following system of equations

E[AT (ϑ∗)] = E[H∗T ]
E[AT (ϑ∗)∆S∗1 |F0] = E[H∗T∆S∗1 |F0]

...
E[AT (ϑ∗)∆S∗T |FT−1] = E[H∗T∆S∗T |FT−1]

(4)

For ease of description we de�ne the following random variables

Mt =
T∏
j=t

(1− αj∆S∗j )

αt =
E[∆S∗tMt+1|Ft−1]

E[(∆S∗t )
2Mt+1|Ft−1]

, t = 1, 2, . . . , T

where the empty product is equal to one. We have to show that ∆S∗tMt+1 is square
integrable for t = 1, 2, . . . , T . With the MVT and the de�nition of MT and αT one gets
the equation

E[M2
T |FT−1] = E[MT |FT−1] ∈ [0, 1] (5)

Now we make the assumption E[M2
t+1|Ft] = E[Mt+1|Ft] ∈ [0, 1]. Then the equation and

restriction follows by backward induction for Mt. To proof this let

E[(∆S∗tMt+1)2|Ft−1] = E[(∆S∗t )
2M2

t+1|Ft−1]

= E[(∆S∗t )
2E[M2

t+1|Ft]|Ft−1]

≤ E[(∆S∗t )
2|Ft−1]

where we have used E[M2
t+1|Ft] ≤ 1. This proves that ∆S∗tMt+1 is square integrable und

therefore αt is well de�ned. Now we have

E[Mt∆S
∗
t |Ft−1] = E[(1− αt∆S∗t )∆S∗tMt+1|Ft−1]

= E[∆S∗tMt+1|Ft−1]− αtE[(∆S∗t )
2Mt+1|Ft−1] = 0

(6)

and6

E[M2
t |Ft−1] = E[(1− αt∆S∗t )2M2

t+1|Ft−1]

= E[(1− αt∆S∗t )2E[M2
t+1|Ft]|Ft−1]

= E[(1− αt∆S∗t )2E[Mt+1|Ft]|Ft−1]

= E[(1− αt∆S∗t )2Mt+1|Ft−1]

= E[(1− αt∆S∗t )Mt|Ft−1] = E[Mt|Ft−1]

6Therefore {M1S
∗
t ; t = 0, 1, . . . , T} is a martingale.
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The random variableM2
t is P-a.s. not negative, i.e. we have the inequality E[M2

t |Ft−1] =
E[Mt|Ft−1] ≥ 0. The other inequality results from

E[Mt|Ft−1] = E[(1− αt∆S∗t )Mt+1|Ft−1]

= E[Mt+1|Ft−1]− αtE[∆S∗tMt+1|Ft−1]

≤ 1− (E[∆S∗tMt+1|Ft−1])2

E[(∆S∗tMt+1)2|Ft−1]

=
Var[∆S∗tMt+1|Ft−1]

E[(∆S∗tMt+1)2|Ft−1]
≤ 1

Theorem 5 If the price process ful�lls the MVT then the solution of (4) is given for
every square integrable and adapted payment process {Z∗t ; t = 1, 2, . . . , T} by ϑ∗ =
(ϑ∗0, ϑ

∗
1, . . . , ϑ

∗
T ) with the t-th component

ϑ∗t =
E[H∗T∆S∗tMt+1|Ft−1]

E[(∆S∗t )
2Mt+1|Ft−1]

− At−1(ϑ∗)αt

and with At−1(ϑ∗) = ϑ∗0 +
∑t−1

j=1 ϑ
∗
j∆S

∗
j for t = 0, 1, . . . , T .

Proof: If one inserts AT (ϑ∗) = AT−1(ϑ∗) + ϑ∗T∆S∗T in the last equation of (4) and use
the FT−1-measurability of ϑ∗T we have

ϑ∗T =
E[H∗T∆S∗T |FT−1]

E[(∆S∗T )2|FT−1]
− AT−1(ϑ∗)αT

which is the desired formula for t = T . If we insert ϑ∗T in the equations

E[AT−1(ϑ∗)∆S∗t |Ft−1] + E[ϑ∗T∆S∗T∆S∗t |Ft−1] = E[H∗T∆S∗t |Ft−1]

for t = 1, 2, . . . , T − 1 we have

E[AT−1(ϑ∗)∆S∗t |Ft−1] + E
[
∆S∗t ∆S

∗
T

E[∆S∗TH
∗
T |FT−1]

E[(∆S∗T )2|FT−1]

∣∣∣Ft−1

]
− E[∆S∗t ∆S

∗
TAT−1(ϑ∗)αT |Ft−1]

= E[∆S∗tH
∗
T |Ft−1]

(7)
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Now we transform the second expectation to

E
[
∆S∗t ∆S

∗
T

E[∆S∗TH
∗
T |FT−1]

E[(∆S∗T )2|FT−1]

∣∣∣Ft−1

]
= E

[
E
[
∆S∗t ∆S

∗
T

E[∆S∗TH
∗
T |FT−1]

E[(∆S∗T )2|FT−1]

∣∣∣FT−1

]∣∣∣Ft−1

]
= E

[
∆S∗tE[∆S∗T |FT−1]

E[∆S∗TH
∗
T |FT−1]

E[(∆S∗T )2|FT−1]

∣∣∣Ft−1

]
= E

[
∆S∗tE[∆S∗TH

∗
T |FT−1]

E[∆S∗T |FT−1]

E[(∆S∗T )2|FT−1]

∣∣∣Ft−1

]
= E

[
∆S∗tE[∆S∗TH

∗
T |FT−1]αT

∣∣∣Ft−1

]
= E

[
E[∆S∗t ∆S

∗
TH

∗
TαT |FT−1]

∣∣∣Ft−1

]
= E[∆S∗t ∆S

∗
TH

∗
TαT |Ft−1]

and and by inserting in the last expectation in (7) we have

E[AT−1(ϑ∗)∆S∗t |Ft−1] + E[∆S∗t ∆S
∗
TH

∗
TαT |Ft−1]

− E[∆S∗t ∆S
∗
TAT−1(ϑ∗)αT |Ft−1]

= E[∆S∗tH
∗
T |Ft−1]

With the de�nition of MT we have

E[AT−1(ϑ∗)∆S∗tMT |Ft−1] = E[∆S∗tH
∗
TMT |Ft−1]

for t = 1, 2, . . . , T − 1. It is easy to see that the same is true for t = 0, i.e. we can
transform the equation E[AT (ϑ∗)] = E[H∗T ] to E[AT−1(ϑ∗)MT ] = E[H∗TMT ]. We see that
the �transformed� system of equations is reduced by one dimension. Now we assume by
backward induction, that the formula is true for ϑ∗k for k = t + 1, t + 2, . . . , T and that
the �reduced� system of equations is given by

E[At(ϑ
∗)Mt+1] = E[H∗TMt+1]

E[At(ϑ
∗)∆S∗1Mt+1|F0] = E[H∗T∆S∗1Mt+1|F0]

...
E[At(ϑ

∗)∆S∗tMt+1|Ft−1] = E[H∗T∆S∗tMt+1|Ft−1]

(8)

Then we use the decomposition At(ϑ
∗) = At−1(ϑ∗) + ϑ∗t∆S

∗
t and solve the equation for

ϑ∗t . With the same calculation as before and the de�nition of Mt = (1−αt∆S∗t )Mt+1 we
get the system of equations

E[At−1(ϑ∗)Mt] = E[H∗TMt]

E[At−1(ϑ∗)∆S∗1Mt|F0] = E[H∗T∆S∗1Mt|F0]

...

E[At−1(ϑ∗)∆S∗t−1Mt|Ft−2] = E[H∗T∆S∗t−1Mt|Ft−2]

for k = t. o
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Although the system of equations could be solved simply, the calculation of the com-
ponents of the trading strategy is rather complicated. Therefore a direct calculation of
the trading strategy is extremely di�cult or the calculation is only possible if one makes
restrictive assumptions (see for example [5]). To this extent it is necessary to develop
suitable methods for the numerical calculation of the trading strategy. This will be done
in a following article called calculation model.

Initial investment From theorem 5 we get for t = 0 the initial investment

V ∗0 = ϑ∗0 =
E[H∗TM1]

E[M1]
(9)

We have proved the equation E[M2
1 ] = E[M1] ∈ [0, 1] and this means that E[M1] = 0

if and only if M1 = 0 P-a.s. Although we cannot exclude the case M1 = 0 for the rest
of this article we will assume that M1 6= 0 P-a.s. In this case we have the change of
measure dQ = M1

E[M1]
dP . But it is possible that the probability of the event {M < 0} is

greater as null so this change of measure is in general a change to a signed measure (see
[21] for more information about signed measures).

With the optimal trading strategy ϑ∗ the portfolio process is given by

V ∗t =
T∑

t=t+1

E
[
Z∗j − ϑ∗j∆S∗j |Ft

]
, t = 0, 1, . . . , T (10)

where the empty sum is equal to zero by convention. We proof another representation
for the portfolio process. To do this we need the de�nition.

De�nition 2 Let {Z∗t ; t = 1, 2, . . . , T} be a payment process and ϑ ∈ Hσ. Then the
portfolio process (10) is nondegenerated if P (V ∗t = 0) = 0 P-a.s. for t = 0, 1, . . . , T − 1.

Now we proof the following representation for the undiscounted portfolio process:

Theorem 6 With the assumptions of theorem (3) let {Zt; t = 1, 2, . . . , T} be a payment
process and ϑ∗ ∈ Hσ the optimal trading strategy. If the portfolio process is nondegene-
rated then Vt has the representation

Vt = E

[
T∑

j=t+1

Zj∏j
i=t+1(1 + ki)

∣∣∣∣∣Ft
]
, t = 0, 1, . . . , T − 1

where {kt; t = 1, 2, . . . , T} is a predictable return process.
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Proof: The pro�t and loss process is a martingale, so we have for t = 0, 1, . . . , T − 1 the
equation

V ∗t + E[ϑ∗t+1∆S∗t+1|Ft] = E[Z∗t+1 + V ∗t+1|Ft]

and with the following de�nition of the return process

RP
t+1 =

ϑ∗t+1∆St+1 + ηt+1∆At+1

Vt
kt+1 = E[RP

t+1|Ft]

we have7

V ∗t
1 + kt+1

1 + rt+1

= E[Z∗t+1 + V ∗t+1|Ft]

Since 1+kt+1

1+rt+1
and At are Ft-measurable we get

Vt = E

[
Zt+1

1 + kt+1

+
Vt+1

1 + kt+1

∣∣∣∣Ft]
With VT = 0 we have

VT−1 = E

[
ZT

1 + kT

∣∣∣∣FT−1

]
We assume by backward induction that the portfolio value at time t+ 1 is given by

Vt+1 = E

[ T∑
j=t+2

Zj∏j
i=t+2(1 + ki)

∣∣∣∣Ft+1

]
Finally we insert Vt+1 in

Vt = E

[
Zt+1

(1 + kt+1)
+

Vt+1

(1 + kt+1)

∣∣∣∣Ft]
and �nd for the portfolio value at time t the equation

Vt = E

[ T∑
j=t+1

Zj∏j
i=t+1(1 + ki)

∣∣∣∣Ft]
which proves the theorem. o

7For this equation we need that the portfolio process to be nondegenerated.
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Theorem 7 For t = 1, 2, . . . , T the return process is given by

kt = rt + βt(E[RM
t |Ft−1]− rt)

βt =
Cov[RP

t , R
M
t |Ft−1]

Var[RM
t |Ft−1]

where {RM
t ; t = 1, 2, . . . , T} is the market return process.

Proof: It is easy to see that

ϑ∗t∆S
∗
t

V ∗t−1

=
1

1 + rt
(RP

t − rt)

With the de�nition RM
t = ∆St

St−1
we have the equation

∆S∗t
S∗t−1

=
1

1 + rt
(RM

t − rt)

With βt =
ϑ∗tS

∗
t−1

V ∗
t−1

we get

βt
1 + rt

(RM
t − rt) =

1

1 + rt
(RP

t − rt)

i.e.

RP
t = rt + βt(R

M
t − rt)

and if we calculate the conditional expectation, given Ft−1, we get the desired represen-
tation for kt

kt = rt + βt(E[RM
t |Ft−1]− rt)

To proof that

βt =
Cov[RP

t , R
M
t |Ft−1]

V ar[RM
t |Ft−1]

we only have to calculate the conditional covariance Cov[RP
t , R

M
t |Ft−1]. o

Applications As an application we calculate the shareholder value [10] of a �rm and
give an interpretation of the Economic Value Added (EVA). We assume that the invest-
ment universe is given and that the dividend payment process {Dt; t = 1, 2, . . . , T} of a
�rm is square integrable. Furthermore we assume that DT is the terminal value, i.e. DT

is the value after the liquidation of the �rm at time T .
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There exists an optimal trading strategy ϑ∗ ∈ Hσ such that the value of the �rm is given
by

Ut = E

[
T∑

j=t+1

Dj∏j
i=t+1(1 + ki)

∣∣∣∣∣Ft
]

for t = 0, 1, . . . , T −1. Recall that the shareholder value of the �rm UT at time T is equal
to zero as a result of the liquidation of the �rm. We call the predictable return process
{kt; t = 1, 2, . . . , T} the cost of capital process.

With the de�nition K(t) = (1 + k1)(1 + k2) · · · (1 + kt) we have the slightly simpler
formula

Ut = E

[
T∑

j=t+1

Dj
K(t)

K(j)

∣∣∣∣∣Ft
]
, t = 0, 1, . . . , T − 1

Let EKt for t = 0, 1, . . . , T be the shareholders' equity where EKT = 0 results from the
liquidation of the �rm at time T . We assume for every business year, running from t− 1
to t for t = 1, 2, . . . , T , that the change of the shareholders' equity is given by the clean
surplus relation

∆EKt = P&Lt −Dt

where P&Lt is the pro�t and loss of the t-th business year. If we insert the dividend
Dt = P&Lt − ∆EKt in the formula for the shareholder value and use the equation
EKT = 0 then we get

Ut = EKt +
T∑

j=t+1

E

[
(GuVj − kjEKj−1)

K(t)

K(j)

∣∣∣∣∣Ft
]

(11)

Now the market value added is de�ned by the equation MVAt = Ut − EKt. With
equation (11) we have the following representation:

MVAt =
1

1 + kt+1

E[(GuVt+1 − kt+1EKt)|Ft]

+
1

1 + kt+1

E

[
T∑

j=t+2

(GuVj − kjEKj−1)
K(t+ 1)

K(j)

∣∣∣∣∣Ft
]

=
1

1 + kt+1

E[(GuVt+1 − kt+1EKt)|Ft]

+
1

1 + kt+1

E

[
E

[ T∑
j=t+2

(GuVj − kjEKj−1)
K(t+ 1)

K(j)

∣∣∣∣Ft+1

]∣∣∣∣∣Ft
]

=
1

1 + kt+1

E[(GuVt+1 − kt+1EKt)|Ft] +
1

1 + kt+1

E[MVAt+1|Ft]

The second equation is true by the tower property of the conditional expectation and
the third equation by the de�nition of the market value added. After that divide both
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sides by K(t) and use the Ft-measurability of K(t+ 1) to get

E[∆M̃VAt+1|Ft] = −E[GuVt+1 − kt+1EKt|Ft]
K(t+ 1)

The tilde-symbol is used to indicate discounting with the cost of capital process. Based
on this equation we have the following interpretation of the economic value added. By
the EVA concept the management has the task to earn the cost of capital ktEKt−1 for
all business years t = 1, 2, . . . , T . The best thing the management can do is to ful�ll this
requirement in mean, i.e.

E[GuVt+1 − kt+1EKt|Ft] = 0

In this case the discounted market value added {M̃VAt; t = 1, 2, . . . , T} is a martingale,
i.e.

E[∆M̃VAt+1|Ft] = 0

and this equation can be transformed to

E[∆Ũt+1|Ft] = E[∆ẼKt+1|Ft]

or
E[Ũt+1|Ft] = Ũt + E[∆P̃&Lt+1|Ft]− E[D̃t+1|Ft]

If the management ful�lls the concept of EVA in the described meaning, then the share-
holder value is increased by the expected pro�t and loss and reduced by the expected
paid dividend.

Concluding remarks In this article we have developed a new proof of the twenty years
old theorem of Martin Schweizer for the variance-optimal hedging in incomplete time
discrete markets. New to this proof is the de�nition of the Hilbert space of all possible
trading strategies. Based on this space the hedging-problem is reduced to the minimum
problem of an energy functional. Moreover there exists an old and rich theory for the
solution of this minimum problem. If one accepts that the knowledgeable willing parties
of article 75 search for trading strategies which minimize the expected pro�t and loss of
both parties simultaneously, the presented valuation model is a nice, easy and complete
solution of this valuation problem. Still an open question is how the parties can calculate
the optimal trading strategy for a given investment universe and cash �ow. This will be
done in an article to be published called calculation model.
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