ARE MYOTONIAS AND PERIODIC PARALYSES ASSOCIATED WITH SUSCEPTIBILITY TO MALIGNANT HYPERTERMIA?

F. LEHMANN-HORN AND P. A. IAIZZO

SUMMARY
Excised muscles from patients with myotonia or periodic paralysis were subjected to the in vitro contracture test for susceptibility to malignant hyperthermia (MH). In a group of 44 patients, this standard test gave four positive, 10 equivocal and 30 negative results. The results for 27 control muscles from normal subjects were negative. When the test was performed with less than normal concentrations of contracture-triggering substances (caffeine \(\leq 2 \text{ mmol litre}^{-1} \), \(\leq 2\% \) halothane), 70% of the muscles from the patients and only 15% of the controls responded with small contractures \((<0.2\text{g})\). These results should not be taken to indicate that the patients have the genetic trait for MH. The positive and equivocal test results, in addition to the slight contractures, may be accounted for by the electrical after-activity in the cases of pure myotonia, and by increased resting myoplasmic \([\text{Ca}^{2+}]\) in myotonic dystrophy. This shows that the in vitro contracture test lacks specificity.

KEY WORDS

Events similar to malignant hyperthermia (MH) may occur in patients with myotonia when they are exposed to volatile anaesthetics [1-11]. Moreover, depolarizing neuromuscular blocking drugs may cause masseter spasm or generalized muscle spasms in these patients and thus affect tracheal intubation or ventilation [1, 12-22]. When such incidents occur, it is important to ascertain if the patient is a genetic carrier of the trait of MH. The only generally accepted test for this is the in vitro contracture test. This standard test determines

the sensitivity of excised muscle bundles to separately administered caffeine and halothane; muscles from persons susceptible to MH have lower contracture thresholds for these agents than normal muscle.

Although a clearly positive result (contractures during in vitro exposure of muscle bundles to caffeine \(\leq 2 \text{ mmol litre}^{-1} \) and \(\leq 2\% \) halothane) has never been reported for patients with any form of myotonia, an association between myotonia and MH seems possible, as the threshold concentrations of caffeine [3] or halothane [14, 15] for induction of muscle contractures have been reported to be reduced.

To study this possibility, we have compared the caffeine and halothane thresholds of muscles from myotonic patients with those of normal muscle. A few patients with periodic paralysis were available also for this study. In selected subjects, we tested also the effect of a depolarizing agent, succinylmethonium, on the excised muscles or measured the myoplasmic \([\text{Ca}^{2+}]\) concentration during muscle rest, in order to obtain more insight into the mechanisms underlying abnormal results.

PATIENTS AND METHODS
Bundles of intact fibres or fibre segments were dissected from muscle biopsies obtained from normal control patients and from patients with one of the following disorders with symptoms of myotonia or periodic paralysis: recessive generalized myotonia [23]; myotonia congenita;
Schwartz–Jampel syndrome; myotonic dystrophy [23]; hyperkalaemic periodic paralysis [24]; hypokalaemic periodic paralysis; and thyrotoxic periodic paralysis. The stage, distribution and specific characteristics of the disease were evaluated in each patient by electromyography and quantitative force measurements on several muscle groups. The diagnoses were verified by assessing the effects of exercise, K⁺ load, glucose and insulin load, or peripheral cooling. As the patients and their diagnoses have been described previously in detail [23, 24], we have given them the same numbers as before to facilitate cross-reference.

Fibre segments ≥ 3 cm long were dissected under local anaesthesia from the motor point region of muscles showing myotonia or episodes of weakness (vastus lateralis, vastus medialis, biceps brachii, deltoid or tibialis anterior muscles). One patient with Schwartz–Jampel syndrome and 21 control patients who had to undergo thoracic surgery consented to biopsy of intact intercostal fibres (approximately 1.5 cm long) or specimens of fibre segments (about 3 cm long) from their latissimus dorsi. Fibre segments were taken also from the vastus lateralis muscle of six healthy volunteers. All procedures were performed in accordance with the Helsinki convention and approved by the Ethics Committee of the Technical University of Munich.

The excised muscle specimens were transported to the laboratory in a standard solution (composition given below). The solution was at room temperature and was gassed continuously with carbogen (5% carbon dioxide in oxygen). Bundles of muscle fibres were dissected with a diameter of approximately 2 mm. Up to four bundles were mounted in parallel experimental chambers and stimulated at 0.1 Hz with supramaximal pulses of 1 ms duration. Each bundle was stretched until the twitch amplitude was maximal. At this length, slight shortening or lengthening did not alter the force amplitude. The static version of the test protocol supported by the European Malignant Hyperpyrexia Group (EMHG) [25] was followed strictly, with the exception that muscles other than the vastus were used also. The force records were evaluated according to the criteria of this protocol. The baseline for contractures was defined as the force level just before addition of the smallest concentration of a drug. Twitch relaxation was defined as “slowed” when a noticeable fraction of force remained between twitches stimulated at the rate of 0.1 Hz. All tests were completed within 5 h after biopsy.

The standard solution contained (mmol litre⁻¹): NaCl 118.2, KCl 3.4, MgSO₄ 0.8, CaCl₂ 2.5, KH₂PO₄ 1.2, NaHCO₃ 25.0, and glucose 5.5 (315 mosmol litre⁻¹). The pH of the carbogen-gassed solution was 7.4, the temperature 37 °C. Halothane was bubbled through the bath via a halothane vaporizer (Vapor, Dräger, Lübeck, FRG). The concentration of halothane was monitored with a digital sensor (Iris, Dräger, Lübeck, FRG). The rate of bubbling was controlled by two Teflon flow meters (ROTA Apparate, FRG). The concentration of halothane in the bath was determined by gas chromatography [26]. Caffeine (dehydrated; Carl Roth, Karlsruhe, FRG) was added cumulatively to the bath to produce final concentrations of 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 8.0 and 32 mmol litre⁻¹. As any slight mechanical stimulation (e.g. movements caused by gassing of the solution) may induce electrical activity in myotonic muscle, tetrodotoxin 1 μmol litre⁻¹ was added to the bath for suppression of action potentials when required. In some cases, the bundles were exposed also to suxamethonium (Lysthenon 2%, Hormon-Chemie, Munich, FRG). The agent was dissolved in water and was added directly to the bath so that the final concentration was 1.1 mmol litre⁻¹.

Myoplasmic [Ca²⁺] was estimated in thin sheets of resealed fibre segments by means of fura-2 while isometric force was monitored simultaneously with a strain gauge (Akers, Horton, Norway). The methodology was exactly as described elsewhere [27].

RESULTS

The in vitro contracture test is considered positive when the bundles produce sustained contractures with amplitudes ≥ 0.2 g during both application of caffeine ≤ 2.0 mmol litre⁻¹ and application of ≤ 2.0% halothane. The result is equivocal when a contracture is elicited by only one test substance.

Within the patient group, 30 of the tests were negative, 10 equivocal and four positive; all muscles from the normal subjects gave negative results (fig. 1, table I). The four positive results were obtained for patients with myotonic dystrophy. In two of these muscles we determined also the resting myoplasmic [Ca²⁺], which was increased (fig. 2, table II) [27]. In contrast, we found the resting [Ca²⁺] normal in muscles from
Fig. 1. Results obtained with the in vitro contracture test. Ordinate: concentration of halothane required for the induction of a contracture of \(> 0.2 \) g; abscissa: concentration of caffeine required for the same contracture amplitude. The dashed lines divide the plot into four regions designated [25]: malignant hyperthermia normal (MHN), malignant hyperthermia susceptible (MHS) and (two) malignant hyperthermia equivocal (MHE). The bundles used for the test were prepared from: cut intercostal (+), intact intercostal (\(\square \)), biceps brachii (\(\triangledown \)), latissimus dorsi (\(\bigtriangleup \)), tibialis anterior (\(\times \)), vastus lateralis (\(\odot \)) and vastus medialis (\(\triangle \)) muscles. Open symbols = controls; closed symbols = patients. Numbers next to symbols represent the various diseases: 1 = recessive generalized myotonia; 2 = myotonia congenita; 3 = Schwartz-Jampel syndrome; 4 = myotonic dystrophy; 5 = hyperkalaemic-, 6 = hypokalaemic- and 7 = thyrotoxic periodic paralysis.

Fig. 2. Comparison of the myoplasmic Ca\(^{2+}\) concentration measured at rest in muscle fibres from normal subjects (left) and from five patients with myotonic dystrophy (right). Intact fibres (\(\square \)) and long fibre segments (\(\odot \)) were studied. \(\bullet \) = Muscle fibres for which the contracture test had given a positive result.

Table I. Summary of the in vitro contracture test results. RGMy = Recessive generalized myotonia; MyC = myotonia congenita; SJS = Schwartz-Jampel syndrome; MyD = myotonic dystrophy; HyperPP = hyperkalaemic periodic paralysis; HypoPP = hypokalaemic periodic paralysis; ThyrPP = thyrotoxic periodic paralysis. Hal. = \(< 2\% \) Halothane; Caff. = caffeine \(< 2 \) mmol litre\(^{-1}\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RGMy</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>MyC</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>SJS</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MyD</td>
<td>17</td>
<td>4</td>
<td>1</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>HyperPP</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HypoPP</td>
<td>5</td>
<td>—</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ThyrPP</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>44</td>
<td>4</td>
<td>10</td>
<td>30</td>
<td>27</td>
<td>31</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Normal</td>
<td>27</td>
<td>—</td>
<td>—</td>
<td>27</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
MYOTONIA AND MALIGNANT HYPERTERMONEIA

<table>
<thead>
<tr>
<th>Patient</th>
<th>Severity†</th>
<th>Test</th>
<th>Muscle</th>
<th>Morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJS2</td>
<td>4</td>
<td>Equivocal</td>
<td>Vastus</td>
<td>Hypertrophic fibres, central nuclei</td>
</tr>
<tr>
<td>MyD2</td>
<td>3</td>
<td>Equivocal</td>
<td>Tibialis anterior</td>
<td>Moderate myopathy, sarcoplasmic masses</td>
</tr>
<tr>
<td>MyD5</td>
<td>3</td>
<td>Positive</td>
<td>Vastus</td>
<td>Slight myopathy, increased nuclei, slight interstitial changes</td>
</tr>
<tr>
<td>MyD10</td>
<td>3</td>
<td>Positive‡</td>
<td>Vastus</td>
<td>Moderate myopathy, slight neuropathy, increased nuclei, slight type grouping</td>
</tr>
<tr>
<td>MyD12</td>
<td>3</td>
<td>Positive‡</td>
<td>Biceps</td>
<td>Slight myopathy, slight neuropathy, increased nuclei, sarcoplasmic masses</td>
</tr>
<tr>
<td>MyD20</td>
<td>2</td>
<td>Positive</td>
<td>Biceps</td>
<td>Advanced myopathy</td>
</tr>
<tr>
<td>HyperPP5</td>
<td>2</td>
<td>Equivocal</td>
<td>Latissimus dorsi</td>
<td>Slight myopathy, vacuoles</td>
</tr>
<tr>
<td>HyperPP7*</td>
<td>2</td>
<td>Equivocal</td>
<td>Vastus</td>
<td>Slight myopathy, numerous vacuoles</td>
</tr>
<tr>
<td>HyperPP8*</td>
<td>2</td>
<td>Equivocal</td>
<td>Vastus</td>
<td>Slight myopathy, tubular aggregates</td>
</tr>
<tr>
<td>HyperPP9</td>
<td>2</td>
<td>Equivocal</td>
<td>Biceps</td>
<td>Moderate myopathy, tubular aggregates</td>
</tr>
<tr>
<td>HypoPP8</td>
<td>1§</td>
<td>Equivocal</td>
<td>Vastus</td>
<td>Normal</td>
</tr>
<tr>
<td>HypoPP10</td>
<td>2</td>
<td>Equivocal</td>
<td>Vastus</td>
<td>Vacuoles</td>
</tr>
<tr>
<td>HypoPP11</td>
<td>4</td>
<td>Equivocal</td>
<td>Vastus</td>
<td>Severe neuropathy, moderate secondary myopathy</td>
</tr>
<tr>
<td>ThyrPP1</td>
<td>2</td>
<td>Equivocal</td>
<td>Biceps</td>
<td>Slight calibre changes, type II atrophy</td>
</tr>
</tbody>
</table>

Small contractures (< 0.2 g) in response to low concentrations of halothane (≤ 2.0 %) or caffeine (≤ 2.0 mmol litre⁻¹) were provoked in up to 70% of the muscles from the patient group (table I). This type of response, which is not considered relevant by the EMHG, appeared in only 15% of the records from normal subjects. In MH negative subjects having a family member known to be susceptible to MH, this percentage is 23% (n = 35) [own unpublished observations].

Suxamethonium 1.1 mmol litre⁻¹ readily induced contractures ≥ 0.1 g in the fibre segments from patients with myotonia (fig. 3c). In contrast, on fibre bundles from normal muscle (n = 12) and from patients with hypokalaemic periodic paralysis (n = 2), the agent did not cause contractures, in spite of the fact that they contained endplates as verified visually [15]. The following is a summary of the positive responses to administration of suxamethonium: recessive generalized myotonia, 100% (n = 3); myotonia congenita, 50% (n = 6); Schwartz–Jampel syndrome, 100% (n = 1); myotonic dystrophy, 70% (n = 7); hypokalaemic periodic paralysis with myotonia, 100% (n = 2). The largest amplitudes (0.8 g) and the longest durations (120 s) were observed in contractures of fibres from patients in whom intense myotonic activity had been recorded both in vivo and in vitro (recessive generalized myotonia Nos 5, 6, 7 and Schwartz–Jampel syndrome No. 1) [23].
FIG. 3. Force records from muscles from patients with recessive generalized myotonia stimulated at 0.1 Hz with supramaximal pulses. A: Increasing concentrations of caffeine were added to the muscle bath, which led to abnormally slow relaxation of the twitches (recessive generalized myotonia patient No. 4). B: Similar results with halothane in the same patient. C: A contracture induced by suxamethonium (recessive generalized myotonia patient No. 7).

DISCUSSION

We did not obtain a positive or equivocal contracture test from any patient with pure (recessive generalized or congenital) myotonia. This supports results of similar studies on goats with congenital myotonia [28], but is in conflict with reports on patients with congenital myotonia with positive caffeine or halothane test results [3, 14, 15]. We did observe in the muscles of these patients, abnormally slowed relaxation which led to a type of contracture when the effect was increased by caffeine or halothane. This finding might explain the positive results mentioned above, but it does not seem related to pathologically increased reticular [Ca2+] release, as are the contractures in MH. These pseudo-contractures are caused by the known myotonic abnormality of the sarcolemma—that is, the disturbed excitability. Contraction produced by electrical "after-activity" could, in severe cases, interfere with the contracture test. Thus it might be best to omit electrical stimulation when performing the in vitro contracture test with muscles from patients with pure myotonia.

The high incidence of positive or equivocal test results in muscles from patients with myotonic dystrophy may suggest that these patients possess the genetic trait for MH. The MH gene has been mapped recently on chromosome 19—the chromosome that codes also for the myotonic dystrophy (DM) gene [29], but the distance between the two genes is of the order of 25 cM, which makes it very unlikely that the two conditions are genetically linked.

Both MH episodes and progressive dystrophy are connected with an increased myoplasmic [Ca2+] of the muscle, but via different pathomechanisms. In MH, the intracellular Ca2+ release is disturbed by the triggering agents [27], while in dystrophy the Ca2+ influx from the extracellular space is abnormally great [30]. Both mechanisms seem to generate a similar condition for the test. Our findings show that the test result may depend on the stage of the disease, that is, on how many fibres are affected and to what degree. The difference in mechanisms in MH and myotonic dystrophy is reflected also in the finding that muscles from patients susceptible to MH are rarely dystrophic [31]. We conclude from our results that the standard MH testing procedure lacks specificity.

A positive test result does not imply that anaesthetic complications must occur—not even in patients who are susceptible to MH [32]. In fact, neither our patients described here nor their family members are known to have had an event during anaesthesia which could be classified clearly as MH.

A muscle may have a normal sensitivity to halothane (or caffeine, or both), and may react abnormally to other agents. The myotonic reaction is known to be exaggerated by depolarizing neuromuscular blocking drugs [1, 12–22]. An increase in involuntary electrical after-activity is the most likely cause of this stiffness. This is consistent with our in vitro finding that suxamethonium-induced contractions occur in
muscles from patients with myotonia, whereas no responses to suxamethonium were found in bundles from normal patients [33].

Although we conclude that the myotonias and periodic paralyses are not associated with susceptibility to MH, we should stress that the anaesthetist should be prepared for an anaesthetic-induced reaction in any of these patients and that non-triggering anaesthesia is indicated.

ACKNOWLEDGEMENTS

This work was supported by the Wilhelm Sander-Stiftung, the Deutsche Gesellschaft Bekämpfung der Muskelerkrankheiten and the DFG (Le481/1-2).

REFERENCES