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Introduction
Membrane excitability, an elementary property for muscle
function, is mediated by voltage-gated ion channels. It is,
therefore, not surprising that ion channels can be involved in
the pathogenesis of diseases of skeletal muscle. Pioneer work
on excised intact myofibers from patients with hereditary
periodic paralysis demonstrated that the underlying defect
was a persistent sodium ion (Na+) inward current that
depolarized the membrane and thus caused inexcitability
and weakness [1]. Cloning and analysis of the gene encoding

the voltage-gated Na+ channel of skeletal muscle led to
the detection of the first mutations that cause impaired ion
channel function [2]. This made hyperkalemic periodic
paralysis the first channel disorder to be identified. Since
then, more than 20 such diseases, now termed channel-
opathies, have been described showing basic recurring
patterns of mutations, functional disturbances, mechanisms
of pathogenesis, and therapeutic strategies [3••].

Function and Significance of Voltage-gated 
Cation Channels
The upstroke of the action potential is generated by the
opening of voltage-gated Na+ channels generating an
inward Na+ current that renders the cells positive inside
(depolarization). Rapid recharging (repolarization render-
ing the cells more negative back to the resting potential
of -90 millivolts [mV]) of the membrane is enabled by the
closing of the Na+ channels and additionally supported by
the opening of potassium ion (K+) channels that conduct
an outward K+ current. The signal spreads along the trans-
verse tubular system, activating the voltage-gated dihydro-
pyridine-sensitive calcium ion (Ca2+) channels that initiate
intracellular Ca2+ release and muscle contraction by a
direct protein-protein interaction with the Ca2+-release
apparatus. It can easily be deduced that mutations in
exactly these channels may lead to either hyperexcitability
or inexcitability depending on the type of functional defect
(ie, gain or loss of function). Likewise, depending
on the resulting excitability of muscle fiber membrane,
symptoms of paralysis (inexcitability) or myotonia (invol-
untary muscle contraction due to hyperexcitability) will
be the consequence.

Voltage-sensitive cation channels can assume at least one
open and two closed states. From one of the closed states
(the resting state), the channel can be directly opened (be
activated); from the other one (the inactivated state), it can
not. This implies that there are at least two gates regulating
the opening of the pore (an activation and an inactivation
gate), both of which are part of the α subunit. Activation is a
voltage-dependent process; inactivation and the recovery
from the inactivated state are also time-dependent (Fig. 1).
In the periodic paralyses, the inactivation of the cation
channels is disturbed, causing malclosure or reopenings

Familial periodic paralyses are typical channelopathies 
(ie, caused by functional disturbances of ion channel 
proteins). The episodes of flaccid muscle weakness 
observed in these disorders are due to underexcitability 
of sarcolemma leading to a silent electromyogram and the 
lack of action potentials even upon electrical stimulation. 
Interictally, ion channel malfunction is well compensated, 
so that special exogenous or endogenous triggers 
are required to produce symptoms in the patients. An 
especially obvious trigger is the level of serum potassium 
(K+), the ion responsible for resting membrane potential 
and degree of excitability. The clinical symptoms can be 
caused by mutations in genes coding for ion channels 
that mediate different functions for maintaining the resting 
potential or propagating the action potential, the basis of 
excitability. The phenotype is determined by the type 
of functional defect brought about by the mutations, 
rather than the channel effected, because the contrary 
phenotypes hyperkalemic periodic paralysis (HyperPP) and 
hypokalemic periodic paralysis (HypoPP) may be caused by 
point mutations in the same gene. Still, the common 
mechanism for inexcitability in all known episodic-weakness 
phenotypes is a long-lasting depolarization that inactivates 
sodium ion (Na+) channels, initiating the action potential.
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of the channels in one case, whereas in the other case the
inactivated-state channels can barely open at all.

Hyperkalemic and Hypokalemic Periodic 
Paralysis: Contrasting Clinical Features
Two hereditary muscle diseases, each dominantly trans-
mitted with a prevalence of about one per 100,000 people,
are characterized by episodes of flaccid muscle weakness
of variable duration, severity, and frequency (ie, hyper-
kalemic periodic paralysis [HyperPP] and hypokalemic
periodic paralysis [HypoPP]). The attacks usually occur
during rest after strenuous physical work. Sustained mild
exercise may postpone or prevent an attack. Muscle
strength usually begins to wear off in the proximal leg
muscles, and the weakness then spreads distally and to the
arms. This pattern is completely reversed after one (in
HyperPP) to several hours (in HypoPP), together with
a normalization of serum K+. A cold environment,
emotional stress, and pregnancy provoke or worsen the
attacks. In either disease, the age of onset of attacks is the
first or second decade of life. A progressive muscle weak-
ness may develop, independently of the number of attacks,
starting in most cases after the age of 40 years, an age
at which the attacks of weakness ease up. This myopathy
is characterized histologically by central vacuoles in
the myofibers and ultrastructurally by a dilation and pro-
liferation of the sarcoplasmic reticulum [4].

Hyperkalemic periodic paralysis and hypokalemic
periodic paralysis are not only distinguished by the name-
giving direction in which serum K+ changes during an
attack (in the attack-free interval, patients with either
disease have normal values), but also by the response to
certain provocative tests. Oral administration of K+ triggers
attacks and glucose is a remedy in HyperPP, whereas
glucose (and insulin) provokes attacks in HypoPP, which
are relieved by K+ intake. In addition to episodic weakness,
HyperPP may present with two different types of muscle
stiffness. The first, termed myotonia, ameliorates by exer-
cise and can be associated with transient weakness during

quick movements lasting only for seconds. The second,
termed paradoxical myotonia or paramyotonia, worsens
with exercise or cold and is followed by long spells of limb
weakness lasting from hours to days. In contrast, no
myotonia of any type occurs in HypoPP [4].

Hyperkalemic and Hypokalemic Periodic 
Paralysis: Contrasting Mutation Patterns
Hyperkalemic periodic paralysis and hypokalemic periodic
paralysis are caused by point mutations in the α subunit of
voltage-gated cation channels, leading to exchange of a
single amino acid residue in the resulting protein. Basic
motif of α subunits is a tetrameric association (I–IV) of a
series of six transmembrane α-helical segments, numbered
S1–S6. These are connected by both intracellular and extra-
cellular loops (the interlinkers) (Fig. 2). The α subunit
contains the ion-conducting pore and, therefore, deter-
mines the main characteristics of the channel (eg, its ion
selectivity, voltage sensitivity, pharmacologic properties,
and its binding characteristics for endogenous and exo-
genous ligands). The voltage sensitivity of cation channels
is mediated by the S4 segments, which, on single channel
proteins, are thought to move outward and to rotate upon
depolarization, thus opening the channel [5,6••]. During
channel closing, not all voltage sensors move back at once.
This generates a variety of closed states and explains why
several voltage-sensor mutations exist that lead to various
phenotypic disorders. The ion-conducting pore is thought
to be lined by the four S5–S6 interlinkers. They also prob-
ably form the ion-selectivity filter. The activation gate
is most likely located within the pore, whereas the inacti-
vation gate may be located in different regions in the vari-
ous Na+ and K+ channels (eg, the III–IV interlinker) [7,8].

Hypokalemic periodic paralysis type 1, which accounts
for approximately 35% of all cases of periodic paralysis,
is caused by one of three voltage-sensor mutations in
domains II and IV of the Ca2+-channel α subunit (Fig. 2b)
[9–11]. HypoPP type 2, found in 5% of the patients, is
caused by mutations located in domain IIS4 of the Na+-

Figure 1. Three states of a voltage-gated 
cation channel that opens rapidly upon 
depolarization and then closes to an 
inactivated state from which it cannot 
reopen immediately. Repolarization of 
the membrane leads to recovery from 
inactivation, from which activation is 
again possible (ie, the resting state). 
Outward movement of the positively 
charged voltage sensor upon depolarization 
results in both opening of the pore 
and exposure of a docking site for 
the inactivation gate.
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channel α subunit (Fig. 2a) [12,13•,14•,15]. The clinical
differences between the two types are marginal. Some
type 2 patients cannot tolerate the standard drug aceta-
zolamide [14], or may have massive tubular aggregates in
muscle biopsy [15], but these findings are valid for only

a few patients. HyperPP, on the other hand, is caused by
seven different mutations near the interior membrane
surface of the Na+-channel α  subunit. The mutations
detected thus far account for over half of all effected
individuals (Fig. 2a) [16–19,20•].

Figure 2. The α subunits of the voltage-gated Na+ and voltage-gated L-type Ca2+ channels of skeletal muscle. Both subunits consist 
of four highly homologous domains (repeats I–IV) containing six transmembrane segments each (S1–S6). The S5–S6 loops and the 
transmembrane segments S6 form the ion-selective pore. The S4 segments contain positively charged residues conferring voltage 
dependence to the protein function. The repeats are connected by intracellular loops. When inserted in the membrane, the four 
repeats of each protein fold to generate a central pore (inset in bottom of A). A, Mutations in the supposed docking site for the 
inactivation particle (squares) cause hyperkalemic periodic paralysis; mutations in the voltage sensor of repeat II (ovals) cause 
hypokalemic periodic paralysis type 2. B, Mutations in the voltage sensors of repeats II and IV cause hypokalemic periodic 
paralysis type 1. (Conventional one-letter abbreviations are used for replacing and replaced amino acids.)
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From the evidence presented thus far, the attentive
reader may guess that HypoPP mutations will affect the volt-
age dependence of inactivation, which additionally suggests
that the voltage sensor of domain IV has a different signifi-
cance in Na+ and in Ca2+ channels. Additionally, the reader
may assume that the residues mutated in HyperPP will
not directly represent the inactivation gate, but perhaps its
binding sites instead (acceptor of the inactivation gate).

Hyperkalemic and Hypokalemic Periodic 
Paralysis: Contrasting Pathomechanisms
For HyperPP (and two related myotonic disorders), the
underlying pathomechanism is a gating defect of the Na+

channel that destabilizes the inactivated state. This inacti-
vation defect is caused by mutations that are thought to
participate in the docking site for the inactivation particle,
and any malformation may reduce the affinity between
the "latch bar and the catch." As a consequence, the
mutant channels avoid the inactivated state and, in con-
trast to normal Na+ channels, reopen or flicker between the
inactivated and the open state (Fig. 3) [19,20•,21,22]. The
pathologically increased Na+ influx into the myofibers gen-
erates bursts of action potentials (ie, myotonia). If the Na+

influx is permanently increased, the associated sustained-
membrane depolarization may become large enough to
inactivate the nonmutant Na+ channels (in a dominant
disorder, both the mutant and wild-type alleles are
present). This causes muscle inexcitability and, thus, weak-
ness. That is to say, the same pathogenetic mechanism is
able to produce both overexcitability (myotonia) and
inexcitability (paralysis), depending on whether the degree
of depolarization generated by the defect is small (a few
millivolts) or large (≥10 mV). Depolarizing triggers,
such as increased extracellular K+ levels, may cause an
additional effect. Also, defects of refractoriness after long-
lasting depolarizations (so called slow inactivation)
may explain why episodes may sometimes last up to sev-
eral hours [23, 24•,25].

Although the inactivated state of the Na+ channel is
destabilized in HyperPP, it is stabilized in the Na+ channel
variant of HypoPP type 2. Functional expression of the
mutants revealed reduced current amplitudes, reduced volt-
age thresholds for the inactivation curve, and a slowed recov-
ery from the fast-inactivated state [13•,14•,26]. All changes
lead to a reduced number of Na+ channels available for the
generation and propagation of action potentials (ie, the excit-
ability of the myofibers is generally reduced) (Fig. 4). In

Figure 3. A, Single-channel recordings and B, whole-cell recordings 
of Na+ currents conducted by normal (WT) or mutant (M1360V) Na+ 
channels expressed in human embryonic kidney cells. M1360V 
is a mutation causing hyperkalemic periodic paralysis. The single-
channel traces illustrate the flickering of the mutant channel, 
contrasting the single events in WT. This leads to a slowing of 
inactivation (slower current decay) of the whole-cell current. 
C, The refractory period is shortened in the mutant channel 
as illustrated by their faster recovery from inactivation. 
(Adapted from Sternberg et al. [15].)
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agreement with these findings, smaller and more slowly
conducted action potentials were recorded in myofibers
from biopsies of patients carrying a Na+ channel mutation
[13•]. These abnormal channel properties reduce the
availability of Na+ channels when HypoPP fibers are already
depolarized (eg, following infusion of triggering agents such
as insulin and glucose), but do not explain the development
of the depolarization itself. It is speculated that because
the triggering agents reduce the K+ conductance and stimu-
late the Na+/K+ pump, they cause depolarization that
then leads to inactivated Na+ channels, which in turn causes
weakness [27–29,30•].

The mutations causing the more frequent Ca2+ channel
variant, HypoPP type 1, show functional consequences
such as a reduction of current amplitudes, slight lowering
of the voltage threshold for inactivation, and slowing
of the rate of activation, the significance of which is still
unclear [31–34,35•]. How the alterations of the deter-
mined Ca2+ current are related to hypokalemia-induced
attacks of muscle weakness can only be speculated upon.
Because electrical muscle activity, evoked by nerve stimu-
lation, is reduced or even absent during attacks [36], a
failure of excitation is more likely than a failure of
excitation-contraction coupling. Nevertheless, the
hypokalemia-induced, large-membrane depolarization
observed in excised muscle fibers [37] might also reduce
Ca2+ release by inactivating sarcolemmal and T-tubular
Na+ channels, and would explain why repolarization of
the membrane by activation of adenosine triphosphate
(ATP)-sensitive K+ channels restores force.

Periodic Paralysis: a K+ Channel Variant
Functional voltage-gated K+ channels consist of four α
subunits (and accessory β subunits). In other words, the α
subunits in K+ channels contain only one set of six trans-
membane segments, corresponding to only one domain of
the α subunits of voltage-gated Na+ or Ca2+ channels. The
gene responsible for an unclassified periodic paralysis
variant, KCNE3, encodes minK-related peptide 2 (MiRP2),
the accessory β subunit to a classic voltage-gated delayed
rectifier, the Kv3.4 K+-channel α subunit [38••]. MiRP2 con-
sists of a single transmembrane segment, and the described
mutation, R83H, is predicted within the intracellular C-term
of this protein (Fig. 5). Two small unrelated families have
been found with this mutation. Afflicted members present
with episodic weakness that is not triggered by, but is
ameliorated by, carbohydrate intake. The weakness was not
regularly provoked by insulin/glucose infusion. The K+ level
seemed normal during episodes, and oral K+ administration
did not improve the state of the patients. Even though
this phenotype was first described as more closely related
to HypoPP than HyperPP, the correct classification is still a
matter of debate.

First functional tests in a murine skeletal-muscle
cell line demonstrated that the properties of the Kv3.4 K+-

channel α subunit were completely altered when MiRP2
was coexpressed, so that this accessory β subunit seems
essential for correct channel function. The mutant R83H
caused the current density to be reduced, and this may
account for a slight membrane depolarization because the
channel contributes to repolarizing the membrane follow-
ing an action potential and to sustaining a high resting
membrane potential [38••]. As in HyperPP, the underlying
defect is, therefore, compatible with the theory of depolar-
ization-induced weakness.

Andersen's Syndrome: Dyskalemia Induces 
Episodic Paralysis and Arrhythmia
Andersen's syndrome (not to be confused with Andersen
disease, type IV glycogen storage disease) is defined as a
clinical triad consisting of K+-sensitive periodic paralysis,
ventricular ectopy, and dysmorphic features [39,40]. The
dysmorphic features may be variable and include small
stature, low-set ears, hypoplastic mandible, clinodactyly,
and scoliosis. Cardiac disturbances may also show a variety
of phenotypes, such as prolongation of the QT interval,
ventricular bigeminy, and short runs of bidirectional
ventricular tachycardia. Sudden death in this syndrome,
probably due to cardiac arrest, has been reported. Similarly
to HypoPP, myotonia is not a feature of this syndrome. In
contrast to HyperPP and HypoPP patients, the response to
oral K+ is unpredictable: it improves weakness in patients
with low serum K+, however, in some families it improves
arrhythmia but exacerbates episodic paralysis. During an
attack, serum K+ may be high, low, or normal.

Several mutations in a voltage-insensitive α subunit of
a K+ channel expressed in both skeletal and cardiac muscle
have been described (Fig. 5) [41••]. These subunits are
protein tetramers each consisting of only two membrane-
spanning segments (M1 and M2) and an interlinker
forming the ion-conducting pore. They function as inward-
going rectifiers (ie, they are decisive for maintaining the
resting potential by conducting K+ into the cell). This
increases the concentration gradient across the cell mem-
brane and hyperpolarizes the cell. The mutations causing
Andersen's syndrome reduce this K+ current, and a mutant
monomer is capable of exerting a dominant-negative effect
on a whole tetramer corresponding to the dominant mode
of transmission of the disorder [41••].

Conclusions
The pathophysiology of HyperPP has been well elucidated
by studying the effects of disease-causing mutations in
molecular detail. Not entirely clear is why the clinical
symptoms are aggravated by oral intake of K+. Initial
electrophysiologic experiments that showed a direct effect
of K+ on mutant channels [21] could not be reproduced
[19,42]. Therefore, the effect of K+ is most likely explained
by a membrane-depolarizing effect of this ion. An



66 Nerve and Muscle
Figure 4. Na+ currents in A, steady-state 
fast inactivation curves B, in action potentials 
C, in normal (WT) skeletal muscle Na+ 
channels and of mutant (R672H) channels. 
R672H causes hypokalemic periodic paralysis 
(HypoPP) in man. A, Whole-cell currents 
were elicited in tsA-201 cells by a family of 
10-ms lasting depolarizations from a -140 mV 
holding potential to voltages ranging from -80 
to +70 mV. B, Steady-state inactivation was 
determined from a holding potential of -160 
mV using a series of 300-ms prepulses 
from -190 to -55 mV in 7.5-mV increments 
prior to the test pulse to -20 mV. Note 
the shift of the mutants to lower threshold 
voltages for inactivation. C, Representative 
action potentials from a native muscle-fiber 
segment of a HypoPP patient compared with 
those of a normal control patient. They were 
elicited from various holding potentia
ls by a short depolarizing pulse. Note 
the slower rise and fall for HypoPP. 
(Adapted from Jurkat-Rott et al. [13•]).
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additional unsolved problem is the occurrence of a pro-
gressive vacuolar myopathy with proximal leg weakness in
HyperPP patients with the T704M mutation.

In contrast to HyperPP, the pathophysiologic mecha-
nism linking a Ca2+ channel mutation to membrane depo-
larization and paralysis in HypoPP is entirely unresolved.
It seems likely that other structures are involved, perhaps
interacting with the channel and/or reacting to hypo-
kalemia [27]. The Na+ channel mutations in HypoPP
contribute to underexcitability and weakness of skeletal
muscle membrane without explaining the long-lasting
depolarization during attacks or the provocative effects of
reduced extracellular K+ levels. The third variant, caused by
KCNE3 mutations, suggests a contribution of K+ channels
to the pathogenesis, but a link to the Na+ and Ca2+

channels is by no means given. The mechanism of the
progressive myopathy that HypoPP patients develop is
not understood, especially because it does not respond to
therapy in the same way as the attacks.

In Andersen's syndrome, it is unclear why the K+ level
during the attack and the reaction to K+ intake are so
unpredictable. From the knowledge of the channels, a phe-
notype of HypoPP would be expected. Additionally sur-
prising is that ion channels contribute to embryogenesis,
as indicated by the dysmorphic features. With time, addi-
tional distinct entities among the periodic paralyses will
emerge, such as an X-linked variant that was recently
described, the phenotype of which resembles myasthenia
in several features [43]. It is expected that there will be
many nonchannelopathies among them.

Localization and functional consequences of the
underlying mutations in the channels correlate well with,
and are transferable to, disorders of other excitable tissues,
such as heart and brain.
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