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Abstract

The decomposition of (life) insurance liabilities into risk factors associated with various sources of risk such as
equity, interest, or mortality is of great relevance in view of risk management and product design. Nevertheless,
although several decomposition approaches have been proposed, no systematic analysis is available. The present
paper closes this gap in literature by introducing properties for meaningful risk decompositions and demonstrat-
ing that existing approaches violate at least one of these properties. As an alternative, we propose a novel MRT
decomposition that relies on martingale representation and show that it satisfies all of the properties. We discuss
its calculation using techniques from stochastic and Malliavin calculus, and present a detailed example illustrating
its applicability.
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1 Introduction
Decomposing insurance liabilities into risk factors associated with different sources of risk is a problem
of great practical significance, particularly in the life sector, in view of risk management, product design,
and capital regulation. The primary contributions of this paper are twofold: On the one hand, we intro-
duce properties for a meaningful risk decomposition and show that decomposition methods proposed in
literature suffer shortcomings in view of these properties. On the other hand, we propose a novel de-
composition approach based on martingale representation, labeled MRT decomposition, and show that
it satisfies all the meaningful risk decomposition properties. We discuss the calculation of the MRT
decomposition in a relatively general life insurance setting with an arbitrary (finite) insurance portfolio,
where the homogeneous group of policyholders is modeled by a counting process and the (systematic)
sources of risk are driven by a finite-dimensional Brownian motion. We derive explicit formulas in terms
of Malliavin derivatives in the general case and in terms of derivatives of conditional expectations in the
Markov case. Moreover, we provide detailed example calculations in the context of a Variable Annuity
contract with a Guaranteed Minimum Death Benefit (GMDB).

Insurance liabilities are influenced by various sources of risk such as equity, interest, and insurance-
specific risk. The interaction of these sources can be quite complex, so that the individual risk contribu-
tions are typically neither obvious nor readily available. This is particularly the case in life insurance,
where the final payoffs – that commonly occur years or even decades after the origination of the con-
tracts – depend on the interaction of financial factors and guarantees, aggregate demographic trends,
and actual deaths observed in the portfolio of insured. Nonetheless, insurance companies need to assess
the relative importance of each source of risk in order to be able to devise adequate risk management
strategies. This may simply be a matter of identifying the most significant source of risk for focusing ef-
forts in case resources for risk management are limited (Hoem, 1988; Kling et al., 2014). Alternatively,
the decomposition may allow to gage the sufficiency of risk loadings to each source of risk, taking into
account its contribution to the aggregate risk (Christiansen, 2013; Niemeyer, 2015). Evaluating the im-
pact of different sources of risk is also important in view of product design, particularly when there are
different risk penalties for different sources of risk (Kochanski and Karnarski, 2011), and in view of
calculating solvency capital requirements. For instance, within Solvency II, individual risk contribu-
tions need to be quantified explicitly in partial internal models. Also, the decomposition may help to
adequately calibrate standard formulas used in regulatory frameworks.

Given the relevance of risk decompositions, it is not surprising that there are a number of papers
suggesting different methodologies for deriving risk factors, particularly in the life insurance context.
Bühlmann (1995), Fischer (2004), Martin and Tasche (2007), and Christiansen and Helwich (2008) use
a conditional expectation approach, which is the probabilistic foundation of the well-known variance
decomposition. Another approach also based on conditional expectations – the so-called Hoeffding
decomposition – is used, for example, by Rosen and Saunders (2010). The Taylor expansion method
(Christiansen, 2007) uses derivatives for decomposing functionals of different sources of risk. A com-
pletely different method, applied by Gatzert and Wesker (2014), Artinger (2010), and also implicitly
used in the Solvency II framework, “switches” off the randomness of all sources of risk which are mo-
mentarily not under consideration. Karabey et al. (2014) rely on several of these approaches (variance
decomposition, Hoeffding, and Taylor) and show how the contributions of different sources of risk can
be derived from the risk decompositions using the Euler allocation principle.1

In this paper, we commence by introducing a number of properties that define a meaningful risk

1Other papers also consider the decomposition of the total “risk” as defined based on a particular risk measure. However,
it is important to note that those approaches implicitly also make use of a decomposition in corresponding random variables,
and then apply risk allocation techniques (see also Section 5 and Karabey (2012)). Thus, we focus on the decomposition of
random variables (see property P1).
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decomposition for insurance liabilities.2 In particular, we posit that a decomposition should consider
the entire distribution of the company’s risk (P1), that resulting decompositions should be unique (P3)
and independent of the ordering of the risks (P4), that the different risk factors can be clearly attributed
to the different sources of risk (P2), that the risk factors are invariant to changes in the scale of the
sources of risk (P5), and, finally, that the decomposition should aggregate to the (normalized) entire
risk (P6). However, it turns out that when benchmarking the decomposition approaches proposed in
literature with this list of desirable properties, for each method at least one of the properties fails to
hold.

This leads us to propose our alternative MRT decomposition. We show that this approach satisfies
each property P1 to P6, and furthermore that the risk factor associated with unsystematic mortality risk
vanishes as the portfolio size increases – whereas the systematic risk factors approach a non-zero limit.
We provide explicit formulas for the decomposition, assuming a general definition of the payoff of the
insurance contract entailing discrete as well as continuous survival and death benefits, by relying on the
Clark-Ocone formula (in the general case) and Itô’s lemma for diffusion processes (in the Markov case).

Our detailed numerical example relies on an affine specification of the interest and the mortality
rates following Cox et al. (1985) and Dahl and Møller (2006), respectively, and a geometric Brownian
motion for the underlying Variable Annuity account. We decompose the total liabilities associated with
a return-of-premium GMDB – which presents a very common product in the U.S. market – into four
sources of risk: equity risk, interest rate risk, systematic mortality risk, and unsystematic mortality
risk. Our calculations show that for an unhedged exposure, equity risk is by far the most dominant
risk, particularly when considering moderately sized insurance portfolios. More advanced examples for
Guaranteed Annuity Options and Guaranteed Minimum Income Benefits within Variable Annuities that
also consider the impact of hedging are considered in a companion paper (Schilling, 2015).

From a technical perspective, the derivation of our MRT decomposition is closely related to quadratic
hedging approaches for life insurance liabilities under a martingale measure (Barbarin, 2008; Biagini
et al., 2012, 2013; Biagini and Schreiber, 2013; Møller, 2001; Dahl and Møller, 2006; Dahl et al., 2008;
Norberg, 2013), with the conceptual difference that we operate under the physical measure since we
are interested in risk assessments. We rely on this analogy in our derivations, but we also present some
new results in this direction such as the decomposition of arbitrary insurance payoffs within our general
setting and the integration with the Clark-Ocone formula from Malliavin calculus.

The remainder of the paper is organized as follows. Section 2 presents the properties that define
a meaningful risk decomposition and analyzes whether conventional approaches from literature satisfy
these properties. Section 3 lays out the considered life insurance modeling framework and introduces our
MRT decomposition within this framework. Properties and the calculation of the MRT decomposition
are discussed in Section 4. Section 5 describes and analyzes our Variable Annuity example. Finally,
Section 6 concludes.

2 Meaningful risk decompositions

2.1 Definition of meaningful risk decompositions
As outlined in the Introduction, the primary concern of this paper is decomposing a (life) insurer’s total
risk – which we suppose is given via the (normalized) loss random variable L, E[L] = 0 – into different
risk factors. More precisely, we assume there are k sources of risk, where Zi = (Zi(t))0≤t≤T ∗ denotes
the i-th source of risk and Z = (Z1, . . . , Zk). We assume that the loss variable L is σ(Z)-measurable,

2Fischer (2004) also provides a list of desirable properties for a reasonable decomposition method. However, he focuses
on a decomposition of life insurance liabilities into financial risk and unsystematic mortality risk, where a number of these
properties are trivial or irrelevant (e.g., because of independence of the sources of risk).

3



and we consider decomposition methodologies that assign each source of risk a corresponding risk
factor.

While several papers in the actuarial literature propose a variety of decomposition methods, thus
far there has been no systematic assessment and comparison among these different approaches. In
what follows, we introduce a list of properties we argue a meaningful risk decomposition should satisfy
(equalities between random variables are in the almost sure sense):

P1 Randomness

Individual risk factors are given by random variables R1, R2, . . . , Rk, where random variable Ri

corresponds to risk factor i ∈ {1, 2, . . . , k}. We introduce the relation ↔ for a decomposition
methodology and write (L,Z1, . . . , Zk)↔ (R1, R2, . . . , Rk) to indicate that the loss L depending
on (Z1, . . . , Zk) corresponds to the decomposition (R1, R2, . . . , Rk).

P2 Attribution

Ri represents the risk factor related to risk i. Formally, we require that whenever the loss L is
σ(Zi)-measurable and Zi is independent of (Z1, . . . , Zi−1, Zi+1, . . . , Zk), then Rj = 0 for all
j 6= i.

P3 Uniqueness

The decomposition methodology yields a unique decomposition. Formally, we require that
(L,Z1, . . . , Zk) ↔ (R1, R2, . . . , Rk) and (L,Z1, . . . , Zk) ↔ (R̃1, R̃2, . . . , R̃k) implies Ri = R̃i,
i ∈ {1, 2, . . . , k}.

P4 Order invariance

The decomposition is invariant to the order of the risks 1, 2, . . . , k. Formally, consider a permu-
tation π : {1, 2, . . . , k} → {1, 2, . . . , k} and assume (L,Z1, . . . , Zk) ↔ (R1, R2, . . . , Rk). Then
we require:

(L,Zπ(1), . . . , Zπ(k))↔ (Rπ(1), Rπ(2), . . . , Rπ(k)).

P5 Scale invariance

The decomposition is invariant to changes in the scale of the sources of risk. For-
mally, assume (L,Z1, . . . , Zk) ↔ (R1, R2, . . . , Rk), and let Z̃i(t) := fi(Zi(t)) for all
i = 1, . . . , k, 0 ≤ t ≤ T ∗, where, for each i, fi : R → R is a smooth, invertible function. If
(L, Z̃1, . . . , Z̃k)↔ (R̃1, R̃2, . . . , R̃k), then we require that Ri = R̃i for all i ∈ {1, . . . , k}.

P6 Aggregation

The decomposition aggregates to the total risk faced by the company. Formally, we require that
for each loss L and risks Z with (L,Z1, . . . , Zk) ↔ (R1, R2, . . . , Rk), there exists a function
A(L,Z) : Rk → R such that

L = A(L,Z)(R1, R2, . . . , Rk).

P6∗ Additive aggregation

A special case of P6 is an additive aggregation function, i.e. the case where L is given as the sum
of the individual risk factors:

L =
k∑
i=1

Ri.
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Note that the relation↔ will be a function if P3 is satisfied. Furthermore, if additionally P6 holds and
the function A(L,Z) does not depend on L (as is e.g. the case under P6∗), then ↔ is injective in L for
fixed Z since

(R1, . . . , Rk) = (R̃1, . . . , R̃k)⇒ L = AZ(R1, . . . , Rk) = AZ(R̃1, . . . , R̃k) = L̃.

The scale invariance property (P5) is necessary that the risk factors are quantitatively comparable even
if they are related to different loss variables. An additive decomposition (P6*) is desirable for multiple
reasons. For instance, it allows for the natural interpretation that the risk factors sum up to the total
risk. Moreover, for a decomposition into summands, it is straightforward to derive decompositions for
homogeneous risk measures as within the well-known Euler allocation principle (Karabey et al., 2014).

2.2 Discussion: Are conventional approaches meaningful?
For discussing conventional decomposition approaches with regards to the meaningful risk decomposi-
tion properties, we consider the time-0 present value L0 of an insurer’s future losses and, for simplicity,
assume that it is only influenced by two sources of risk Z1 = (Z1(t))0≤t≤T ∗ and Z2 = (Z2(t))0≤t≤T ∗ .
The insurer’s risk is identified with L := L0 − EP(L0). To preview our results, we find that each con-
sidered decomposition approach fails to satisfy at least one property, which leads us to propose a new
decomposition method in the next section.

Variance decomposition

A common approach for decomposing the insurer’s risk L0 − EP(L0) into risk factors is a conditional
expectation approach. Bühlmann (1995) and Fischer (2004) use this approach to decompose the prof-
it/loss of a life insurer into a financial and a biometric part; Martin and Tasche (2007) determine the
systematic and unsystematic risk in a credit portfolio by this method; and Christiansen and Helwich
(2008) extend the approach to three sources of risk of a life insurance portfolio, namely unsystematic
and systematic mortality risk as well as financial risk.

The basic idea is that the conditional expectation R1 := EP (L|Z1) captures the randomness of L
caused by Z1. Since the remaining risk R2 := L−R1 = L−EP (L|Z1) must represent the randomness
caused by Z2, the decomposition for L = L0 − EP(L0) reads as

L0 − EP(L0) =
[
EP (L0|Z1)− EP(L0)

]
+
[
L0 − EP (L0|Z1)

]
= R1 +R2, (2.1)

where R1 and R2 represent the two risk factors. As a result of the orthogonality property of conditional
expectations, a straightforward consequence of (2.1) is

Var(L) = Var(R1) + Var(R2).

Commonly, the latter equation is referred to as variance decomposition and frequently is the basis for
applications (thus, we simply refer to the general decomposition (2.1) as “variance decomposition”).
Note that for an arbitrary loss L the variance decomposition directly implies that EP(R1) = EP(L)
and EP(R2) = 0. Of course, this asymmetry is irrelevant when considering the variance but potentially
relevant when applying different risk measures. This emphasizes the necessity to first standardize the
lossL0 to mean zero, i.e. consideringL0−EP(L0), and then apply the decomposition approach, resulting
in EP(R1) = EP(R2) = 0.

Obviously, the risk factors R1 and R2 are random variables (P1) and they add up to the total risk
(P6∗/P6). Since conditional expectations are unique almost surely, so is the variance decomposition
(P3). To check the attribution property P2, for independent Z1 and Z2 and a σ(Z1)-measurable loss

5



L, R2 = L − EP (L|Z1) = 0. Conversely, if L is σ(Z2)-measurable, R1 = EP (L|Z1) = EP(L).
Therefore, P2 is satisfied since L is standardized to mean zero. The variance decomposition is also scale
invariant (P5), since for two smooth, invertible functions f1 and f2, with Z̃i(t) := fi(Zi(t)), i = 1, 2,
we have σ(Z̃i) = σ(Zi), so that R̃1 = EP(L| Z̃1) = EP(L|Z1) = R1 and R̃2 = L − EP(L| Z̃1) =
L− EP(L|Z1) = R2.

However, as the following example illustrates, the order invariance property P4 is not satisfied:

Example 2.1. Assume that L0 = Z1(T )Z2(T ), where Z1 and Z2 are two independent processes. Then
the variance decomposition with respect to Z = (Z1, Z2) is

L0 − EP (L0) =
[
EP (L0|Z1)− EP (L0)

]
+
[
L0 − EP (L0|Z1)

]
= EP (Z2(T )) [Z1(T )− EP (Z1(T ))]︸ ︷︷ ︸

=:R1

+Z1(T )[Z2(T )− EP (Z2(T ))]︸ ︷︷ ︸
=:R2

.

In contrast, switching the order of Z1 and Z2, i.e. considering Z̃ = (Z̃1, Z̃2) := (Z2, Z1), the variance
decomposition approach yields

L0 − EP (L0) = EP (Z1(T )) [Z2(T )− EP (Z2(T ))]︸ ︷︷ ︸
=:R̃1

+Z2(T )[Z1(T )− EP (Z1(T ))]︸ ︷︷ ︸
=:R̃2

.

Clearly, in general R1 6= R̃2 and R2 6= R̃1. In particular, if Z1(T ) and Z2(T ) both have mean zero, the
first decomposition will imply R1 = 0 and R2 = Z1(T )Z2(T ), whereas the second decomposition will
yield R̃1 = 0 and R̃2 = Z1(T )Z2(T ), i.e. either no risk or the total risk will be attributed to Z1 (vice
versa for Z2).

In addition, although Z1 and Z2 might be correlated, R1 and R2 will be uncorrelated. This means
that correlated risk must be allocated in an independent way, which can further result in arbitrary, order-
dependent decompositions. Just consider L0 = Z1(T ) + Z2(T ) with dependent risks Z1 and Z2.

Hoeffding decomposition

Another decomposition approach is based on the so-called Hoeffding decomposition and is, for example,
used by Rosen and Saunders (2010) to determine the factor contributions to a portfolio’s credit risk. For
convenience, we again call this approach Hoeffding decomposition.

Similarly to the previous approach, it relies on conditional expectations. For the insurer’s liability L0

the Hoeffding decomposition reads:

L0 − EP (L0) = EP (L0|Z1)− EP (L0)︸ ︷︷ ︸
=:R1

+ EP (L0|Z2)− EP (L0)︸ ︷︷ ︸
=:R2

+ L0 − EP (L0|Z1)− EP (L0|Z2) + EP (L0)︸ ︷︷ ︸
=:R1,2

,

where R1 and R2 are the risk factors attributed to Z1 and Z2 in isolation, and R1,2 represents the risk
due to “joint effects”. This illustrates the decomposition’s primary drawback, namely that the total risk
is not completely allocated to the individual sources of risk. For instance, if in Example 2.1 Z1(T ) and
Z2(T ) both have mean zero, the Hoeffding approach will yield R1 = R2 = 0 and R1,2 = L0 − EP(L0),
i.e. the total risk results from joint effects, which does not give any insights on the influence of the
different sources of risk. In particular, this example shows that the aggregation property P6 is generally
not satisfied since for every function A(L,Z) : R2 → R we have A(L,Z)(R1, R2) = A(L,Z)(0, 0) 6= L
whenever L0 = Z1(T )Z2(T ) is not deterministic.
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However, properties P1 to P5 are satisfied: Clearly, the risk factors R1 and R2 are random variables
(P1), and the Hoeffding decomposition is unique in the almost sure sense as a result of the uniqueness
of the conditional expectations (P3). Furthermore, it can be easily seen that, contrary to the variance
decomposition, this approach is order invariant (P4). The scale invariance follows by the same argument
as for the variance decomposition (P5). For the attribution property P2, letZ1 andZ2 be two independent
processes; if L is σ(Z1)-measurable, then L and thus also L0 are independent of Z2, so that R2 =
EP (L0|Z2)− EP (L0) = 0 (analogously for σ(Z2)-measurable L).

Since we only consider the individual risk factors of a decomposition approach and thus ignore the
joint termR1,2 of the Hoeffding decomposition, the preceding discussion effectively covers the so-called
Hájek projection L0 − EP (L0) ≈ R1 + R2 as sum of first-order terms of the Hoeffding decomposition
(Rosen and Saunders, 2010, p. 341).

Taylor expansion

Christiansen (2007, p. 80) proposes to approximate functionals of random variables by their first order
Taylor expansion and to interpret the resulting summands as risk factors. Assume the insurer’s loss L0

is of the form F (Z1(T ), Z2(T )). Then this approach yields:

L = L0 − EP(L0) ≈
[
F (z1, z2)− EP(L0)

]
+
∂F

∂z1

(z1, z2)(Z1(T )− z1)︸ ︷︷ ︸
=:R1

+
∂F

∂z2

(z1, z2)(Z2(T )− z2)︸ ︷︷ ︸
=:R2

,

where (z1, z2) denotes the (deterministic) expansion point. By using a generalized definition of the
corresponding gradients, Christiansen (2007) extends this approach to an infinite-dimensional setting
such that the loss L0 may also depend on the entire path of the stochastic processes Z1 and Z2.

In view of its properties, the method’s applicability is restricted since the derivatives do not necessarily
exist. Also, in case of non-linear functionals the first-order Taylor expansion and its summands only
approximate the risk L. Moreover, the approximation error at a certain point highly depends on the
choice of the expansion point, i.e. the Taylor expansion is “local”. The following example illustrates
those aspects.

Example 2.2. Assume that L0 = Z1(T )Z2(T ). Then the Taylor expansion with expansion point (z1, z2)
yields

L = L0 − EP(L0) ≈
[
z1z2 − EP(L0)

]
+ z2(Z1(T )− z1)︸ ︷︷ ︸

=:R1

+ z1(Z2(T )− z2)︸ ︷︷ ︸
=:R2

= L0 − EP(L0)− (Z1(T )− z1)(Z2(T )− z2).

Obviously, the approximation error amounts to −(Z1(T ) − z1)(Z2(T ) − z2), i.e. the more Z1(T ) and
Z2(T ) deviate from z1 and z2, respectively, the higher is the approximation error. In the special case of
choosing (z1, z2) = (0, 0) as expansion point, the decomposition results in R1 = R2 = 0, i.e. a risk is
neither allocated to Z1 nor to Z2.

As a result of the example with (z1, z2) = (0, 0) as expansion point, the aggregation property P6 gener-
ally is not satisfied since for every functionA(L,Z) : R2 → R we haveA(L,Z)(R1, R2) = A(L,Z)(0, 0) 6= L
(assuming that Z1(T )Z2(T ) is not deterministic). Furthermore, due to the dependence on the expan-
sion point, the Taylor expansion approach is also not unique (P3). To show that scale invariance (P5)
is violated, assume that L0 = eZ1(T ). Then the Taylor expansion yields L ≈ ez1 − EP

(
eZ1(T )

)
+

ez1(Z1(T )− z1) for some expansion point z1. However, for Z̃1(T ) := eZ1(T ) and z̃1 := ez1 we have L ≈
z̃1−EP

(
Z̃1(T )

)
+(Z̃1(T )−z̃1), and in generalR1 = ez1(Z1(T )−z1) 6= eZ1(T )−ez1 = Z̃1(T )−z̃1 = R̃1.
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Still, the Taylor expansion satisfies properties P1, P2, and P4. The risk factors are obviously random
variables, and the order invariance can be easily shown. For the attribution property, independence of
the other source of risk will yield a zero derivative and thus a zero risk factor.

Solvency II approach

A different risk decomposition approach is “switching off” the randomness of all but one of the sources
of risk, see e.g. Artinger (2010) or Gatzert and Wesker (2014). Since this method is in principle implied
in the Solvency II framework for measuring the influence of different sources of risk (cf. CEIOPS,
2010), in what follows we refer to this decomposition method as the Solvency II approach.

To illustrate, assume the insurer’s loss L0 is of the form F (Z1, Z2). Then the method suggests to
model the risk factors corresponding to Z1 and Z2 via F (Z1, z2) − EP (L0) and F (z1, Z2) − EP (L0),
respectively. In the context of Solvency II, z1 and z2 are typically chosen as best estimates of Z1 and
Z2. However, in general there is no clear answer on how z1 and z2 should be chosen. In fact, the
decomposition heavily depends on the choice of z1 and z2 and is thus not unique (P3). This is illustrated
in the following example.

Example 2.3. Assume that L0 = F (Z1(T ), Z2(T )) = Z1(T ) max{K − Z2(T ), 0}, where Z1 and Z2

are two arbitrary positive-valued processes and K is a constant, and that EP (Z2(T )) > K. Measuring
the risk factor related to Z1 by replacing Z2(T ) with its expectation, the Solvency II approach yields

R1 = F (Z1(T ),EP (Z2(T )))− EP (L0) = Z1(T ) max{K − EP (Z2(T )) , 0} − EP (L0)

= −EP (L0) .

Thus, although L0 > 0 with positive probability (under certain conditions on Z1 and Z2) and L0 is
proportionally increasing in Z1(T ) in that case, the risk attributed to Z1 is constant and even negative.
However, choosing any deterministic approximation z2(T ) < K would yieldR1 = Z1(T )(K−z2(T ))−
EP (L0) with a different distribution for each choice of z2(T ). Assuming z1(T ) = EP (Z1(T )) , the
second risk factor equals R2 = EP (Z1(T )) max{K − Z2(T ), 0} − EP (L0) .

Besides uniqueness, the Solvency II approach also does not satisfy the aggregation property P6 (and
thus also not P6∗), as can be seen from Example 2.3: for any function A(L,Z) : R2 → R, A(L,Z)(R1, R2)
will be σ(Z2)-measurable and thus A(L,Z)(R1, R2) 6= L (assuming that Z1 is not σ(Z2)-measurable).
Furthermore, the attribution property is generally not satisfied (P2). To see this, consider two sources of
risk Z1 and Z2 and assume that L0 = eZ1(T ) = F (Z1(T ), Z2(T )). Then, L is σ(Z1)-measurable, but for
every z1(T ) 6= log(EP (L0)) it holds that R2 = F (z1, Z2) = ez1(T ) − EP (L0) 6= 0.

In contrast, the Solvency II approach satisfies properties P1, P4, and P5. Again, the risk factors obvi-
ously are random variables (P1), and order invariance can be easily shown (P4). For scale invariance, let
f1 and f2 be two smooth, invertible functions and define Z̃i(t) := fi(Zi(t)) and z̃i(t) := fi(zi(t)), i =
1, 2. It follows that L0 = F (Z1, Z2) = F ((f−1

1 (Z̃1(t)))0≤t≤T ∗ , (f−1
2 (Z̃2(t)))0≤t≤T ∗) =: F̃ (Z̃1, Z̃2).

Hence, R̃1 = F̃ (Z̃1, z̃2)−EP (L0) = F (Z1, z2)−EP (L0) = R1 and analogously R̃2 = R2,which proves
the scale invariance property P5 (at least if the change of scale is the same for z̃i as for Z̃i, i = 1, 2).

Table 2.1 summarizes the results. In the next section, we introduce a novel decomposition approach
labeled MRT decomposition that satisfies all meaningful risk decomposition properties. It is also added
to the table.
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P1 P2 P3 P4 P5 P6 P6∗

Variance decomposition X X X × X X X

Hoeffding decomposition X X X X X × ×
Taylor expansion X X × X × × ×
Solvency II approach X × × X X × ×
MRT decomposition X X X X X X X

Table 2.1: Summary of decomposition approaches with regards to whether (X) or not (×) they satisfy
the properties P1 to P6∗.

3 MRT decomposition in life insurance
Due to the relevance of risk decompositions in life insurance and to keep the exposition comprehensible,
we frame our approach in a life insurance seeting. Generalizations to other situations in insurance and
beyond are certainly possible. The first subsection lays out the framework for the remainder of the paper,
and Section 3.2 introduces the MRT decomposition.

3.1 Life insurance modeling framework
We fix a finite time horizon T ∗ and a filtered probability space (Ω,F ,F,P) with F = (Ft)0≤t≤T ∗ satis-
fying the usual conditions of right-continuity and P-completeness.3 Throughout, Ft describes the “full”
information available at time t, where we assume F0 to be trivial and set F = FT ∗ . We assume that the
uncertainty of the life insurer’s future profit/loss arises from the uncertain evolution of a number of fi-
nancial and demographic factors as well as the actual occurrence of deaths in the insurance portfolio. For
the former, we introduce an n-dimensional, locally bounded processX = ((X1(t), . . . , Xn(t))>)0≤t≤T ∗ ,
the so-called state process, and assume that all financial and demographic factors are functions of X.
Specifically, we assume that the time-t prices of all risky assets on the financial market as well as the
short rate r(t) = r(t,X(t)) and the mortality intensity µ(t) = µ(t,X(t)) (see below) can be expressed
in terms of X(t).4 The state process itself is driven by a d-dimensional standard Brownian motion
W = ((W1(t), . . . ,Wd(t))

>)0≤t≤T ∗:5

Assumption 3.1. The state process X = ((X1(t), . . . , Xn(t))>)0≤t≤T ∗ is an n-dimensional Itô process
satisfying

dX(t) = θ(t)dt+ σ(t)dW (t), (3.1)

with deterministic initial valueX(0) = x0 ∈ Rn, where the n-dimensional drift vector θ = (θ(t))0≤t≤T ∗

and the n× d-dimensional volatility matrix σ = (σ(t))0≤t≤T ∗ are G-adapted with continuous paths. We
assume that there exists a unique strong solution to (3.1).

Let G denote the augmented filtration generated by W, which is assumed to be a sub-filtration of F.
Furthermore, we impose the existence of a bank account (B(t))0≤t≤T ∗ defined as B(t) = e

∫ t
0 r(s)ds.

For notional convenience and without much loss of generality, we consider m homogeneous policy-
holders aged x at time 0. The remaining lifetime τ ix of policyholder i as seen from time 0, i = 1, . . . ,m,

3In principle, P could be any probability measure and the technical results in this paper are not fixed to a particular
interpretation. However, since our focus is on a company’s risk, we interpret P as the real-word measure and the interpretation
is reflected in our language.

4Within particular models, the prices of risky assets or the short rate may be components of the state process X.
5This assumption is primarily for simplicity. We discuss possible extensions in the Conclusion (Section 6).
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is defined as the first jump time of a doubly stochastic process with G-predictable intensity (µ(t))0≤t≤T ∗ ,
i.e.

τ ix = inf

{
t ∈ [0, T ∗] :

∫ t

0

µ(s)ds ≥ Ei

}
, i = 1, . . . ,m,

where Ei, i = 1, . . . ,m, are i.i.d. unit exponential random variables independent of GT ∗ . We use the
convention inf ∅ = ∞. A motivation for this definition of the remaining lifetimes can be found in
Biffis et al. (2010, p. 287). Defining the sub-filtration I =

∨m
i=1 Ii of F, where Ii = (I it)0≤t≤T ∗ is the

augmented filtration generated by the death indicator process (1{τ ix≤t})0≤t≤T ∗ , it is natural to assume
that F is given by G ∨ I.

Assuming that µ is non-negative and continuous, it follows that for any t ∈ [0, T ∗] (Lando, 1998,
p. 102)

P
(
τ ix > T |GT

)
= e−

∫ T
0 µ(s)ds,

in particular P (τ ix > 0) = 1, and that (Bielecki and Rutkowski, 2004, p. 268)

P
(
τ ix > t

∣∣GT ) = P
(
τ ix > t

∣∣Gs) (3.2)

for all 0 ≤ t ≤ s ≤ T ≤ T ∗, i = 1, . . . ,m.6 Generalizations of the setting that preserve these results
are possible (Jeanblanc and Rutkowski, 2000; Biffis et al., 2010). We write Γ(t) :=

∫ t
0
µ(s)ds for the

so-called cumulative mortality intensity, so that P (τ ix > t| Gt) = e−Γ(t). Moreover, we obtain for the
conditional survival probability given Ft (Bielecki and Rutkowski, 2004, p. 145):

P
(
τ ix > T |Ft

)
= P

(
τ ix > T |Gt ∨ I it

)
= 1{τ ix>t}

P (τ ix > T |Gt)
P (τ ix > t|Gt)

= 1{τ ix>t}E
P
(
e−

∫ T
t µ(s)ds

∣∣∣Gt) .
Note that the residual lifetimes τ ix, i = 1, . . . ,m, of the homogeneous policyholders are by construction
conditionally identically distributed and conditionally independent given the σ-algebra GT ∗ .

Each life insurance contract in the company’s portfolio is assumed to entail the same cash flows, the
only difference being the respective remaining lifetime. We denote by N(t) =

∑m
i=1 1{τ ix≤t} the number

of policyholders that have died until time t and by FW,N =
(
FW,Nt

)
0≤t≤T ∗ the augmentation of the

filtration generated by the processes W and N. Note that FW,N is a sub-filtration of F.
The sum of the (possibly discounted) future cash flows as from time 0, which represents the insurer’s

total net liability at time 0, is given by:

L0 = C0 +
∑̀
k=0

(m−N(tk))Ca,k +

∫ T ∗

0

Ca(s)ds

+
∑̀
k=1

(N(tk)−N(tk−1))Cad,k +

∫ T ∗

0

Cad(s)dN(s),

(3.3)

where 0 = t0 < t1 < . . . < t` = T ∗, ` ∈ N, are discrete points in time. To keep the setting general,
we allow for payments independent of the lifetimes (C0) and discrete (Ca,k;Cad,k) as well as continuous
(Ca(t);Cad(t)) insurance benefits. More precisely, the different components in (3.3) denote:

6According to Jeanblanc and Rutkowski (2000), the latter is equivalent to the so-called H-hypothesis, which says that
every G-martingale remains a martingale with respect to the larger filtration F.
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C0 the sum of all (possibly discounted) payments at or after time 0 that are independent
of τ ix, i = 1, . . . ,m, t ∈ [0, T ∗], such as hedging returns, benefits from a fixed-term
insurance, etc.;

Ca,k the sum of all (possibly discounted) payments at or after time tk that are conditional
on survival until time tk, k = 0, . . . , l, such as single premiums, discrete premium
payments, discrete annuity payments, benefits from pure endowment insurances,
benefits from a period certain of deferred annuities, etc.;

Ca(t) time-t intensity of all continuous payments that are conditional on survival until
time t or, in other words, Ca(t)dt is the sum of all payments in the infinitesimal
period [t, t + dt] that are conditional on survival until time t, such as continuous
premium payments, continuous annuity payments, etc.;

Cad,k the sum of all (possibly discounted) payments at or after time tk that are conditional
on death within (tk−1, tk], k = 1, . . . , l, such as death benefits paid at the end of a
period;

Cad(t) the sum of all (possibly discounted) payments at time t that are conditional on death
at time t, t ∈ [0, T ∗], such as death benefits paid immediately upon death.

We assume that C0, Ca,k, and Cad,k are GT ∗-measurable, i.e. the cash flows may only be known at
time T ∗, whereas Ca(t) and Cad(t) are assumed to be Gt-measurable. This assumption is one of the
reasons why we explicitly distinguish between discrete and continuous cash flows. Note that due to
its form, the net liability L0 is FW,NT ∗ -measurable. In general, each cash flow from above may include
several payments from and to the insurance company. Positive payments are interpreted as payments
made by the insurer and negative payments are interpreted as payments received by the insurance com-
pany. Thus, each cash flow corresponds to the insurer’s net liability at a certain point, justifying the
interpretation of L0 as the insurer’s total net liability.

The insurer’s risk at time 0 is identified with L0 − EP (L0) , i.e. the insurer’s net liability as from
time 0 less its expectation. The net liability L0 is exactly the (stochastic) amount of money the insurance
company needs at time 0 in order to be able to meet its future contract obligations (possibly conditional
on certain investment assumptions introduced by the discount factors). Since the insurance company
should at least prepare for the expected value EP (L0) , only liabilities exceeding the expectation are
interpreted as risk.

Remark 3.2. In order to keep the presentation concise, we focus on the insurer’s risk at time 0, but with
appropriate modifications all related definitions and results can be transferred to the insurer’s risk at any
future time t ∈ [0, T ∗] (considered from time 0). For example, in analogy to L0 and Equation (3.3), the
insurer’s net liability at time t, Lt, can be defined as the sum of all future cash flows as from time t,
where possible discount factors of the cash flows need to be adjusted. The insurer’s risk at time t then
follows as Lt − EP (Lt| Ft) .

3.2 Definition of the MRT decomposition
Within the life insurance modeling framework introduced in the previous section, the objective is to find
an approach that decomposes the insurer’s risk L0−EP (L0|Ft) into risk factors attributed to the sources
of risk the insurer faces in a meaningful way (cf. Section 2.1). Inspired by the martingale representa-
tion theorem, we propose a decomposition into stochastic integrals with respect to the compensated
sources of risk and interpret each integral as the risk factor of the respective source of risk. We show
in Section 4.1 that this approach satisfies all meaningful risk decomposition properties formulated in
Section 2.1.
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The sources of risk are identified with, on the one hand, the state processes Xi = (Xi(t))0≤t≤T ∗ , i =
1, . . . , n, and, on the other hand, with the number of deaths in the portfolio N = (N(t))0≤t≤T ∗ . The
corresponding compensated processes, i.e. the processes less their F-compensators, are denoted by
MW

i = (MW
i (t))0≤t≤T ∗ , i = 1, . . . , n, and MN = (MN(t))0≤t≤T ∗ , respectively. We immediately

obtain (a proof can be found in the Appendix):

Lemma 3.3. i) The unique compensator of Xi is given by AWi = (AWi (t))0≤t≤T ∗ , where AWi (t) =∫ t
0
θi(s)ds, i = 1, . . . , n. Thus,

MW
i (t) =

d∑
j=1

∫ t

0

σij(s)dWj(s), 0 ≤ t ≤ T ∗, i = 1, . . . , n.

ii) The unique compensator of N is given by AN = (AN(t))0≤t≤T ∗ , where AN(t) =
∫ t

0
(m −

N(s−))µ(s)ds. Thus,

MN(t) = N(t)−
∫ t

0

(m−N(s−))µ(s)ds, 0 ≤ t ≤ T ∗,

where, for completeness, we define N(0−) := 0.

Accordingly, we look for a decomposition

L := L0 − EP(L0) =
n∑
i=1

∫ T ∗

0

ψWi (t)dMW
i (t) +

∫ T ∗

0

ψN(t)dMN(t), (3.4)

where ψWi (t), i = 1 . . . , n, and ψN(t) are F-predictable processes. Each integral is interpreted as the
portion of the total randomness of L0 − EP(L0) caused by the associated source of risk.7 Thus, the
risk factors are given by Ri :=

∫ T ∗

0
ψWi (t)dMW

i (t), i = 1, . . . , n, and Rn+1 :=
∫ T ∗

0
ψN(t)dMN(t),

where the latter describes the randomness introduced by N , i.e. by the random occurrence of deaths in
the portfolio, and thus corresponds to the inherent unsystematic mortality risk.8 A decomposition of
the form (3.4) is henceforth called MRT decomposition, since the idea and the decomposition’s exis-
tence and uniqueness are implied by the martingale representation theorem, as shown by the following
proposition.

Remark 3.4. To emphasize the points in Remark 3.2, assume that a decomposition of the form (3.4) can
be analogously found for Lt − EP (Lt) as for L0 − EP (L0) (with possibly different integrands). Then,
since all integrals in (3.4) are martingales, it follows for the insurer’s risk at time t that (for simplicity,
we use the same notation for the integrands as above)

Lt − EP (Lt| Ft) =
n∑
i=1

∫ T ∗

t

ψWi (t)dMW
i (t) +

∫ T ∗

t

ψN(t)dMN(t),

and the corresponding MRT risk factors can be defined as integrals starting from t. Thus, although we
analyze the MRT decomposition only for the insurer’s risk at time 0, with appropriate modifications all
results generalize to the insurer’s risk at any time t.

7Similar interpretations of stochastic integrals can be found e.g. in Christiansen (2013) for unsystematic risk and in
Biagini et al. (2013) under a risk-neutral measure.

8Note that a decomposition consisting of stochastic integrals with respect to the different sources of riskXi, i = 1, . . . , n,
and N (instead of the compensated processes) does not necessarily exist, since the risk processes are not P-martingales.
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Proposition 3.5. Assume n = d, detσ(t) 6= 0 for all t ∈ [0, T ∗] P-almost surely, and that
L0 is square integrable. Then there exist FW,N -predictable processes ψW1 , . . . , ψ

W
n , ψ

N : [0, T ∗] ×
Ω → R such that the MRT decomposition (3.4) holds. The representation is unique in the
sense that the integrands ψW1 , . . . , ψ

W
n and the integrand ψN are a.s. unique on [0, T ∗] × Ω and

{(t, ω) ∈ [0, T ∗]× Ω : N(t−) < m} , respectively, both with respect to λ ⊗ P, where λ denotes the
Lebesgue measure on [0, T ∗]. Moreover,

EP

([∫ T ∗

0

ψN(t)dMN(t)

]2
)
<∞. (3.5)

Proof. As indicated, L0 and thus L is FW,NT ∗ -measurable. Applying the martingale representation theo-
rem for point processes combined with Brownian motions (Björk, 2011, Theorem 4.1.2) to the martin-
gale

M(t) := EP
(
L0 − EP(L0)

∣∣FW,Nt

)
, 0 ≤ t ≤ T ∗,

together with the FW,NT ∗ -measurability of L0, it follows that there exist FW,N -predictable processes
ψ̃W1 , . . . , ψ̃

W
d , ψ

N : [0, T ∗]× Ω→ R such that

L0 − EP(L0) =

∫ T ∗

0

ψ̃W (t)dW (t) +

∫ T ∗

0

ψN(t)dMN(t), (3.6)

where ψ̃W := (ψ̃W1 , . . . , ψ̃
W
d ). Since n = d and detσ(t) 6= 0 by assumption, the inverse of σ exists (and

is unique). Thus, if ψWi (t) :=
∑d

j=1 ψ̃
W
j (t)σ−1

ji (t), i = 1, . . . , n, denotes the i-th entry of the vector
ψ̃W (t)σ−1(t), the first summand of (3.6) can be transformed into∫ T ∗

0

ψ̃W (t)dW (t) =

∫ T ∗

0

ψ̃W (t)σ−1(t)σ(t)dW (t) =
n∑
i=1

∫ T ∗

0

ψWi (t)dMW
i (t),

which together with (3.6) proves the existence of the MRT decomposition (3.4).
Since 〈Wi,Wj〉 (t) = 0 for all i 6= j, and

〈
Wi,M

N
〉

(t) = 0 for i = 1, . . . , d, the Itô isometry yields

EP
((
L0 − EP(L0)

)2
)

=
d∑
i=1

EP
((∫ T ∗

0

ψ̃Wi (t)dWi(t)

)2)
+ EP

((∫ T ∗

0

ψN(t)dMN(t)

)2)
.

Thus, by the square-integrability of L0, all integrals in (3.6) are square integrable, and in particular (3.5)
holds.

To show uniqueness, suppose there exist FW,N -predictable processes ξ̃W1 , . . . , ξ̃Wd , ξ
N : [0, T ∗]×Ω→

R such that

L0 − EP(L0) =

∫ T ∗

0

ξ̃W (t)dW (t) +

∫ T ∗

0

ξN(t)dMN(t).

Then we have
∫ T ∗

0

(
ψ̃W (t)− ξ̃W (t)

)
dW (t) +

∫ T ∗

0

(
ψN(t)− ξN(t)

)
dMN(t) = 0. From Andersen et al.

(1997, p. 78), we know that the predictable quadratic variation of MN(t) equals
〈
MN ,MN

〉
(t) =∫ t

0
(m−N(s−))µ(s)ds. Together with the Itô isometry, we thus obtain

0 =
d∑
i=1

EP
(∫ T ∗

0

(
ψ̃Wi (t)− ξ̃Wi (t)

)2
dt

)
+ EP

(∫ T ∗

0

(
ψN(t)− ξN(t)

)2
(m−N(t−))µ(t)dt

)
.
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This directly implies that ψ̃Wi = ξ̃Wi λ⊗P-almost surely, i = 1, . . . , d. Since µ is assumed to be positive,
it also follows that ψN = ξN on {(t, ω) ∈ [0, T ∗]× Ω : N(t−) < m} with respect to λ⊗P. Finally, the
uniqueness of ψW1 , . . . , ψ

W
n , ψ

N is a result of the uniqueness of ψ̃W1 , . . . , ψ̃
W
n , ψ

N and the uniqueness of
the inverse of σ.

Remark 3.6. The previous proposition is based on the assumption that each insurance contract in the
considered portfolio entails the same cash flows. For relaxing this assumption, it is sufficient to split the
considered portfolio into sub-portfolios with identical cash flows and to apply the result from above to
each sub-portfolio separately. Moreover, if the payments depend on the sequence of deaths as within
joint life policies, it is possible to extend the setting and consider the processes in the general filtration F
implying d + m driving martingales. We focus on FW,N here since it is the most relevant setup and to
keep the presentation concise.

If n 6= d, existence and uniqueness of the MRT decomposition (3.4) are not necessarily given. In
fact, as follows from the proof, we need to look for ψW (t) such that the equation ψ̃W (t) = ψW (t)σ(t)

holds true, where existence and uniqueness of ψ̃W (t) result from the martingale representation theorem.
If n > d, there are fewer equations than unknowns so that uniqueness is not guaranteed. On the other
hand, if n < d, there are more equations than unknowns so that a solution may not exist. In what follows,
we focus on the case n = d. If n 6= d, we assume that either redundant state processes (which can be
represented via other state processes) are removed or additional state processes are artificially added,
both along with an adjustment of the interpretation of the risk factors. In contrast to a hedging problem,
where the number of state processes – or rather securities – is exogenously given, this procedure seems
viable for a risk decomposition problem.

4 Analysis of the MRT decomposition
This section provides a detailed analysis of the MRT decomposition (3.4) introduced in the previous
section. We first establish its advantages by showing that it satisfies the meaningful risk decomposition
properties from Section 2.1. We then discuss its calculation, where we rely on analogies to hedging
problems for insurance liabilities, and finally analyze diversification properties in the last subsection.

4.1 Meaningful risk decomposition properties
Proposition 4.1. Assume that the state process X = (X1, . . . , Xn) is defined as in Assumption 3.1 with
n = d and detσ(t) 6= 0 for all t ∈ [0, T ∗] P-almost surely, and let L0 be square integrable. Then the
MRT decomposition

(L,X1, . . . , Xn, N)
MRT↔ (R1, . . . , Rn+1)

as defined in (3.4) satisfies the properties P1, P2, P3, P4, P5, P6, and P6∗.

Proof. Obviously, the risk factorsR1, . . . , Rn+1 are random variables, and L =
∑n+1

i=1 Ri, so that P1 and
P6∗ (and thus also P6) are satisfied. The uniqueness property P3 directly follows from Proposition 3.5
and the fact that ∆MN(t) = 0 on {(t, ω) ∈ [0, T ∗]× Ω : N(t−) = m} .

To simplify the proof of the remaining properties, we let ψi := ψWi , Mi := MW
i , i = 1, . . . , n, and

ψn+1 := ψN , Mn+1 := MN . Furthermore, we write Z = (Z1, . . . , Zn+1) := (X1, . . . , Xn, N). Assume
that (L,Z1, . . . , Zn+1)

MRT↔ (R1, . . . , Rn+1).
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P2: Let i ∈ {1, . . . , n+ 1}. Assume that L is σ(Zi)-measurable and that Zi is independent of Zi− :=
(Z1, . . . , Zi−1, Zi+1, . . . , Zn+1). This directly implies that L is independent of Zi−. Furthermore,
since detσ(t) 6= 0 for all t ∈ [0, T ∗] P-almost surely, we have FW,Nt = FZt = FZit ∨ F

Zi−
t ,

where FZ = (FZt )0≤t≤T ∗ , FZi = (FZit )0≤t≤T ∗ , and FZi− = (FZi−t )0≤t≤T ∗ denote the augmented
filtrations generated by Z, Zi, and Zi−, respectively. Thus,

L(t) :=
n+1∑
j=1

∫ t

0

ψj(s)dMj(s) = EP
(
L| FW,Nt

)
= EP

(
L| FZit ∨ F

Zi−
t

)
= EP (L| FZit ) .

This implies that the process (L(t))0≤t≤T ∗ is independent of each process Zj, j 6= i, so that the
predictable covariation process satisfies 〈L,Zj〉 (t) = 0 for all j 6= i, 0 ≤ t ≤ T ∗.

(a) Assume that i = n+ 1. Then 〈Mi, Zj〉 (t) =
〈
MN , Xj

〉
(t) = 0 for all j 6= i, so that

0 = d 〈L,Zj〉 (t) =
n+1∑
k=1

ψk(t)d 〈Mk, Zj〉 (t) =
n∑
k=1

ψk(t)d 〈Mk, Zj〉 (t)

=
n∑
k=1

ψk(t)σk,·(t)σ
>
j,·(t)dt, j 6= i, 0 ≤ t ≤ T ∗,

(4.1)

where σk,·(t) denotes the k-th row of σ(t). For any 0 ≤ t ≤ T ∗, this yields the linear sys-
tem of equations A>t ψt = 0, where ψt = (ψ1(t), . . . , ψn(t))> and At = σ(t)σ(t)>, so that
detA>t = (det σ(t))2 6= 0 for all t ∈ [0, T ∗] P-almost surely, implying ψt = 0 for all
t ∈ [0, T ∗] P-almost surely. Thus, we have Rj =

∫ T ∗

0
ψj(t)dMj(t) = 0 almost surely for all

j 6= i.

(b) Now assume that i 6= n+ 1 (w.l.o.g. i = 1). Then we know that

0 = d 〈L,Zn+1〉 (t) =
n+1∑
k=1

ψk(t)d 〈Mk, Zn+1〉 (t) = ψn+1(t)d 〈Mn+1, Zn+1〉 (t)

= ψn+1(t)d 〈Mn+1,Mn+1〉 (t),

so by the Itô isometry it follows that

EP

([∫ T ∗

0

ψn+1(t)dMn+1(t)

]2
)

= EP
(∫ T ∗

0

ψ2
n+1(t)d 〈Mn+1,Mn+1〉 (t)

)
= 0,

and thus Rn+1 =
∫ T ∗

0
ψn+1(t)dMn+1(t) = 0 almost surely.

Since Z1 is by assumption independent of Z1− and thus independent of Zj for all j =
2, . . . , n + 1, it follows that σ1,·(t)σj,·(t)

>dt = d 〈Z1, Zj〉 (t) = 0 for all j /∈ {1, n + 1}.
Thus, for At = σ(t)σ(t)>, we obtain

At =


σ1,·(t)σ1,·(t)

> 0 . . . 0
0
... Ãt
0

 , Ãt =

σ2,·(t)σ2,·(t)
> . . . σ2,·(t)σn,·(t)

>

...
...

σn,·(t)σ2,·(t)
> . . . σn,·(t)σn,·(t)

>

 ,
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and since 0 6= detAt = σ1,·(t)σ1,·(t)
> det Ãt, det Ãt 6= 0 for all t ∈ [0, T ∗] P-almost surely.

Furthermore, following the same calculation steps as in (4.1) for j /∈ {1, n + 1} and using
〈M1, Zj〉 (t) = d 〈Z1, Zj〉 (t) = 0 and 〈Mn+1, Zj〉 (t) = 0, j /∈ {1, n + 1}, we obtain
the linear system Ã>t ψ̃t = 0, where ψ̃t = (ψ2(t), . . . , ψn(t))>. Since det Ãt 6= 0 for all
t ∈ [0, T ∗] P-almost surely, it follows that ψ̃t = 0 for all t ∈ [0, T ∗] P-almost surely, and
thus Rj =

∫ T ∗

0
ψj(t)dMj(t) = 0 almost surely for all j /∈ {1, n+ 1}.

P4: Consider a permutation π : {1, . . . , n + 1} → {1, . . . , n + 1}. Let (L,Zπ(1), . . . , Zπ(n+1))
MRT↔

(R̃1, . . . , R̃n+1) with R̃i =
∫ T ∗

0
ψ̃i(t)dMπ(i)(t), i = 1, . . . , n + 1, where ψ̃i are F-predictable

processes. Since

n+1∑
i=1

∫ T ∗

0

ψ̃i(t)dMπ(i)(t) =
n+1∑
i=1

R̃i
P6∗
= L

P6∗
=

n+1∑
i=1

Ri =
n+1∑
i=1

∫ T ∗

0

ψi(t)dMi(t)

=
n+1∑
i=1

∫ T ∗

0

ψπ(i)(t)dMπ(i)(t),

P4 follows by the uniqueness of the MRT decomposition.

P5: Let Z̃i(t) := fi(Zi(t)), i = 1, . . . , n + 1, where the functions fi : R → R are smooth and
invertible, and consider (L, Z̃1, . . . , Z̃n+1)

MRT↔ (R̃1, . . . , R̃n+1).

For each i 6= n+ 1, by Itô’s lemma:

dZ̃i(t) = f ′i(Xi(t))
d∑
j=1

σij(t)dWj(t) +

(
f ′i(Xi(t))θ(t) +

1

2
f ′′i (Xi(t))

d∑
j=1

σ2
ij(t)

)
dt.

Thus, (Z̃1, . . . , Z̃n) is again an Itô process as in Assumption 3.1 and by Lemma 3.3 the corre-
sponding compensated risk processes equal

M̃i(t) = f ′i(Xi(t))dMi(t), i = 1, . . . , n.

As a result, for i = 1, . . . , n, the MRT risk factors equal

R̃i =

∫ T ∗

0

ψ̃i(t)dM̃i(t) =

∫ T ∗

0

ψ̃i(t)f
′
i(Xi(t))dMi(t). (4.2)

For i = n+ 1, we have

Z̃n+1(t) = fn+1(N(0)) +
∑

0<s≤t

(fn+1(N(s))− fn+1(N(s−)))

= fn+1(N(0)) +
∑

0<s≤t

[
m∑
k=0

1{N(s−)=k} (fn+1(k + 1)− fn+1(k))

]
︸ ︷︷ ︸

=: a(s)

(N(s)−N(s−))

= fn+1(N(0)) +

∫ t

0

a(s)dN(s)

= fn+1(N(0)) +

∫ t

0

a(s)dMn+1(s) +

∫ t

0

a(s)(m−N(s−))µ(s)ds,
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exploiting in the second equality that P(τ ix = τ jx) = 0 for i 6= j (Bielecki and Rutkowski, 2004,
p. 269). Since a(s) 6= 0 (invertible) and predictable, Ãn+1(t) :=

∫ t
0
a(s)(m−N(s−))µ(s)ds is a

predictable finite variation process and M̃n+1(t) :=
∫ t

0
a(s)dMn+1(s) is a local martingale. Thus:

R̃n+1 =

∫ T ∗

0

ψ̃n+1(t)dM̃n+1(t) =

∫ T ∗

0

ψ̃n+1(t)a(t)dMn+1(t). (4.3)

The uniqueness of the MRT decomposition together with (4.2) and (4.3) implies that Ri = R̃i

almost surely, i = 1, . . . , n+ 1, and thus P5.

Remark 4.2. While the MRT decomposition in (3.4) is formally defined in terms of the Itô process
X and the counting process N, in the proof of P5 we consider a generalized notion in terms of an Itô
process and the jump process

∫ ·
0
a(s)dN(s). However, since the generalization is straightforward and to

keep the presentation in Section 3 concise, we accept this slight inconsistency.

Remark 4.3. While the notion of uniqueness of the MRT decomposition (P3) is based on the description
of X in Assumption 3.1, it is important to note that it will not depend on the representation of X. In
particular, we will clearly obtain the same MRT decomposition if we choose an equivalent representation
of X (e.g., in terms of correlated Brownian motions) since the compensated risk processes MW

i , i =
1, . . . , n, coincide for each representation. The restriction to Itô processes and to the life insurance
setting, on the other hand, are limitations and we leave an analysis of the meaningfulness of the MRT
decomposition in more general contexts for future research.

4.2 Calculation of the MRT decomposition
General case

As is evident from the proof of Proposition 3.5, the calculation of the MRT decomposition amounts to
the determination of ψ̃W1 , . . . , ψ̃

W
n , ψ

N in the martingale representation (3.6). A relatively general result
for their calculation is the Clark-Ocone formula from Malliavin calculus (Di Nunno et al., 2009; Nualart,
2006). However, the Clark-Ocone formula is only applicable to independent driving processes, and for
stochastic mortality intensities within our setting such an independence is usually not given between
the number of deaths in the portfolio N and the standard Brownian motion W driving, among others,
the mortality intensity. Thus, the following three lemmas reduce the problem to finding the martingale
representation of a G-martingale instead of an F-martingale, i.e. the problem is reduced to a Brownian
motion setting.

Remark 4.4. A very similar problem arises in the context of (quadratic) hedging of insurance liabilities,
and a number of papers have taken a similar approach (Barbarin, 2008; Biagini et al., 2012, 2013;
Biagini and Schreiber, 2013; Møller, 2001; Dahl and Møller, 2006; Dahl et al., 2008; Norberg, 2013).
We heavily rely on this line of research but present several extensions and new adaptations.

The first lemma covers discrete survival cash flows.

Lemma 4.5. Let Z be a random variable of the form Z = (m−N(T ))F, 0 ≤ T ≤ T ∗, where F is
GT ∗-measurable and integrable. Then there exist G-predictable processes ϕ1, . . . , ϕd such that

EP (e−Γ(T )F
∣∣Gt) = EP (e−Γ(T )F

)
+

d∑
i=1

∫ t

0

ϕi(u)dWi(u), t ≤ T ∗, (4.4)
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and the martingale representation of Z is given by

Z = EP(Z) +
d∑
i=1

∫ T ∗

0

[
(m−N(t−)) eΓ(t)

1[0,T ](t) + (m−N(T )) eΓ(T )
1(T,T ∗](t)

]
ϕi(t)dWi(t)

−
∫ T

0

EP (eΓ(t)−Γ(T )F
∣∣Gt) dMN(t). (4.5)

For a single policyholder, the proof of Lemma 4.5 given in the Appendix mainly follows the ideas of
the proof of Proposition 5.2.2 in Bielecki and Rutkowski (2004, pp. 159/160), albeit we modify their
result so that it fits our later application and extend it to an entire (homogeneous) portfolio. For F GT -
measurable instead of (more generally) GT ∗-measurable, similar results (usually in a specific process
setting) have been derived in the context of risk-minimizing hedging strategies, see e.g. Barbarin (2008,
Prop. 4.10, Prop. 5.11), Biagini et al. (2012, Prop. 3.5), Biagini et al. (2013, Prop. 2, Prop. 9), and
Biagini and Schreiber (2013, Lemma 4.2). In particular, most of them also consider entire portfolios.

The next lemma covers the case of continuous survival cash flows.

Lemma 4.6. Let Z be a random variable of the form Z =
∫ T

0
(m − N(v))F (v)dv, 0 ≤ T ≤ T ∗,

where F = (F (t))0≤t≤T is a G-predictable process with EP
(
supt∈[0,T ] |F (t)|

)
< ∞. Then there exist

G-predictable processes ϕ1, . . . , ϕd such that

EP
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gt) = EP
(∫ T

0

e−Γ(v)F (v)dv

)
+

d∑
i=1

∫ t

0

ϕi(u)dWi(u), t ≤ T, (4.6)

and the martingale representation of Z is given by

Z = EP(Z) +
d∑
i=1

∫ T

0

(m−N(t−))eΓ(t)ϕi(t)dWi(t)

−
∫ T

0

∫ T

t

EP (eΓ(t)−Γ(v)F (v)
∣∣Gt) dv dMN(t).

(4.7)

In particular, if additionally supt∈[0,T ] EP
(
[F (t)]2

)
<∞, then

ϕi(t) =

∫ T

t

ϕvi (t)dv, t ≤ T, (4.8)

where ϕvi , i = 1, . . . , d, v ∈ [0, T ], are the G-predictable integrands of the martingale representation
of e−Γ(v)F (v) (cf. Eq. (4.4)).

A proof of the lemma is given in the Appendix. Except for some details, the proof of the first part (4.7)
mainly follows the proof of Proposition 4.12 in Barbarin (2008). The specification (4.8) may simplify
the derivation of (4.6). For bounded F, it has already been shown in Biagini et al. (2013, Proposition 5).

The next lemma covers continuous cash flows contingent on death.

Lemma 4.7. Let Z be a random variable of the form Z =
∫ T

0
F (v)dN(v), 0 ≤ T ≤ T ∗, where

F = (F (t))0≤t≤T is a continuous and G-predictable process with EP
(
supt∈[0,T ] |F (t)|

)
< ∞. Then

there exist G-predictable processes ϕ1, . . . , ϕd such that for t ≤ T :

EP
(∫ T

0

e−Γ(v)F (v)dΓ(v)

∣∣∣∣Gt) = EP
(∫ T

0

e−Γ(v)F (v)dΓ(v)

)
+

d∑
i=1

∫ t

0

ϕi(u)dWi(u), (4.9)
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and the martingale representation of Z is given by

Z = EP(Z) +
d∑
i=1

∫ T

0

(m−N(t−)) eΓ(t)ϕi(t)dWi(t)

−
∫ T

0

[∫ T

t

EP (eΓ(t)−Γ(v)F (v)µ(v)
∣∣Gt) dv − F (t)

]
dMN(t).

(4.10)

In particular, if additionally supt∈[0,T ] EP
(
[F (t)]4

)
<∞ and supt∈[0,T ] EP (µ4(t)) <∞, then

ϕi(t) =

∫ T

t

ϕvi (t)dv, t ≤ T, (4.11)

where ϕvi , i = 1, . . . , d, v ∈ [0, T ], are the G-predictable integrands of the martingale representation
of e−Γ(v)F (v)µ(v) (cf. Eq. (4.4)).

The proof of the first part (4.10) relies on a generalization of Proposition 4.11 in Barbarin (2008)
and Proposition 4 in Biagini et al. (2013, p. 130, 138). Similar results were independently derived in
Section 3.3 of Biagini et al. (2012) and in Section 4 of Biagini and Schreiber (2013). We added the
specification (4.11) in analogy to (4.8). The whole proof is provided in the Appendix.

Combining the previous three lemmas with the Clark-Ocone formula from Malliavin calculus, we
obtain the MRT decompositions for each summand of L0 defined in Section 3.1 – and thus the MRT
decomposition of L0 itself by summing up the individual decompositions.

In what follows, let D1,2 denote the set of random variables that are Malliavin differentiable with
respect to each one-dimensional Brownian motion Wi of W = (W1, . . . ,Wd), and let Dt,i(·) denote the
respective time-t Malliavin derivative with respect to Wi, i = 1, . . . , d. For a definition of Malliavin
differentiability and the Malliavin derivative, we refer to Definition 3.1 in Di Nunno et al. (2009, p. 27).
Note that all random variables in D1,2 are by definition in L2(P) and GT ∗-measurable.

Proposition 4.8. Assume that n = d and that the inverse σ−1(t) =
(
σ−1
ij (t)

)
i,j=1,...,n

exists for all
t ∈ [0, T ∗] P-almost surely. Let 0 ≤ tk ≤ T ∗, 0 ≤ T ≤ T ∗.

i) Let L0 = C0. If C0 ∈ D1,2, then the unique integrands of the MRT decomposition (3.4) of L0 are
given by

ψWi (t) =
d∑
j=1

EP (Dt,j (C0)| Gt)σ−1
ji (t), i = 1, . . . , n,

ψN(t) = 0.

ii) Let L0 = (m−N(tk))Ca,k. If e−Γ(tk)Ca,k ∈ D1,2, then the unique integrands of the MRT decompo-
sition (3.4) of L0 are given by

ψWi (t) =
[
(m−N(t−))eΓ(t)

1[0,tk](t) + (m−N(tk))e
Γ(tk)

1(tk,T ∗](t)
]

×
d∑
j=1

EP (Dt,j

(
e−Γ(tk)Ca,k

)∣∣Gt)σ−1
ji (t), i = 1, . . . , n,

ψN(t) = −1[0,tk](t) EP (eΓ(t)−Γ(tk)Ca,k
∣∣Gt) .
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iii) Let L0 =
∫ T

0
(m − N(t))Ca(t)dt. If Ca = (Ca(t))0≤t≤T is a G-predictable process with

EP
(
supt∈[0,T ] |Ca(t)|

)
< ∞, supt∈[0,T ] EP

(
[Ca(t)]

2) < ∞, and e−Γ(t)Ca(t) ∈ D1,2 for all
t ∈ [0, T ], then the unique integrands of the MRT decomposition (3.4) of L0 are given by

ψWi (t) = 1[0,T ](t) (m−N(t−))eΓ(t)

×
d∑
j=1

∫ T

t

EP (Dt,j

(
e−Γ(v)Ca(v)

)∣∣Gt) dv σ−1
ji (t), i = 1, . . . , n,

ψN(t) = −1[0,T ](t)

∫ T

t

EP (eΓ(t)−Γ(v)Ca(v)
∣∣Gt) dv.

iv) Let L0 =
∫ T

0
Cad(t)dN(t). If Cad = (Cad(t))0≤t≤T is a continuous and G-predictable process with

EP
(
supt∈[0,T ] |Cad(t)|

)
< ∞ and supt∈[0,T ] EP

(
[Cad(t)]

4) < ∞, supt∈[0,T ] EP (µ4(t)) < ∞, and
e−Γ(t)Cad(t)µ(t) ∈ D1,2 for all t ∈ [0, T ], then the unique integrands of the MRT decomposition
(3.4) of L0 are given by

ψWi (t) = 1[0,T ](t) (m−N(t−))eΓ(t)

×
d∑
j=1

∫ T

t

EP (Dt,j

(
e−Γ(v)Cad(v)µ(v)

)∣∣Gt) dv σ−1
ij (t), i = 1, . . . , n,

ψN(t) = −1[0,T ](t)

[∫ T

t

EP (eΓ(t)−Γ(v)Cad(v)µ(v)
∣∣Gt) dv − Cad(t)] .

Proof. The integrands follow directly from Lemma 4.5, Lemma 4.6, and Lemma 4.7 together with the
Clark-Ocone formula (Di Nunno et al., 2009, p. 196) and the proof of Proposition 3.5. Since each L0 is
square integrable as a result of the respective assumptions, the uniqueness follows from Proposition 4.1.

Remark 4.9. Note that we omitted the MRT decomposition of discrete cash flows contingent on death
since

(N(tk)−N(tk−1))Cad,k = (m−N(tk−1))Cad,k − (m−N(tk))Cad,k

can be represented as a sum of two discrete survival cash flows. The MRT decompositions of these two
summands can then be determined via Proposition 7 ii).

An application of the above proposition is given in the following example, where the MRT decompo-
sition of a pure endowment portfolio is determined.

Example 4.10. Consider a portfolio of m pure endowment policies with survival benefit 1 at time T
and single premium P0 at time 0. For simplicity, assume a zero interest rate, so that the insurer’s time-0
loss equals L0 = −mP0 + (m−N(T )). The mortality intensity is assumed to be a non-negative affine
diffusion process

dµ(t) = θ(t, µ(t))dt+ σ(t, µ(t))dW (t), µ(0) = µ0,

where (W (t))0≤t≤T is a one-dimensional standard Brownian motion, so that (Biffis, 2005)

EP
(
e−

∫ T
t µ(s)ds

∣∣∣Gt) = eα(t)+β(t)µ(t), T ∈ (t, T ∗], (4.12)
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where α and β satisfy certain Riccati ordinary differential equations. Clearly, since −mP0 is determin-
istic, the integrands of its MRT decomposition are zero. Assume that σ(t, µ(t)) 6= 0 for all t ∈ [0, T ]
P-almost surely and that µ(t), eΓ(t), e−Γ(t) ∈ D1,2 with Dt (µ(t)) = σ(t, µ(t)) for all t ∈ [0, T ].9 By
applying part ii) of Proposition 4.8 to (m−N(T )) it follows that

L0 − EP (L0) =

∫ T

0

(m−N(t−))eΓ(t) EP
(
Dt

(
e−Γ(T )

)∣∣Gt)
σ(t, µ(t))

dMW (t)

−
∫ T

0

EP (eΓ(t)−Γ(T )
∣∣Gt) dMN(t).

Since Dt (µ(s)) = 0 for all t > s, and thus Dt (Γ(t)) = 0, the chain rule (Proposition 1.2.3 in Nualart,
2006, p. 28) implies

Dt

(
eΓ(t)−Γ(T )

)
= −eΓ(t)−Γ(T )Dt (Γ(T )− Γ(t)) = −eΓ(t)−Γ(T )Dt (Γ(T )) = eΓ(t)Dt

(
e−Γ(T )

)
,

i.e. eΓ(t)EP
(
Dt

(
e−Γ(T )

)∣∣Gt) = EP
(
Dt

(
eΓ(t)−Γ(T )

)∣∣Gt). Furthermore, exchanging conditional expec-
tation and Malliavin derivative operator (Di Nunno et al., 2009, Proposition 3.12, p. 33) together with
(4.12) we have

EP (Dt

(
eΓ(t)−Γ(T )

)∣∣Gt) = Dt

(
EP (eΓ(t)−Γ(T )

∣∣Gt)) = Dt

(
eα(t)+β(t)µ(t)

)
.

The chain rule from Malliavin calculus (Proposition 1.2.3 in Nualart, 2006, p. 28) finally yields

Dt

(
eα(t)+β(t)µ(t)

)
= eα(t)+β(t)µ(t)β(t)Dt (µ(t)) = eα(t)+β(t)µ(t)β(t)σ(t, µ(t)).

All-in-all, we obtain

L0 − EP (L0) =

∫ T

0

(m−N(t−)) eα(t)+β(t)µ(t)β(t)dMW (t)−
∫ T

0

eα(t)+β(t)µ(t)dMN(t),

where the first summand represents the systematic mortality risk and the second summand the unsys-
tematic mortality risk.

Markov case

In what follows, we assume that the state process X is a Markovian diffusion process and that the
insurance payments are functions of the state variables. In this case, given further conditions, we can
directly evaluate the decompositions via Itô’s formula rather than relying on Malliavin derivatives as
in Proposition 4.8. We write f ∈ C1,2([0, T ] × Rn) for a function f : [0, T ] × Rn → R if the partial
derivatives ∂f

∂t
, ∂f
∂xi
, ∂2f
∂xi∂xj

, 1 ≤ i, j ≤ n, exist and are continuous on (0, T )× Rn, and if the indicated
partial derivatives have continuous extensions to [0, T ]× Rn.

Assumption 4.11. The state process X = ((X1(t), . . . , Xn(t))>)0≤t≤T ∗ is an n-dimensional diffusion
process satisfying

dX(t) = θ(t,X(t))dt+ σ(t,X(t))dW (t), (4.13)

with deterministic initial value X(0) = x0 ∈ Rn, where the drift vector θ : [0, T ∗]× Rn → Rn and the
volatility matrix σ : [0, T ∗] × Rn → Rn×d are continuous functions such that a unique strong solution
to (4.13) exists.

9Note that for globally Lipschitz-continuous coefficients θ and σ with at most linear growth, diffusion processes are
Malliavin differentiable (Nualart, 2006, Theorem 2.2.1, p. 119). However, as the discussion on the Malliavin differentiability
of square-root processes shows (Alòs and Ewald, 2008), the general Malliavin differentiability of diffusion processes – and
even affine processes – is not guaranteed.
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Proposition 4.12. Let X be an n-dimensional diffusion process as specified in Assumption 4.11 and
assume that n = d and that detσ(t,X(t)) 6= 0 for all t ∈ [0, T ∗] P-almost surely. Let 0 ≤ tk ≤
T ∗, 0 ≤ T ≤ T ∗.

i) Let L0 = C0. Assume that C0 is square integrable and of the form

C0 = e−
∫ T
0 g(s,X(s))dsh(X(T ))

for some measurable functions g : [0, T ] × Rn → R and h : Rn → [0,∞). Define f(t, x) :=

EP
(
e−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣X(t) = x
)
. If f ∈ C1,2([0, T ] × Rn), then the unique integrands of

the MRT decomposition (3.4) of L0 are given by

ψWi (t) = 1[0,T ](t) e
−

∫ t
0 g(s,X(s))ds ∂f

∂xi
(t,X(t)), i = 1, . . . , n,

ψN(t) = 0.

ii) Let L0 = (m−N(tk))Ca,k. Assume that Ca,k is square integrable and of the form

Ca,k = e−
∫ T
0 g(s,X(s))dsh(X(T ))

for some measurable functions g : [0, T ]× Rn → R and h : Rn → [0,∞).

(a) Assume that T > tk, and define fA : [0, tk]× Rn → R and fB : [0, T ]× Rn → R by

fA(t, x) := EP
(
e−

∫ tk
t µ(s,X(s))dse−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣X(t) = x
)
,

fB(t, x) := EP
(
e−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣X(t) = x
)
.

If fA ∈ C1,2([0, tk]×Rn) and fB ∈ C1,2([0, T ]×Rn), then the unique integrands of the MRT
decomposition (3.4) of L0 are given by

ψWi (t) = 1[0,tk](t) (m−N(t−))e−
∫ t
0 g(s,X(s))ds∂f

A

∂xi
(t,X(t))

+ 1(tk,T ](t) (m−N(tk))e
−

∫ t
0 g(s,X(s))ds∂f

B

∂xi
(t,X(t)), i = 1, . . . , n,

ψN(t) = −1[0,tk](t) e
−

∫ t
0 g(s,X(s))dsfA(t,X(t)).

(b) Assume that T ≤ tk, and define fA : [0, T ]× Rn → R and fB : [0, tk]× Rn → R by

fA(t, x) := EP
(
e−

∫ tk
t µ(s,X(s))dse−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣X(t) = x
)
,

fB(t, x) := EP
(
e−

∫ tk
t µ(s,X(s))ds

∣∣∣X(t) = x
)
.

If fA ∈ C1,2([0, T ]×Rn) and if in case T < tk additionally fB ∈ C1,2([0, tk]×Rn), then the
unique integrands of the MRT decomposition (3.4) of L0 are given by

ψWi (t) = 1[0,T ](t) (m−N(t−))e−
∫ t
0 g(s,X(s))ds∂f

A

∂xi
(t,X(t))

+ 1(T,tk](t) (m−N(t−))Ca,k
∂fB

∂xi
(t,X(t)), i = 1, . . . , n,

ψN(t) = −1[0,T ](t) e
−

∫ t
0 g(s,X(s))dsfA(t,X(t))− 1(T,tk] Ca,kf

B(t,X(t)).
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iii) Let L0 =
∫ T

0
(m−N(t))Ca(t)dt. Assume that Ca(t) is of the form

Ca(t) = e−
∫ t
0 g(s,X(s))dsh(X(t))

for some measurable functions g : [0, T ] × Rn → R and h : Rn → [0,∞), and assume that
EP
(
supt∈[0,T ] |Ca(t)|

)
< ∞ and supt∈[0,T ] EP

(
[Ca(t)]

2) < ∞. Furthermore, define f v(t, x) :=

EP
(
e−

∫ v
t [g(s,X(s))+µ(s,X(s))]dsh(X(v))

∣∣X(t) = x
)
. If f v ∈ C1,2([0, v]×Rn) for all v ∈ [0, T ], then

the unique integrands of the MRT decomposition (3.4) of L0 are given by

ψWi (t) = 1[0,T ](t) (m−N(t−))e−
∫ t
0 g(s,X(s))ds

∫ T

t

∂f v

∂xi
(t,X(t))dv, i = 1, . . . , n,

ψN(t) = −1[0,T ](t) e
−

∫ t
0 g(s,X(s))ds

∫ T

t

f v(t,X(t))dv.

iv) Let L0 =
∫ T

0
Cad(t)dN(t). Assume that Cad(t) is of the form

Cad(t) = e−
∫ t
0 g(s,X(s))dsh(X(t))

for some measurable and continuous functions g : [0, T ]×Rn → R and h : Rn → [0,∞), and that
EP
(
supt∈[0,T ] |Cad(t)|

)
< ∞, supt∈[0,T ] EP

(
[Cad(t)]

4) < ∞, and supt∈[0,T ] EP (µ4(t)) < ∞. De-
fine f v(t, x) := EP

(
e−

∫ v
t [g(s,X(s))+µ(s,X(s))]dsh(X(v))µ(v,X(v))

∣∣X(t) = x
)
. If f v ∈ C1,2([0, v]×

Rn) for all v ∈ [0, T ], then the unique integrands of the MRT decomposition (3.4) of L0 are given
by

ψWi (t) = 1[0,T ](t) (m−N(t−))e−
∫ t
0 g(s,X(s))ds

∫ T

t

∂f v

∂xi
(t,X(t))dv, i = 1, . . . , n,

ψN(t) = −1[0,T ](t)

[
e−

∫ t
0 g(s,X(s))ds

∫ T

t

f v(t,X(t))dv − Cad(t)
]
.

The proof of Proposition 4.12 uses Lemmas 4.5, 4.6, and 4.7 together with Itô’s lemma. It is pro-
vided in the Appendix. Note that even if n 6= d this proof implies the existence of the stated MRT
decompositions. However, uniqueness is in general no longer guaranteed.

Example 4.13. We again consider the setting from Example 4.10 but now determine the MRT decom-
position of L0−EP (L0) by applying Proposition 4.12. Obviously, the mortality intensity in this setting
is a one-dimensional diffusion process, and we have that Ca,1 = e−

∫ T
0 g(s,X(s))dsh(X(T )) for g ≡ 0 and

h ≡ 1, where t0 = 0 and t1 = T. The affine property of the mortality model yields

EP
(
e−

∫ T
t [g(s,X(s))+µ(s,X(s))]dsh(X(T ))

∣∣∣Gt) = EP
(
e−

∫ T
t µ(v)dv

∣∣∣Gt) = eα(t)+β(t)µ(t) =: fA(t, µ(t)).

Since the function fA obviously satisfies the smoothness requirements and since T = t1, part b) of
Proposition 4.12 ii) yields the MRT decomposition

L0 − EP (L0) =

∫ T

0

(m−N(t−)) eα(t)+β(t)µ(t)β(t)dMW (t)−
∫ T

0

eα(t)+β(t)µ(t)dMN(t),

where −mP0 again does not contribute to the integrands since it is deterministic. Of course, this coin-
cides with the result of Example 4.10.
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To verify whether the functions f satisfy the required smoothness conditions imposed in Proposi-
tion 4.12, one can for instance rely on the (sufficient) conditions in Heath and Schweizer (2000). Of
course, in case an analytic expression cannot be determined, the respective function f can be computed
numerically.

The following proposition illustrates the relation between the integrands from Proposition 4.8 and
Proposition 4.12, and thus generalizes the last part of Example 4.10.

Proposition 4.14. LetX be an n-dimensional diffusion process as specified in Assumption 4.11. Assume
that n = d and that the inverse σ−1(t,X(t)) =

(
σ−1
ij (t,X(t))

)
i,j=1,...,n

exists for all t ∈ [0, T ∗] P-
almost surely. If Xi(t) ∈ D1,2 with Dt,jXk(t) = σkj(t,X(t)) for all i = 1, . . . , n, t ∈ [0, T ∗], and if
f : [0, T ∗] × Rn → R, (t, x) 7→ f(t, x), is a continuously differentiable function with bounded partial
derivatives, then for all t ∈ [0, T ∗] we have f(t,X(t)) ∈ D1,2 and

d∑
j=1

Dt,jf(t,X(t))σ−1
ji (t,X(t)) =

∂

∂xi
f(t,X(t)) ∀i = 1, . . . , n.

Proof. Using the chain rule (Proposition 1.2.3 in Nualart, 2006, p. 28) and Dt,jt = 0 (Theorem 2.2.1 in
Nualart, 2006, p. 119), it follows that

Dt,jf(t,X(t)) =
∂

∂t
f(t,X(t))Dt,jt+

n∑
k=1

∂

∂xk
f(t,X(t))Dt,jXk(t)

=
n∑
k=1

∂

∂xk
f(t,X(t))σkj(t,X(t)) ∈ D1,2.

This, together with
∑d

j=1 σkj(t,X(t))σ−1
ji (t,X(t)) = 1{k=i}, implies that

d∑
j=1

Dt,jf(t,X(t))σ−1
ji (t,X(t)) =

n∑
k=1

∂

∂xk
f(t,X(t))

d∑
j=1

σkj(t,X(t))σ−1
ji (t,X(t))

=
∂

∂xi
f(t,X(t)).

Thus, comparing parts i) – iv) of Propositions 4.8 and 4.12 – and possibly exchanging conditional
expectations and Malliavin derivative operators (Di Nunno et al., 2009, Proposition 3.12, p. 33) and
applying the product rule (Di Nunno et al., 2009, Theorem 3.4, p. 30) – it is easy to verify that the
respective expressions coincide if all assumptions are satisfied.

4.3 Diversification properties
It is well known that unsystematic mortality risk arising from finite insurance portfolios vanishes as the
number of policyholders goes to infinity, i.e. it is diversifiable. In the next proposition, we show that the
risk factor associated with unsystematic mortality risk within the MRT decomposition also satisfies this
property. On the one hand, this corroborates the adequacy of the MRT decomposition, and, on the other
hand, it allows for a crisp definition of unsystematic (mortality) risk within an insurance payoff. The
following lemma will simplify the proof.
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Lemma 4.15. Let T ∈ [0, T ∗] be fixed. If supt∈[0,T ] EP (µ2(t)) < ∞ and if
(
ψN(t)

)
0≤t≤T is a G-

predictable process with supt∈[0,T ] EP
([
ψN(t)

]4)
<∞, then

1

m

∫ T

0

ψN(t)dMN(t)
L2

−−−→
m→∞

0.

Proof. We need to show that

EP

([
1

m

∫ T

0

ψN(t)dMN(t)− 0

]2
)

=
1

m2
EP

([∫ T

0

ψN(t)dMN(t)

]2
)
−−−→
m→∞

0.

From Andersen et al. (1997, p. 78), we know that the predictable quadratic variation of MN(t) equals〈
MN ,MN

〉
(t) =

∫ t
0
(m − N(s−))µ(s)ds. Since MN(t) is a martingale, since ψN is assumed to be

predictable, and since by the calculations below EP
(∫ T

0

[
ψN(t)

]2
d
〈
MN ,MN

〉
(t)
)
< ∞, it follows

that
∫ T

0
ψN(t)dMN(t) is a square integrable martingale and that the Itô isometry applies (for both, see

Klebaner, 2005, p. 234) yielding

1

m2
EP

([∫ T

0

ψN(t)dMN(t)

]2
)

=
1

m2
EP

∫ T

0

[
ψN(t)

]2
(m−N(t−))︸ ︷︷ ︸

≤m

µ(t)dt


≤ 1

m
EP
(∫ T

0

[
ψN(t)

]2
µ(t)dt

)
.

(4.14)

Since by assumption C1 := supt∈[0,T ] EP
([
ψN(t)

]4)
< ∞ and C2 := supt∈[0,T ] EP (µ2(t)) < ∞, the

theorem of Fubini-Tonelli and the Cauchy-Schwarz inequality yield

EP
(∫ T

0

[
ψN(t)

]2
µ(t)dt

)
=

∫ T

0

EP
([
ψN(t)

]2
µ(t)

)
dt

Cauchy-Schwarz
≤

∫ T

0

√
EP
(
[ψN(t)]4

)
EP (µ2(t))dt ≤

∫ T

0

√
C1C2 = T

√
C1C2 =: C <∞.

Together with (4.14), we obtain

0 ≤ 1

m2
EP

([∫ T

0

ψN(t)dMN(t)

]2
)
≤ 1

m
EP
(∫ T

0

[
ψN(t)

]2
µ(t)dt

)
≤ 1

m
C −−−→

m→∞
0.

In order to show L2-convergence, the following proposition is restricted to bounded Ca and Cad.

Proposition 4.16. Assume the setting and assumptions from Proposition 4.8 with resulting unsystematic
mortality risks in part ii), iii), and iv) of, respectively,

R
(m)
n+1,ak = −

∫ tk

0

EP (eΓ(t)−Γ(tk)Ca,k
∣∣Gt) dMN(t),

R
(m)
n+1,a = −

∫ T

0

∫ T

t

EP (eΓ(t)−Γ(s)Ca(s)
∣∣Gt) ds dMN(t),

R
(m)
n+1,ad = −

∫ T

0

∫ T

t

[
EP (eΓ(t)−Γ(s)Cad(s)µ(s)

∣∣Gt) ds− Cad(t)] dMN(t).
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i) If Ca,k ∈ L4(P) and supt∈[0,tk] EP (µ2(t)) <∞, then 1
m
R

(m)
n+1,ak

L2

−−−→
m→∞

0.

ii) If supt∈[0,T ] EP (µ2(t)) <∞ and Ca is bounded, then 1
m
R

(m)
n+1,a

L2

−−−→
m→∞

0.

iii) If Cad is bounded, then 1
m
R

(m)
n+1,ad

L2

−−−→
m→∞

0.

The proof of Proposition 4.16 essentially checks the assumptions of Lemma 4.15 and can be found in
the Appendix. While unsystematic mortality risk diversifies, Proposition 4.19 shows that the remaining
risk factors also converge with the number of contracts, but in general not to zero, i.e. they are not
diversifiable. This confirms their interpretation as systematic risks, particularly since the limits no longer
depend on N(t). In applications, if the portfolio is sufficiently large, the limits can be used as risk
approximations.

Remark 4.17. Convergence in probability of the unsystematic risk factors (instead of L2-convergence)
can be shown under less restrictive assumptions, e.g. by applying the (stochastic) dominated conver-
gence theorem similarly as below for the systematic risk factors.

Lemma 4.18. If ζ = (ζ(t))0≤t≤T is G-predictable and
∫ T

0
ζ(t)2dt < ∞ almost surely, then for 0 ≤

tk ≤ T ≤ T ∗

1

m

∫ T

0

[
(m−N(t−))eΓ(t)

1[0,tk] + (m−N(tk))e
Γ(tk)

1(tk,T ]

]
ζ(t)dW (t)

P−−−→
m→∞

∫ T

0

ζ(t)dW (t),

where (W (t))0≤t≤T ∗ is a one-dimensional Brownian motion.

Proof. Define

ζm(t) :=

[
(m−N(t−))

m
eΓ(t)

1[0,tk](t) +
(m−N(tk))

m
eΓ(tk)

1(tk,T ](t)

]
ζ(t).

If ζm = (ζm(t))0≤t≤T , m ∈ N, are predictable processes with ζm(t)
a.s.−−−→

m→∞
ζ(t) for all t ∈ [0, T ], and if

there exists a W -integrable process α = (α(t))0≤t≤T such that |ζm(t)| ≤ α(t) for all m ∈ N, t ∈ [0, T ],
then the statement of the lemma follows by the dominated convergence theorem for stochastic integrals
(Protter, 2005, p. 176) . Since ζ and µ are by assumption predictable, it follows that ζm is predictable
for each m ∈ N. Furthermore, since the remaining lifetimes τ ix, i ∈ N, are assumed to be conditionally
i.i.d., a conditional version of Kolmogorov’s strong law of large numbers (Majerek et al., 2005, p. 154)
together with the continuity of µ(t) yields that

m−N(t−)

m

a.s.−−−→
m→∞

e−
∫ t
0 µ(s)ds.

As a result, ζm(t)
a.s.−−−→

m→∞
ζ(t) for all t ∈ [0, T ]. Furthermore, since m−N(t−)

m
≤ 1 and µ(t) is positive for

all t ∈ [0, T ], we have

|ζm(t)| ≤
[
eΓ(t)

1[0,tk](t) + eΓ(tk)
1(tk,T ](t)

]
|ζ(t)| ≤ eΓ(T ) |ζ(t)| =: α(t).

Since µ(t) has continuous paths (particularly on [0,T]), it follows that e2Γ(T ) < ∞ a.s. Together with
the assumption

∫ T
0
ζ(t)2dt < ∞ a.s., we obtain that

∫ T
0
α(t)2dt < ∞ with probability one. Since α

is also G-predictable, this implies that α is W -integrable (Klebaner, 2005, p. 96), and the statement
follows.
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Proposition 4.19. Assume the setting and assumptions from Proposition 4.8 with resulting systematic
risks in part ii), iii), and iv) of

R
(m)
i, · :=

∫ T

0

[
(m−N(t−))eΓ(t)

1[0,tk](t) + (m−N(tk))e
Γ(tk)

1(tk,T ](t)
] d∑
j=1

ϕj, ·(t)σ
−1
ji (t) dMW

i (t),

where 0 ≤ T ≤ T ∗, and for the different parts

ϕj, ak(t) = EP (Dt,j

(
e−Γ(tk)Ca,k

)∣∣Gt) (part ii)),

ϕj, a(t) =

∫ T

t

EP (Dt,j

(
e−Γ(s)Ca(s)

)∣∣Gt) ds (part iii) where tk = T ),

ϕj, ad(t) =

∫ T

t

EP (Dt,j

(
e−Γ(s)Cad(s)µ(s)

)∣∣Gt) ds (part iv) where tk = T ).

Then it follows for i = 1, . . . , n:

1

m
R

(m)
i, ·

P−−−→
m→∞

∫ T

0

d∑
j=1

ϕj, ·(t)σ
−1
ji (t)dMW

i (t).

The proof of Proposition 4.19 is based on Lemma 4.18 and is relegated to the Appendix. The following
corollary emphasizes that the limits of the considered risk factors exactly equal the risk factors of the
limit of the corresponding total risk, i.e. MRT decomposition and limit can be interchanged. The proof
of this statement can again be found in the Appendix.

Corollary 4.20. Assume the setting and assumptions from Proposition 4.8 with total risks in part ii),
iii), and iv) of, respectively,

L
(m)
0, ak := (m−N(tk))Ca,k, L

(m)
0, a :=

∫ T

0

(m−N(t))Ca(t)dt, L
(m)
0, ad :=

∫ T

0

Cad(t)dN(t).

Then the following holds:

i)
1

m
L

(m)
0, ·

a.s.−−−→
m→∞

EP
(
L

(1)
0, ·

∣∣∣GT ∗

)
.

ii) Defining the MRT decompositions

• (L
(m)
0, · − EP(L

(m)
0, · ), X1, . . . , Xn, N)

MRT↔ (R
(m)
1, · , . . . , R

(m)
n+1, ·), m ∈ N, and

• (EP(L
(1)
0, ·|GT ∗)− EP(L

(1)
0, ·), X1, . . . , Xn, N)

MRT↔ (R∗1, ·, . . . , R
∗
n+1, ·),

and additionally assuming the respective assumptions of Proposition 4.16, then it follows for i =
1, . . . , n+ 1:

1

m
R

(m)
i, ·

P−−−→
m→∞

R∗i, · .
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5 Numerical example
In order to demonstrate the applicability and usefulness of the MRT decomposition, we derive the equity,
interest, systematic, and unsystematic mortality risk factor of a return-of-premium GMDB within a
Variable Annuity (VA). VAs are deferred, fund-linked annuity contracts, and GMDBs are common
embedded riders that guarantee a minimal amount paid upon the policyholder’s death (see Bauer et al.
(2008) for details on VAs with guaranteed minimum benefits).

We assume that the VA is offered against a single premium P0 paid at time 0, which is fully invested
in a fund S = (S(t))0≤t≤T ∗ modeled as a geometric Brownian motion with drift µS and volatility σS:

dS(t) = µSS(t)dt+ σSS(t)dWS(t), S(0) > 0,

where WS = (WS(t))0≤t≤T ∗ denotes a P-Brownian motion. In case the policyholder dies during the
deferment period [0, T ], the GMDB guarantees that the death benefit paid at the end of the year of death
equals at least the single premium P0 (return of premium death benefit). We focus on the insurer’s risk
from the GMDB guarantee and assume that the company charges no fee for this embedded rider. Thus,
the policyholder’s account value equals A(t) = P0

S(0)
S(t), t ∈ [0, T ], and if identical contracts are issued

to m homogeneous individuals, the total discounted loss of the insurance company amounts to

L0 =
T∑
k=1

(N(tk)−N(tk−1)) e−
∫ tk
0 r(s)ds max{P0 − A(tk), 0}, (5.1)

where r(t) denotes the short rate, and tk = k, k = 0, 1, . . . , T. We can interpret L0 as the (stochastic)
amount of money the insurance company needs at time 0 for covering the GMDB liabilities given
it invests in the bank account. Note that a single upfront fee on top of P0 would not change L =
L0 − EP(L0) thus leading to the same MRT decomposition.

The short rate r = (r(t))0≤t≤T ∗ is assumed to follow a positive Cox-Ingersoll-Ross (CIR) process

dr(t) = κ(θ − r(t))dt+ σr
√
r(t)dWr(t), r(0) > 0,

where κ, θ, σr ∈ R, 2κθ ≥ σ2
r , and Wr = (Wr(t))0≤t≤T ∗ is a P-Brownian motion. Since r is an affine

process, it follows that

EP
(
e−

∫ T
t r(s)ds

∣∣∣Gt) = eαr(t,T )−βr(t,T )r(t), T ∈ [t, T ∗],

where (Brigo and Mercurio, 2006, p. 66):

αr(t, T ) = 2κθ
σ2
r
log

(
2he(κ+h)

T−t
2

2h+(κ+h)(eh(T−t)−1)

)
, βr(t, T ) = 2(eh(T−t)−1)

2h+(κ+h)(eh(T−t)−1)
, h =

√
κ2 + 2σ2

r .

Following Dahl and Møller (2006), we assume that under P the mortality intensity process µ =
(µ(t))0≤t≤T ∗ follows a positive time-inhomogeneous CIR process

dµ(t, x) = (γ(t, x)− δ(t, x)µ(t, x))dt+ σµ(t, x)
√
µ(t, x)dWµ(t), µ(0, x) = µ0(x),

where x denotes the policyholder’s age at time 0, Wµ = (Wµ(t))0≤t≤T ∗ is a P-Brownian motion, the ini-
tial mortality intensities µ0(x+ t) = a+ bcx+t are assumed to follow the Gompertz-Makeham mortality
law, and

γ(t, x) =
1

2
σ̂2µ0(x+ t), δ(t, x) = δ̂ −

d
dt
µ0(x+ t)

µ0(x+ t)
, σµ(t, x) = σ̂

√
µ0(x+ t),
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for some deterministic parameters a, b, c, δ̂, and σ̂. The specified mortality intensity process is again
affine so that EP

(
e−

∫ T
t µ(s,x)ds

∣∣∣Gt) = eαµ(t,T,x)−βµ(t,T,x)µ(t,x), T ∈ [t, T ∗], where αµ and βµ satisfy the
ordinary differential equations specified in Proposition 3.1 of Dahl and Møller (2006, p. 197). In what
follows, we only consider a single age cohort, i.e. we fix the initial age x, so that we no longer indicate
the dependency on the age cohort but just write µ(t) and σµ(t).

Since we assume that WS, Wr, and Wµ are independent, one-dimensional Brownian motions, the
volatility function of the process X := (S, r, µ)> is σ(t, x) = diag{σSx1, σr

√
x2, σµ(t)

√
x3}. Thus, it

follows that detσ(t, x) 6= 0 for all t ∈ [0, T ∗] and all values x the process X(t), t ∈ [0, T ∗], assumes.
For deriving the MRT decomposition of L0 defined in (5.1), first note that L0 can be rewritten as

L0 =
T∑
k=1

(m−N(tk−1)) e−
∫ tk
0 r(s)ds max{P0 − A(tk), 0}

−
T∑
k=1

(m−N(tk)) e
−

∫ tk
0 r(s)ds max{P0 − A(tk), 0},

(5.2)

i.e. it is a sum of survival benefits. Since X is a Markov process, we can define the functions

fA1
k (t, x) := EP

(
e−

∫ tk−1
t µ(s,X(s))dse−

∫ tk
t r(s)ds max{P0 − A(tk), 0}

∣∣∣X(t) = x
)
, 0 ≤ t ≤ tk−1,

fB1
k (t, x) := EP

(
e−

∫ tk
t r(s)ds max{P0 − A(tk), 0}

∣∣∣X(t) = x
)
, 0 ≤ t ≤ tk,

fA2
k (t, x) := EP

(
e−

∫ tk
t [r(s)+µ(s,X(s))]ds max{P0 − A(tk), 0}

∣∣∣X(t) = x
)
, 0 ≤ t ≤ tk,

which can be simplified by using the independence of S, r, and µ, as well as exploiting the log-normal
distribution of S, and the affine property of r and µ. This immediately shows that all three functions are
sufficiently smooth, so that we can apply Proposition 4.12 ii). We obtain the MRT decomposition

L = L0 − EP(L0) =
n+1∑
i=1

Ri,

where the systematic risk factors implied by Xi, i = 1, 2, 3, are given by

Ri =
T∑
k=1

(∫ tk−1

0

(m−N(t−))e−
∫ t
0 r(s)ds

∂

∂xi
fA1
k (t,X(t))dMW

i (t)

+

∫ tk

tk−1

(m−N(tk−1))e−
∫ t
0 r(s)ds

∂

∂xi
fB1
k (t,X(t))dMW

i (t)

)

−
T∑
k=1

∫ tk

0

(m−N(t−))e−
∫ t
0 r(s)ds

∂

∂xi
fA2
k (t,X(t))dMW

i (t),

respectively, and the unsystematic mortality risk factor is given by

R4 = −
T∑
k=1

∫ tk−1

0

e−
∫ t
0 r(s)dsfA1

k (t,X(t))dMN(t) +
T∑
k=1

∫ tk

0

e−
∫ t
0 r(s)dsfA2

k (t,X(t))dMN(t).

For the numerical calculations, we consider m = 100 GMDB contracts with maturity T = 15 and
single premium P0 = 100,000. All policyholders are assumed to be of age x = 50 at time 0.We perform
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N = 100,000 simulations for determining the distributions of L,R1, R2, R3, and R4. For projecting the
risk drivers r and µ as well as for approximating the stochastic integrals, we use an Euler scheme
with n = 100 time steps per year. The number of survivors in the portfolio is projected by means of
the binomial distribution conditioned on the mortality intensities. The ODEs implied by the mortality
model are solved numerically. With respect to the mortality model, we adopt the parameter values for
year 2003, case II, males, from Tables 1 to 3 in Dahl and Møller (2006, p. 211): a = 0.000134, b =
0.0000353, c = 1.1020, δ̂ = 0.008, and σ̂ = 0.02. For the interest model, we assume κ = 0.2, θ =
0.025, σr = 0.075, and r(0) = 0.0029. Thus, the Feller condition 2κθ > σ2

r is satisfied. The parameters
of the geometric Brownian motion are set to µS = 0.06 and σS = 0.22.

We focus on the distributions scaled by the number of policyholders in the portfolio and the single
premium, i.e. we consider L := 1

mP0
L, Ri := 1

mP0
Ri, i = 1, . . . , 4. The resulting empirical distribution

functions of the total risk L, the fund risk R1, the interest risk R2, the systematic mortality risk R3, and
the unsystematic mortality risk R4 are shown in Figure 5.1(a). We find that the distribution function of
the fund risk factor is right-skewed while the distribution functions of all other risk factors are approx-
imately symmetric. Moreover, the plots indicate that the fund is the most relevant risk driver since the
distribution of the risk factor closely resembles the distribution of the total risk. This seems intuitive
since the fund value determines whether and to what extent the GMDB guarantee is in the money in
case of death.

For m = 100 contracts, the randomness of the number of deaths within [0, T ], which trigger possible
payoffs, also seems to be rather high: The range of likely outcomes of the unsystematic mortality risk
factor is rather wide compared to the ranges of the interest risk factor and the systematic mortality risk
factor. To further illustrate their relationship, we sort the respective outcomes into equally spaced bins
of size 1e-4 and plot the corresponding relative frequencies in Figure 5.1(b). We observe that the tails of
the interest risk are heavier than the tails of the systematic mortality risk, but considerably lighter than
the tails of the unsystematic mortality risk.
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Figure 5.1: GMDB portfolio with m = 100 contracts.

The resulting decomposition can now be used to allocate risk capital as cast by a homogeneous risk
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measure to the different sources of risk via the so-called Euler principle (see Bauer and Zanjani (2013)
for an extensive discussion on allocation principles and Karabey et al. (2014) for a related application).
More precisely, for a homogeneous risk measure ρ, Euler’s homogeneous function theorem yields

ρ(L) =
4∑
i=1

∂ρ
(
a1R1 + a2R2 + a3R3 + a4R4

)
∂ai

∣∣∣∣∣
a1=a2=a3=a4=1

, (5.3)

and each summand can be interpreted as the risk contribution of the respective risk factor.
Table 5.1 provides results for three risk measures: standard deviation (Std. Dev.), Value-at-Risk at the

99% level (VaR0.99), and Tail-Value-at-Risk at the 99% level (TVaR0.99). For each risk measure, we
report the total risk capital ρ(L) (per unit per contract) as well as the risk factor contributions according
to the Euler principle (absolute and as a percentage of the sum of the four risk contributions), where we
use finite difference approximations for the derivatives in (5.3). As a result of the numerical approxima-
tion, the allocated values do not perfectly add up to the total risk capital ρ(L), although the deviation is
small (0.0002 for VaR).

L R1 R2 R3 R4

(total) (fund) (interest) (syst. mort.) (unsyst. mort.)

Std. Dev. abs. 0.0179 0.0160 0.0001 0.0000 0.0018
perc. 89.3% 0.3% 0.2% 10.1%

VaR0.99 abs. 0.0675 0.0553 0.0005 0.0002 0.0117
perc. 81.7% 0.8% 0.2% 17.3%

TVaR0.99 abs. 0.0813 0.0592 0.0008 0.0004 0.0208
perc. 72.9% 1.0% 0.5% 25.6%

Table 5.1: The total risk capital and the Euler risk contributions for a GMDB portfolio with m = 100
contracts in absolute terms (abs.), and relative to the sum of the four Euler risk contributions (perc.).

The allocated risk contributions confirm our observations from the empirical distribution functions and
the relative frequencies. The fund risk makes up between about 73% and 89% of the total risk capital,
depending on the measure, whereas unsystematic mortality risk is the second-most significant factor
accounting for between roughly 10% and 26%. It appears that unsystematic mortality risk becomes
more relevant in the tail of the aggregate risk, which is intuitive since high losses can only occur if the
policyholder actually dies. The risk contributions of interest and systematic mortality together amount
to only about 1% of the total risk for all measures.

This order changes when increasing the number of policies within the insurer’s portfolio since unsys-
tematic mortality risk is diversifiable (cf. Section 4.3). For instance, Figure 5.2 illustrates the distribution
functions of the four risk factors and the total risk for a portfolio of 10,000 policies. While the fund risk
still is the dominant risk factor, now unsystematic mortality risk exhibits the most concentrated distribu-
tion – and thus the smallest risk contribution. Interest rate risk and systematic mortality risk now present
the second- and third-most important risk factors, although their influence seems marginal relative to
the total risk. However, it is important to keep in mind that fund risk may be hedged, whereas at least
for the systematic mortality risk hedging opportunities are scarce. We leave the further exploration of
risk decompositions of hedged positions for future research (for a more detailed study in the context of
annuitization options based on the methods presented in this paper, see Schilling (2015)).
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Figure 5.2: Empirical distribution functions of the total risk L and the risk factors R1, R2, R3, and R4

for a GMDB portfolio with m = 10,000 contracts.

6 Conclusion
The present paper provides a detailed analysis of risk decomposition methods which allocate the risk in
(life) insurance liabilities to risk factors associated with different sources of uncertainty. For evaluating
the usefulness of different approaches, we introduce a list of properties we posit a meaningful risk
decomposition should satisfy. Then we propose a decomposition method, labeled MRT decomposition,
that satisfies all of these desirable properties – as opposed to other approaches applied in the quantitative
insurance literature.

The introduced MRT decomposition method is based on martingale representation. We discuss ex-
istence, uniqueness, and its calculation in a relatively general life insurance setting with an arbitrary
(finite) insurance portfolio modeled by a counting process and an insurance payoff entailing discrete
as well as continuous survival and death benefits. The (systematic) sources of risk are assumed to be
driven by a finite-dimensional Brownian motion. We derive explicit formulas for the decomposition by
means of the Clark-Ocone formula from Malliavin calculus in the general case and by Itô’s lemma for
diffusion processes in the Markov case. We also show that the unsystematic mortality risk as specified
by the MRT decomposition is diversifiable, i.e. it vanishes as the portfolio increases, whereas the sys-
tematic risk factors approach a non-zero limit. As an example we provide the MRT decomposition of a
Variable Annuity policy with return-of-premium Guaranteed Minimum Death Benefit.

Extensions include the generalization of the setting to a broader class of driving processes. This seems
particularly relevant for the application in non-life insurance. Moreover, the considered decomposition
approaches from literature are all static in nature, which translates to our list of desirable properties,
whereas the MRT decomposition is already formulated time-dynamically. A closer look at this aspect
in future research might be worthwhile. Finally, the application of the methods in this paper to study
the risk drivers of advanced insurance guarantees such as Guaranteed Annuity Options or Guaranteed
Minimum Income Benefits and Guaranteed Lifetime Withdrawal Benefits within Variable Annuities
present interesting problems for applied research.
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Appendix: Proofs
Proof of Lemma 3.3. i) Since the drift vector θ is G-adapted with continuous paths, it follows that

AWi is a predictable finite variation process. Since MW
i is a local martingale and Xi(t) = Xi(0) +

MW
i (t) + AWi (t) for all t ∈ [0, T ∗], AWi is a compensator of Xi. The uniqueness follows by

Theorem 34 in Protter (2005, p. 130).

ii) From the assumptions, AN is a predictable finite variation process and MN is a martingale (for
the latter, cf. Bielecki and Rutkowski, 2004, p. 153). Thus, AN is a compensator of N and the
uniqueness again follows by Theorem 34 in Protter (2005, p. 130).

Proof of Lemma 4.5. Since U = (U(t))0≤t≤T ∗ with U(t) := EP
(
e−Γ(T )F

∣∣Gt) is a G-martingale, it
follows by the martingale representation theorem that there exist predictable processes ϕ1, . . . , ϕd such
that (4.4) holds.

We first show the lemma for a single policyholder with remaining lifetime τ ix, i.e.m = 1 and F = G∨Ii
for some arbitrary but fixed i ∈ {1, . . . ,m}. Define Li(t) := 1{τ ix>t}e

Γ(t) and L̃i(t) := EP (Li(T )| Ft) .
Since Li(t) is an F-martingale (Bielecki and Rutkowski, 2004, p. 152), it follows that L̃i(t) = Li(t) for
t ≤ T and L̃i(t) = Li(T ) for t ≥ T. Furthermore, U(T ∗) = e−Γ(T )F, which implies Zi := 1{τ ix>T}F =

L̃i(T
∗)U(T ∗). Thus, applying the Itô integration by parts formula (Protter, 2005, p. 68) to the product

L̃i(t)U(t) and considering the continuity of U(t) yields

Zi = L̃i(0)U(0) +

∫ T ∗

0

L̃i(t−)dU(t) +

∫ T ∗

0

U(t)dL̃i(t) + [L̃i, U ](T ∗)

= Li(0)U(0) +

∫ T ∗

0

[
Li(t−)1[0,T ](t) + Li(T )1(T,T ∗](t)

]
dU(t) +

∫ T

0

U(t)dLi(t) + [Li, U ](T ),

(A.1)

where the second equality follows from the definition of L̃i. Using 1{τ ix>0} = 1 a.s. (which follows from
the assumptions on µ), (3.2), and the GT ∗-measurability of F, we have that

Li(0)U(0)
a.s.
= EP (e−Γ(T )F

)
= EP (EP (

1{τ ix>T}
∣∣GT ∗

)
F
)

= EP (
1{τ ix>T}F

)
= EP(Zi).

Also note that

MN
i (t) := 1{τ ix≤t} −

∫ t

0

1{τ ix>s−}µ(s)ds = 1{τ ix≤t} −
∫ t∧τ ix

0

µ(s)ds.

Thus, since the G-adapted cumulative mortality intensity Γ of τ ix is continuous and increasing, Proposi-
tion 5.1.3 (i) from Bielecki and Rutkowski (2004, p. 153) implies that

dLi(t) = −Li(t−)dMN
i (t).
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Plugging in the definitions of Li and MN
i , this can be further written as

dLi(t) = −eΓ(t)
(
1{τ ix>t−}d1{τ ix≤t} − 1{τ ix>t−}1{τ ix>t}µ(t)dt

)
= −eΓ(t)dMN

i (t).

Moreover, [Li, U ](t) = 0 for every t ∈ [0, T ∗] (Bielecki and Rutkowski, 2004, p. 160). Thus, using the
martingale representation of U(t), Equation (A.1) becomes

Zi = EP(Zi) +
d∑
j=1

∫ T ∗

0

[
Li(t−)1[0,T ](t) + Li(T )1(T,T ∗](t)

]
ϕj(t)dWj(t)−

∫ T

0

U(t)eΓ(t)dMN
i (t).

Together with the continuity and adaptedness of µ, this proves the statement of the proposition for any
single policyholder.

In the portfolio case, where F = G ∨
∨m
i=1 Ii, the conditional independence of the τ ix’s implies

that EP (Zi| Ft) = EP (Zi| Gt ∨ I it) . Thus, by using the conditionally identical distribution of τ ix, i =
1, . . . ,m, the proposition follows for the entire portfolio from applying the previous part of the proof to
each summand of Z =

∑m
i=1 1{τ ix>T}F separately and adding the respective decompositions.

Proof of Lemma 4.6. Note that by the martingale representation theorem, there exist predictable pro-
cesses ϕ1, . . . , ϕd such that (4.6) holds. Again, we first show the statement for a single policyholder
with remaining lifetime τ ix, i.e. m = 1 and F = G ∨ Ii for an arbitrary but fixed i ∈ {1, . . . ,m}. Since
F is assumed to be G-predictable with EP

(
supt∈[0,T ] |F (t)|

)
<∞, it follows from Proposition 5.1.2 in

Bielecki and Rutkowski (2004, p. 149) that

EP
(∫ T

0

1{τ ix>v}F (v)dv

∣∣∣∣Ft)
=

∫ t

0

1{τ ix>v}F (v)dv + Li(t) EP
(∫ T

t

e−Γ(v)F (v)dv

∣∣∣∣Gt)
=

∫ t

0

1{τ ix>v}F (v)dv − Li(t)
∫ t

0

e−Γ(v)F (v)dv + Li(t) EP
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gt) , (A.2)

where Li(t) := 1{τ ix>t}e
Γ(t). Note that Proposition 5.1.2 in Bielecki and Rutkowski (2004) actually

requires
∫ T

0
F (s)ds to be bounded. However, via dominated convergence it can be shown that the result

still holds if F satisfies EP
(
supt∈[0,T ] |F (t)|

)
< ∞ (Biagini et al. (2012, p. 22) already point out a

possible relaxation to EP
(
supt∈[0,T ] |F (t)|2

)
<∞).

As in the proof of Lemma 4.5, it follows by applying integration by parts that

Li(t)

∫ t

0

e−Γ(v)F (v)dv =

∫ t

0

1{τ ix>s−}F (s)ds−
∫ t

0

(∫ s

0

e−Γ(v)F (v)dv

)
eΓ(s)dMN

i (s),

and

Li(t) EP
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gt) = EP
(∫ T

0

e−Γ(v)F (v)dv

)
+

d∑
i=1

∫ t

0

1{τ ix>s−}e
Γ(s)ϕi(s)dWi(s)

−
∫ t

0

EP
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gs) eΓ(s)dMN
i (s)
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where MN
i (t) := 1{τ ix≤t} −

∫ t
0
1{τ ix>s−}µ(s)ds. Summing up the representations of all summands from

(A.2) and using the FT -measurability of
∫ T

0
1{τ ix>v}F (v)dv, we obtain∫ T

0

1{τ ix>v}F (v)dv = EP
(∫ T

0

e−Γ(v)F (v)dv

)
+

d∑
i=1

∫ T

0

1{τ ix>t−}e
Γ(t)ϕi(t)dWi(t)

−
∫ T

0

EP
(∫ T

t

eΓ(t)−Γ(v)F (v)dv

∣∣∣∣Gt) dMN
i (t).

(A.3)

Since we assume that EP
(
supt∈[0,T ] |F (t)|

)
< ∞, the theorem of Fubini-Tonelli together with the con-

struction of τ ix implies that

EP
(∫ T

0

e−Γ(v)F (v)dv

)
= EP

(∫ T

0

1{τ ix>v}F (v)dv

)
,

and the theorem of Fubini-Tonelli for conditional expectations yields∫ T

0

EP
(∫ T

t

eΓ(t)−Γ(v)F (v)dv

∣∣∣∣Gt) dMN
i (t) =

∫ T

0

∫ T

t

EP (eΓ(t)−Γ(v)F (v)
∣∣Gt) dv dMN

i (t),

so that (4.7) follows from (A.3).
Next we prove expression (4.8). By the martingale representation theorem, there exist for every

v ∈ [0, T ] G-predictable processes ϕv1, . . . , ϕ
v
d such that

EP (e−Γ(v)F (v)
∣∣Gt) = EP (e−Γ(v)F (v)

)
+

d∑
i=1

∫ t

0

ϕvi (u)1[0,v](u)dWi(u), t ∈ [0, T ].

Thus, using the theorem of Fubini-Tonelli and the stochastic Fubini theorem (Protter, 2005, Theo-
rem 65), it follows that

EP
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gt) =

∫ T

0

EP (e−Γ(v)F (v)
∣∣Gt) dv

=

∫ T

0

EP (e−Γ(v)F (v)
)
dv +

d∑
i=1

∫ T

0

∫ t

0

ϕvi (u)1[0,v](u)dWi(u) dv

= EP
(∫ T

0

e−Γ(v)F (v)dv

)
+

d∑
i=1

∫ t

0

∫ T

0

ϕvi (u)1[0,v](u)dv dWi(u),

where for applying the stochastic Fubini theorem it is sufficient to note that

EP
(∫ t

0

∫ T

0

[ϕvi (u)]2 1[0,v](u)dv du

)
≤
∫ T

0

EP
(∫ T

0

[ϕvi (u)]2 1[0,v](u)du

)
dv

≤ T sup
v∈[0,T ]

EP
(∫ T

0

[ϕvi (u)]2 1[0,v](u)du

)
≤ T sup

v∈[0,T ]

EP
([
e−Γ(v)F (v)

]2)
≤ T sup

v∈[0,T ]

EP ([F (v)]2
)
<∞.

The uniqueness of the martingale representation finally implies (4.8).
By the conditional independence assumption on τ ix, i = 1, . . . ,m, we have in the portfolio case

with F = G ∨
∨m
i=1 Ii that EP

(∫ T
0
1{τ ix>v}F (v)dv

∣∣∣Ft) = EP
(∫ T

0
1{τ ix>v}F (v)dv

∣∣∣Gt ∨ I it) . Thus,
the statement for the portfolio directly follows by applying the obtained equation to each summand∫ T

0
1{τ ix>v}F (v)dv, i = 1, . . . ,m, separately and adding the respective decompositions.
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Proof of Lemma 4.7. Note that by the martingale representation theorem, there exist predictable pro-
cesses ϕ1, . . . , ϕd such that (4.9) holds. Since F is continuous, it follows from the definition of Lebesgue
integrals that

Z =

∫ T

0

F (v)dN(v) =
m∑
i=1

1{τ ix≤T}F (τ ix). (A.4)

Again, we first show the statement for a single policyholder with remaining lifetime τ ix, i.e. m = 1 and
F = G ∨ Ii for an arbitrary but fixed i ∈ {1, . . . ,m}. Note that 1{τ ix≤t}F (τ ix) is Ft-measurable, so that

EP (
1{τ ix≤T}F (τ ix)

∣∣Ft) = EP (
1{t<τ ix≤T}F (τ ix)

∣∣Ft)+ 1{τ ix≤t}F (τ ix). (A.5)

Since F is assumed to be G-predictable with EP
(
supt∈[0,T ] |F (t)|

)
<∞, it follows from Corollary 5.1.3

in Bielecki and Rutkowski (2004, p. 148) that

EP (
1{t<τ ix≤T}F (τ ix)

∣∣Ft) = 1{τ ix>t}E
P
(∫ T

t

eΓ(t)−Γ(v)F (v)dΓ(v)

∣∣∣∣Gt)
= Li(t)E

P
(∫ T

0

e−Γ(v)F (v)dΓ(v)

∣∣∣∣Gt)− Li(t)∫ t

0

e−Γ(v)F (v)dΓ(v),

whereLi(t) := 1{τ ix>t}e
Γ(t).Again, Proposition 5.1.1 and thus Corollary 5.1.3 in Bielecki and Rutkowski

(2004, p. 148) actually require F to be bounded, but a generalization to non-bounded F satisfying
EP
(
supt∈[0,T ] |F (t)|

)
< ∞ can be shown via dominated convergence (Biagini et al. (2012, p. 19) al-

ready point out a possible relaxation to EP
(
supt∈[0,T ] |F (t)|2

)
< ∞). As in the proof of Lemma 4.5, it

then follows by applying integration by parts to both addends that

EP (
1{t<τ ix≤T}F (τ ix)

∣∣Ft)
= EP

(∫ T

0

e−Γ(v)F (v)dΓ(v)

)
+

d∑
i=1

∫ t

0

1{τ ix>s−}e
Γ(s)ϕi(s)dWi(s)

−
∫ t

0

EP
(∫ T

s

eΓ(s)−Γ(v)F (v)dΓ(v)

∣∣∣∣Gs) dMN
i (s)−

∫ t

0

1{τ ix>s}F (s)dΓ(s),

where MN
i (t) := 1{τ ix≤t} −

∫ t
0
1{τ ix>s−}µ(s)ds. On the other hand, we obtain by (A.4) that

1{τ ix≤t}F (τ ix) =

∫ t

0

F (s)d1{τ ix≤s} =

∫ t

0

F (s)dMN
i (s) +

∫ t

0

F (s)1{τ ix>s}dΓ(s).

Summing up the representations of the two summands from Equation (A.5) and using theFT -measurability
of 1{τ ix≤T}F (τ ix), we obtain

1{τ ix≤T}F (τ ix) = EP
(∫ T

0

e−Γ(v)F (v)dΓ(v)

)
+

d∑
i=1

∫ T

0

1{τ ix>t−}e
Γ(t)ϕi(t)dWi(t)

−
∫ T

0

[
EP
(∫ T

t

eΓ(t)−Γ(v)F (v)dΓ(v)

∣∣∣∣Gt)− F (t)

]
dMN

i (t).

(A.6)

Corollary 5.1.3 in Bielecki and Rutkowski (2004) implies that

EP
(∫ T

0

e−Γ(v)F (v)dΓ(v)

)
= EP (

1{τ ix≤T}F (τ ix)
)
,
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and since EP
(∫ T

t
|F (v)| eΓ(t)−Γ(v)µ(v)dv

)
≤ EP

(
supv∈[0,T ] |F (v)|

)
< ∞, the theorem of Fubini-

Tonelli for conditional expectations yields

EP
(∫ T

t

F (v)eΓ(t)−Γ(v)dΓ(v)

∣∣∣∣Gt) =

∫ T

t

EP (F (v)eΓ(t)−Γ(v)µ(v)
∣∣Gt) dv,

so that (4.10) follows from (A.6). The proof of expression (4.11) works analogously to the proof of
(4.8), additionally using the Cauchy-Schwarz inequality.

By the conditional independence assumption on τ ix, i = 1, . . . ,m, we have in the portfolio case with
F = G ∨

∨m
i=1 Ii that EP

(
1{τ ix≤T}F (τ ix)

∣∣Ft) = EP
(
1{τ ix≤T}F (τ ix)

∣∣Gt ∨ I it) . Thus, the statement for
the portfolio directly follows by applying the obtained equation to each summand 1{τ ix≤t}F (τ ix), i =
1, . . . ,m, separately and adding the respective decompositions.

Proof of Proposition 4.12. Since n = d, detσ(t,X(t)) 6= 0 for all t ∈ [0, T ∗] P-almost surely, and each
L0 is square integrable as a result of the respective assumptions, the uniqueness of the decompositions
follows by Proposition 4.1. Furthermore, Assumption 4.11 implies that X is a Markov process, which
together with the factorization lemma yields for all cases i) to iv) below that

EP ( ·| Gt) = EP ( ·|X(t)) (A.7)

is a function of X(t). Define G(t) :=
∫ t

0
g(s,X(s))ds, 0 ≤ t ≤ T, and note that (Shreve, 2004, p. 480)

d[G,G](t) = d[G,Γ](t) = d[Γ,Γ](t) = d[G,Xi](t) = d[Γ, Xi](t) = 0. (A.8)

i) The assumption on the form of C0 together with (A.7) yields that

EP (C0| Gt) = e−G(t)EP
(
e−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣Gt) = e−G(t)f(t,X(t))

=: f̃(t, G(t), X(t)).

Since f is assumed to be smooth, this holds for f̃ as well. Thus, Itô’s formula yields for 0 ≤ t ≤ T
(Theorem 33 in Protter, 2005, p. 81)

EP (C0| Gt)− EP (C0) =
n∑
i=1

∫ t

0

e−G(s) ∂f

∂xi
(s,X(s))dMW

i (s) +

∫ t

0

a(s)ds,

where a = (a(t))0≤t≤T ∗ is short-hand for all ds-quantities. We have used (A.8) and that
(t, G(t), X(t)) has continuous paths. The right-hand side EP (C0| Gt) − EP (C0) is a martingale.
On the other hand, the stochastic integrals with respect to MW

i , i = 1, . . . , n, are martingales as
well. Thus, it follows by the uniqueness of the Doob-Meyer decomposition (Theorem 16 in Protter,
2005, p. 116) that the ds-term vanishes. Since C0 is GT -measurable, the statement follows.

ii) In both cases, T > tk and T ≤ tk, we derive the MRT decomposition with the help of Lemma 4.5.
Thus, we mainly need to determine the MRT decomposition of e−Γ(tk)Ca,k less its expectation.

(a) If T > tk, we consider the decomposition

e−Γ(tk)Ca,k − EP (e−Γ(tk)Ca,k
)

=
[
e−Γ(tk)EP (Ca,k| Gtk)− EP (e−Γ(tk)Ca,k

)]
+ e−Γ(tk)

[
Ca,k − EP (Ca,k| Gtk)

]
,

(A.9)

and separately derive the MRT decompositions of the two parts.
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The assumption on the form of Ca,k together with (A.7) yield for 0 ≤ t ≤ tk that

EP (e−Γ(tk)EP (Ca,k| Gtk)
∣∣Gt) = e−Γ(t)e−G(t)EP (eΓ(t)−Γ(tk)eG(t)−G(T )h(X(T ))

∣∣Gt)
= e−Γ(t)e−G(t)fA(t,X(t))

=: f̃A(t,Γ(t), G(t), X(t)).

Since fA is assumed to be smooth, this holds for f̃A as well. Thus, Itô’s formula yields for
0 ≤ t ≤ tk (Theorem 33 in Protter, 2005, p. 81)

EP (e−Γ(tk)EP (Ca,k| Gtk)
∣∣Gt)− EP (e−Γ(tk)EP (Ca,k| Gtk)

)
=

n∑
i=1

∫ t

0

e−Γ(s)e−G(s)∂f
A

∂xi
(s,X(s))dMW

i (s) +

∫ t

0

a(s)ds,

where a = (a(t))0≤t≤T ∗ is short-hand for all ds-quantities. We have used (A.8) and that
(t,Γ(t), G(t), X(t)) has continuous paths. By the same arguments as in i) the ds-term van-
ishes, and since e−Γ(tk)EP (Ca,k| Gtk) is Gtk-measurable, it follows that

e−Γ(tk)EP (Ca,k| Gtk)− EP (e−Γ(tk)Ca,k
)

=
n∑
i=1

∫ tk

0

e−Γ(s)e−G(s)∂f
A

∂xi
(s,X(s))dMW

i (s).

Furthermore, applying part i) to Ca,k it holds that

e−Γ(tk)
[
Ca,k − EP (Ca,k| Gtk)

]
=

n∑
i=1

∫ T

tk

e−Γ(tk)e−G(s)∂f
B

∂xi
(s,X(s))dMW

i (s).

In total, by (A.9) we have

e−Γ(tk)Ca,k − EP (e−Γ(tk)Ca,k
)

=
n∑
i=1

∫ T

0

[
e−Γ(s)e−G(s)∂f

A

∂xi
(s,X(s))1[0,tk](s)

+ e−Γ(tk)e−G(s)∂f
B

∂xi
(s,X(s))1(tk,T ](s)

]
dMW

i (s).

The statement then follows by Lemma 4.5 using the equality

n∑
i=1

∫ t

0

ϕ̃i(u)dMW
i (u) =

∫ t

0

ϕ̃(u)dMW (u) =

∫ t

0

ϕ̃(u)σ(u)dW (u)

=
d∑
j=1

∫ t

0

(ϕ̃(u)σ(u))jdWj(u),

(A.10)

where ϕ̃ = (ϕ̃1, . . . , ϕ̃n) is any vector, MW = (MW
1 , . . . ,MW

n ), and (·)j denotes the j-th
component of a vector.

(b) If T ≤ tk, we consider the decomposition

e−Γ(tk)Ca,k − EP (e−Γ(tk)Ca,k
)

=
[
EP (e−Γ(tk)

∣∣GT )Ca,k − EP (e−Γ(tk)Ca,k
)]

+
[
e−Γ(tk) − EP (e−Γ(tk)

∣∣GT )]Ca,k
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and again separately derive the MRT decompositions of the two parts. Analogously to above,
we obtain

EP (e−Γ(tk)
∣∣GT )Ca,k − EP (e−Γ(tk)Ca,k

)
=

n∑
i=1

∫ T

0

e−Γ(s)e−G(s)∂f
A

∂xi
(s,X(s))dMW

i (s),

and [
e−Γ(tk) − EP (e−Γ(tk)

∣∣GT )]Ca,k =
n∑
i=1

∫ tk

T

e−Γ(s)Ca,k
∂fB

∂xi
(s,X(s))dMW

i (s),

so that

e−Γ(tk)Ca,k − EP (e−Γ(tk)Ca,k
)

=
n∑
i=1

∫ tk

0

[
e−Γ(s)e−G(s)∂f

A

∂xi
(s,X(s))1[0,T ](s)

+ e−Γ(s)Ca,k
∂fB

∂xi
(s,X(s))1(T,tk](s)

]
dMW

i (s).

The statement then follows by Lemma 4.5 using (A.10).

iii) The assumption on the form of Ca(v) together with (A.7) yield that, for each v ∈ [0, T ],

EP (e−Γ(v)Ca(v)
∣∣Gt) = e−Γ(t)e−G(t)EP

(
e−

∫ v
t [g(s,X(s))+µ(s,X(s))]dsh(X(v))

∣∣∣Gt)
= e−Γ(t)e−G(t)f v(t,X(t))

=: f̃ v(t,Γ(t), G(t), X(t)), t ≤ v,

where f v : [0, v] × Rn → R. Since f v is assumed to be smooth, this holds for f̃ v as well. Thus,
Itô’s formula yields for t ≤ v (Protter, 2005, p. 81)

EP (e−Γ(v)Ca(v)
∣∣Gt)− EP (e−Γ(v)Ca(v)

)
=

n∑
i=1

∫ t

0

e−Γ(s)e−G(s)∂f
v

∂xi
(s,X(s))dMW

i (s) +

∫ t

0

a(s)ds,

where a = (a(t))0≤t≤T ∗ is short-hand for all ds-quantities. We have used (A.8) and that
(t,Γ(t), G(t), X(t)) has continuous paths. By the same arguments as in i), the ds-term has to
vanish. Thus, we obtain by Lemma 4.6 for t ∈ [0, T ] (for t > T all integrands are zero) that

ψWi (t) = (m−N(t−))eΓ(t)

∫ T

t

ϕvi (t)dv

= (m−N(t−))e−G(t)

∫ T

t

∂f v

∂xi
(t,X(t))dv, i = 1, . . . , n,

and

ψN(t) = −
∫ T

t

EP (eΓ(t)−Γ(v)Ca(v)
∣∣Gt) dv

= −
∫ T

t

e−G(t)EP
(
e−

∫ v
t [g(s,X(s))+µ(s,X(s))]dsh(X(v))

∣∣∣Gt) dv
= −e−

∫ t
0 g(s,X(s))ds

∫ T

t

f v(t,X(t))dv.
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iv) As in part iii), the assumption on the form of Cad(t) and µ(t) together with (A.7) yield that, for
each v ∈ [0, T ],

EP (e−Γ(v)Cad(v)µ(v)
∣∣Gt)

= e−Γ(t)e−G(t)EP
(
e−

∫ v
t [g(s,X(s))+µ(s,X(s))]dsh(X(v))µ(v,X(v))

∣∣∣Gt)
= e−Γ(t)e−G(t)f v(t,X(t))

=: f̃ v(t,Γ(t), G(t), X(t)), t ≤ v,

where f v : [0, v] × Rn → R. Thus, the integrands ψWi (t), i = 1, . . . , n, of part iv) follow anal-
ogously to part iii) using Lemma 4.7 instead of Lemma 4.6. Lemma 4.7 also yields for t ≤ T
(otherwise it is equal to zero) that

ψN(t) = −
[∫ T

t

EP (eΓ(t)−Γ(v)Cad(v)µ(v)
∣∣Gt) dv − Cad(t)]

= −
[∫ T

t

e−G(t)EP
(
e−

∫ v
t [g(s,X(s))+µ(s,X(s))]dsh(X(v))µ(v)

∣∣∣Gt) dv − Cad(t)]
= −

[
e−

∫ t
0 g(s,X(s))ds

∫ T

t

f v(t,X(t))dv − Cad(t)
]
.

Proof of Proposition 4.16. Note that any conditional expectation EP(·|Gt) is predictable, since it is by
definition Gt-measurable and Gt is left-continuous as a result of the continuity of Brownian motions.

i) Define ψNak(t) := EP
(
eΓ(t)−Γ(tk)Ca,k

∣∣Gt) for all t ∈ [0, tk], and the process (ψNak(t))0≤t≤tk is pre-
dictable. Furthermore, applying Jensen’s inequality for conditional expectations (Protter, 2005,
p. 11), and using that Γ(t) is non-decreasing in t, it follows that

sup
t∈[0,tk]

EP
([
ψNak(t)

]4)
= sup

t∈[0,tk]

EP
([

EP (eΓ(t)−Γ(tk)Ca,k
∣∣Gt)]4)

≤ sup
t∈[0,tk]

EP
(

EP
([
eΓ(t)−Γ(tk)Ca,k

]4∣∣∣Gt)) ≤ sup
t∈[0,tk]

EP (EP ( [Ca,k]
4
∣∣Gt))

= sup
t∈[0,tk]

EP ([Ca,k]4) = EP ([Ca,k]4) <∞ (by assumption).

Since we also assume that supt∈[0,tk] EP (µ2(t)) <∞, the statement follows by Lemma 4.15.

ii) Define ψNa (t) :=
∫ T
t

EP
(
eΓ(t)−Γ(s)Ca(s)

∣∣Gt) ds for all t ∈ [0, T ], and the process (ψNa (t))0≤t≤T is
predictable. Furthermore, since 0 ≤ eΓ(t)−Γ(s) ≤ 1 for s ≥ t and sinceC := supt∈[0,T ] EP (|Ca(t)|) <
∞ as a result of the boundedness of Ca(t), it follows by applying Jensen’s inequality for integrals
and for conditional expectations (for the latter, cf. Protter, 2005, p. 11) that for any t ∈ [0, T ]∣∣ψNa (t)

∣∣ =

∣∣∣∣∫ T

t

EP (eΓ(t)−Γ(s)Ca(s)
∣∣Gt) ds∣∣∣∣ ≤ ∫ T

t

∣∣EP (eΓ(t)−Γ(s)Ca(s)
∣∣Gt)∣∣ ds

≤
∫ T

t

EP (eΓ(t)−Γ(s) |Ca(s)|
∣∣Gt) ds ≤ C T.

Thus, we have

sup
t∈[0,T ]

EP
([
ψNa (t)

]4) ≤ sup
t∈[0,T ]

EP ([CT ]4
)

= C4 T 4 <∞.

Since we also assume that supt∈[0,T ] EP (µ2(t)) <∞, the statement follows by Lemma 4.15.
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iii) Since Xm, Ym, X, Y ∈ L2(P) and Xm
L2

−→ X, Ym
L2

−→ Y implies that Xm + Ym
L2

−→ X + Y, it is
sufficient to show that

a)
1

m

∫ T

0

[
−
∫ T

t

EP (eΓ(t)−Γ(s)Cad(s)µ(s)
∣∣Gt) ds] dMN(t)

L2

−−−→
m→∞

0, and

b)
1

m

∫ T

0

Cad(t)dM
N(t)

L2

−−−→
m→∞

0.

Define ψNad,1(t) := −
∫ T
t

EP
(
eΓ(t)−Γ(s)Cad(s)µ(s)ds

∣∣Gt) and ψNad,2(t) := Cad(t) for all t ∈ [0, T ].

Note that since by assumption supt∈[0,T ] EP (µ4(t)) <∞, it also follows by Jensen’s inequality that

sup
t∈[0,T ]

EP (µ2(t)
)
≤ sup

t∈[0,T ]

√
EP (µ4(t)) <∞.

ad a): Since the process (ψNad,1(t))0≤t≤T is predictable, since 0 ≤ eΓ(t)−Γ(s) ≤ 1 for s ≥ t, and
since C1 := supt∈[0,T ] EP (|Cad(t)|) < ∞ as a result of the boundedness of Cad, it follows by
applying Jensen’s inequality for integrals and for conditional expectations (for the latter, cf.
Protter, 2005, p. 11) that

∣∣ψNad,1(t)
∣∣ =

∣∣∣∣∫ T

t

EP (eΓ(t)−Γ(s)Cad(s)µ(s)
∣∣Gt) ds∣∣∣∣

≤
∫ T

t

EP (eΓ(t)−Γ(s) |Cad(s)|µ(s)
∣∣Gt) ds

≤ C1

∫ T

t

EP (µ(s)| Gt) ds ≤ C1

∫ T

0

EP (µ(s)| Gt) ds.

Since by assumption C2 := supt∈[0,T ] EP (µ4(t)) <∞, this implies

sup
t∈[0,T ]

EP
([
ψNad,1(t)

]4) ≤ sup
t∈[0,T ]

EP

([
C1

∫ T

0

EP (µ(s)| Gt) ds
]4
)

(∗)
≤ sup

t∈[0,T ]

C4
1 EP

(∫ T

0

EP (µ4(s)
∣∣Gt) ds)

(∗∗)
= sup

t∈[0,T ]

C4
1

∫ T

0

EP (µ4(s)
)
ds ≤ C4

1 C2 T <∞,

where (∗) again follows by Jensen’s inequality for integrals and conditional expectations and
(∗∗) from the theorem of Fubini-Tonelli. Since supt∈[0,T ] EP (µ2(t)) < ∞ as shown above,
the statement follows by Lemma 4.15.

ad b): The process (ψNad,2(t))0≤t≤T is predictable. As a result of the boundedness of Cad(t), it also
holds C1 := supt∈[0,T ] EP (|Cad(t)|) <∞, so that

sup
t∈[0,T ]

EP
([
ψNad,2(t)

]4)
= sup

t∈[0,T ]

EP ([Cad(t)]4) ≤ C4
1 <∞.

Since supt∈[0,T ] EP (µ2(t)) <∞ as shown above, the statement follows by Lemma 4.15.
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Proof of Proposition 4.19. Since MW
i (t) =

∑d
k=1

∫ t
0
σik(s)dWk(s), 0 ≤ t ≤ T ∗, it follows that

R
(m)
i, · =

d∑
k=1

d∑
j=1

∫ T

0

[
(m−N(t−))eΓ(t)

1[0,tk](t) + (m−N(tk))e
Γ(tk)

1(tk,T ](t)
]

× ϕj, ·(t)σ−1
ji (t)σik(t)dWk(t).

(A.11)

Because of the additivity of integration and the continuous mapping theorem, it is sufficient to
prove the convergence of each summand in (A.11), i = 1, . . . , n, j, k = 1, . . . , d, separately. For
this, by Lemma 4.18, we only need to show that each ϕj, ·(t)σ

−1
ji (t)σik(t) is G-predictable with∫ T

0

(
ϕj, ·(t)σ

−1
ji (t)σik(t)

)2
dt <∞ almost surely. We have:

• By assumption, σ(t) is G-adapted with continuous paths.

• When determining the inverse of σ(t) with Cramer’s rule and the necessary determinants with
Laplace’s formula, it can be seen that σ−1

ij (t) is a continuous function of the matrix components
σij(t), i = 1, . . . n, j = 1 . . . , d. So σ−1

ij (t) has itself continuous paths and is G-adapted.

• In all parts ii), iii), and iv), ϕj, ·(t) is a conditional expectation of the form EP ( ·| Gt) or can be
transformed into such an expectation using the theorem of Fubini-Tonelli for conditional expeca-
tions. As a result, ϕj, ·(t) is by definition G-adapted.

• The D1,2-assumptions in Proposition 4.8 and particularly the implicit square integrability of the
respective quantities yield that

E

(∫ T

0

ϕj, ·(t)
2dt

)
= E

((∫ T

0

ϕj, ·(t)dWj(t)

)2)
<∞,

implying that
∫ T

0
ϕj, ·(t)

2dt <∞ almost surely.

Since G = (Gt)0≤t≤T is left-continuous as a result of the continuity of Brownian motions, every G-
adapted process is also G-predictable. Thus, the product ϕj, ·(t)σ−1

ji (t)σik(t) is not only G-adapted,
but also G-predictable. Furthermore, since σ−1

ji (t)σik(t) has continuous paths and
∫ T

0
ϕj, ·(t)

2dt < ∞
almost surely, it follows similarly as in the proof of Lemma 4.18 that

∫ T
0

(
ϕj, ·(t)σ

−1
ji (t)σik(t)

)2
dt <∞

almost surely. The statement then directly follows by Lemma 4.18.

Proof of Corollary 4.20. i) Since each L(m)
0, · is the sum ofm random variables which are conditionally

identically distributed and conditionally independent given the σ-algebra GT ∗ , the statement follows
by a conditional version of Kolmogorov’s strong law of large numbers (Majerek et al., 2005, p. 154).

ii) Since EP(L
(m)
0, · ) = mEP(L

(1)
0, ·) as a result of the conditionally identical distribution of τ kx , k =

1, . . . ,m, it follows by i) that

1

m

(
L

(m)
0, · − EP(L

(m)
0, · )

)
P−−−→

m→∞
EP(L

(1)
0, ·|GT ∗)− EP(L

(1)
0, ·).

Furthermore, by Proposition 4.16 (note that L2-convergence implies convergence in probability)
and Proposition 4.19 we have

1

m

(
L

(m)
0, · − EP(L

(m)
0, · )

)
=

n+1∑
i=1

1

m
R

(m)
i, ·

P−−−→
m→∞

n∑
i=1

∫ T

0

d∑
j=1

ϕj, ·(t)σ
−1
ji (t)dMW

i (t).
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Since the limit in probability is almost surely unique, it follows that

EP(L
(1)
0, ·|GT ∗)− EP(L

(1)
0, ·) =

n∑
i=1

∫ T

0

d∑
j=1

ϕj, ·(t)σ
−1
ji (t)dMW

i (t),

which is an MRT decomposition. By the uniqueness of the MRT decomposition (Proposition 4.1),
each risk factor R∗i thus equals almost surely the limit in probability of 1

m
R

(m)
i, · , i = 1, . . . , n + 1,

so that the statement follows.
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