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Mutations in the RYR1 gene are linked to malignant hyperthermia (MH), central core 
disease and multi-minicore disease. We screened by DHPLC the RYR1 gene in 24 subjects 
for mutations, and characterized functional alterations caused by some RYR1 variants. 
Three novel sequence variants and twenty novel polymorphisms were identified. 
Immortalized lymphoblastoid cell lines from patients with RYR1 variants and from controls 
were stimulated with 4-chloro-m-cresol (4-CmC) and the rate of extracellular acidification 
was recorded. We demonstrate that the increased acidification rate of lymphoblastoid cells 
in response to 4-CmC is mainly due to RYR1 activation. Cells expressing RYR1 variants in 
the N-terminal and in the central region of the protein (p.Arg530His, p.Arg2163Pro, 
p.Asn2342Ser, p.Glu2371Gly and p.Arg2454His) displayed higher activity compared with 
controls; this could account for the MH-susceptible phenotype. Cell lines harboring 
RYR1Cys4664Arg were significantly less activated by 4-CmC. This result indicates that the 
p.Cys4664Arg variant causes a leaky channel and depletion of intracellular stores. The 
functional changes detected corroborate the variants analyzed as disease-causing alterations 
and the acidification rate measurements as a means to monitor Ca2+-induced metabolic 
changes in cells harboring mutant RYR1 channels. © 2009 Wiley-Liss, Inc. 
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INTRODUCTION 

Mutations in the RYR1 gene (MIM# 180901), which encodes the skeletal muscle ryanodine receptor (RYR1), 
the Ca2+ release channel of the sarcoplasmic reticulum, are linked to three skeletal muscle disorders, i.e., malignant 
hyperthermia (MH), central core disease (CCD) and multi-minicore disease (MmD). Furthermore, a de novo 
dominant RYR1 missense mutation has been identified in a subject with centronuclear myopathy and clinical 
features of congenital myopathy and external ophthalmoplegia [Jungbluth et al., 2007]. Malignant hyperthermia 
(MIM# 145600) is an autosomal dominant hypermetabolic condition that occurs in genetically predisposed 
subjects during general anesthesia induced by commonly used volatile anesthetics and/or the neuromuscular 
blocking agent succinylcholine. An MH attack, unless immediately recognized and treated, is often fatal. 
Malignant hyperthermia susceptibility (MHS) is diagnosed by an in-vitro contracture test (IVCT) [European 
Malignant Hyperpyrexia Group, 1984]. A considerable genetic heterogeneity has been reported for MH. MHS loci 
have been identified on six human chromosomes: 19q13.1 (MHS1; MIM# 180901), 17q11.2-q24 (MHS2; MIM# 
154275), 7q21-q22 (MHS3; MIM# 154276), 3q13.1 (MHS4; MIM# 600467), 1q32 (MHS5; MIM# 601887) and 
5p (MHS6; MIM# 601888). RYR1 is the main candidate for MHS, since mutations in the RYR1 gene (MHS1 
locus) have been identified in more than 50% of affected families [Robinson et al., 2006]. 

Central core disease (MIM# 117000) is a rare congenital myopathy characterized by muscle hypotrophy and 
hypotonia in infancy. The histological analysis of muscle samples usually reveals the presence of central core 
lesions extending the length of type I muscle fibers. The cores are regions characterized by sarcomeric 
disorganization, absence of mitochondria, and lack of oxidative activity. Multi-minicore disease (MIM# 255320) is 
a recessive clinically heterogeneous condition; general features include neonatal muscle hypotonia, delayed motor 
development, generalized muscle weakness, and amyotrophy. Muscle biopsy shows multiple “minicores” of 
sarcomere disorganization and mitochondria-depletion in most muscle fibers.  

Thus far, more than 200 sequence variants have been identified in the RYR1 gene [Anderson et al., 2008; von 
der Hagen et al., 2008; Monnier et al., 2008; Sato et al., 2008; Kossugue et al., 2007; Lyfenko et al., 2007; Rossi  
et al., 2007; Zhou et al., 2007, 2006; Robinson et al., 2006; Wu et al., 2006]. Identification of novel RYR1 variants 
and their functional characterization help shed light on the molecular bases of the distinct pathophysiological 
characteristics of each disorder (drug-dependent hyperactivity in MH versus muscle weakness and core 
development in CCD and minicores in MmD [Treves et al., 2008]), and are an aid to the diagnosis of MH. In fact, 
although the IVCT is the gold standard to establish the risk of MHS, an individual harboring an MH causative 
mutation can be considered MHS even without an IVCT result (www.emhg.org). Furthermore, genetic analysis is 
crucial to identify and evaluate the few cases of discordance between genotype, characterized by the presence of a 
causative mutation, and MHN-typed phenotype [Robinson et al., 2003; Fortunato et al., 1999].  

Various methods have been developed to characterize the function of RYR1 variants: analysis of calcium 
release in human primary myotubes [Wehner et al., 2004, 2002; Girard et al., 2002; Brinkmeier et al., 1999] and in 
immortalized B-lymphocytes from patients or after expression by transfection in various cell types [Yang et al., 
2003; Girard et al., 2001; Censier et al., 1998; Tong et al., 1997], and determination of the channel openings in a 
ryanodine binding assay [Sambuughin et al., 2001]. Moreover, metabolic tests in vivo [Bina et al., 2006; Anetseder 
et al., 2003, 2002; Textor et al., 2003] and in vitro [Klingler et al., 2002] have been developed to distinguish 
between MHS and MHN muscles. In particular, a metabolic assay in vitro based on the measurements of proton 
release rate has been reported to detect hypermetabolic responses, probably originating from an increased 
myoplasmic Ca2+ concentration, of MHS compared with MHN myotubes [Klingler et al., 2002]. 

The aims of this study were to: 1) screen the RYR1 gene for mutations in 24 subjects (23 MHS individuals and 
one with minicores) from southern Italy; 2) characterize the cellular proton release in response to the RYR1 
activator 4-chloro-m-cresol in EBV-immortalized lymphoblastoid cells; and 3) apply this assay to investigate the 
metabolic consequences of RYR1variants in EBV-immortalized lymphoblastoid cells from patients carrying RYR1 
gene variants.  
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MATERIALS AND METHODS 

Subjects  
Twenty-three unrelated MHS subjects, including 16 probands who experienced an MH event during anesthesia, 

were enrolled in this study. The MHS status was assessed by the IVCT [Ørding et al., 1997; European Malignant 
Hyperpyrexia Group, 1984]. One patient was referred with myopathy and minicores. Informed consent was 
obtained for each patient according to a procedure established by the local Bioethics Institutional Committee. 

Mutation screening 
Genomic DNA was extracted with the “Nucleon” procedure (Amersham, UK) from peripheral blood samples. 

PCR primers for the amplification of the 106 exons of the RYR1 gene and of the intron boundary sequences were 
designed on the human RYR1 genomic sequence (AC011469.6, AC067969.1, AC005933.1 accession numbers). 
Primers and amplification conditions are available on request (salvator@unina.it). Denaturing high performance 
liquid chromatography (DHPLC) analysis was performed using the WAVE system 3500 (Transgenomic, Omaha, 
NE). PCR samples from MHS patients were mixed with the wild-type amplicon, denaturated at 95°C for 5 min and 
then cooled at room temperature to allow heteroduplexes to form. Amplicons with an altered DHPLC eluition 
profile compared to that obtained from a wild-type amplicon were directly sequenced with dye-terminator 
chemistry (Applied Biosystems) using an ABI3100 automated sequencer (Applied Biosystems, USA). Nucleotide 
substitutions were numbered on the cDNA sequence (GenBank NM_000540.2) and on the genomic sequence 
(AC011469.6, AC067969.1, AC005933.1 accession numbers) using the Mutalyzer program [Wildeman et al., 
2008]. For the novel genomic variants, the following criteria were evaluated: segregation of the sequence variant in 
families performed by restriction analysis, when possible, or by direct DNA sequencing; the absence/presence in 
100 normal chromosomes of the same ethnic group by DHPLC analysis; conservation of the amino acid residues 
replaced across homologous proteins by BLASTP.  

Mononuclear cells and EBV-transformed cell lines 
Whole blood was collected in EDTA-treated tubes and mononuclear cells were isolated by Ficoll-Hypaque 

density gradient centrifugation. For infection with Epstein-Barr virus (EBV), mononuclear cells were exposed to 
supernatants of the B95.8 cell line, according to standard procedures [Neitzel, 1986]. Cells were cultured in 
Iscove’s Modified Dulbecco’s Medium (I3390, Sigma-Aldrich) supplemented with 20% fetal bovine serum 
(CH30160,03, Hyclone) and 1% L-glutamine (G7513, Sigma-Aldrich). All the EBV-immortalized lymphoblastoid 
cells carrying the RYR1 gene variants were analyzed to verify the presence of the nucleotide substitution.  

Proton release measurements 
We measured proton release using the Cytosensor® microphysiometer (Molecular Devices, San Diego) as 

described [Klingler et al., 2002]. All experiments were carried out with repeated cycles of 9 min applications of 4-
chloro-m-cresol (4-CmC), with a stepwise increase from 200 µM to 1000 µM, followed by a 9-min washout. For 
the inhibition experiments with 50 µM cyclopiazonic acid (CPA), 5 µM thapsigargin, or 80 µM dantrolene, the 
cells were pre-treated for 20 min with thapsigargin or 30 min with the other inhibitors and then stimulated with 4-
CmC in the presence of inhibitor. At the end of these experiments the cell were perfused with inhibitor-free 
medium for 20 min and then stimulated again with 4-CmC to check cell viability.  

The following stock solutions were prepared for the experiments with the Cytosensor®: 10 mM 4-CmC 
(C55402, Sigma-Aldrich); 29.7 mM CPA (239805, Calbiochem) in chloroform; 1.5 mM thapsigargin (586005, 
Calbiochem) in DMSO; 1 mM dantrolene sodium salt (251680, Calbiochem) in 274 mM mannitol (M4125, Sigma-
Aldrich). 

Statistical analysis 
Results are reported as means and standard error of the mean (SEM) of at least three independent experiments. 

Significance of the differences between groups was evaluated by the Mann-Whitney test. Differences were 
considered to be significant when P<0.05.  
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RESULTS 

RYR1 gene mutation analysis 
DPHLC screening of the 106 exons of the RYR1 gene in 23 MHS individuals and in one subject with minicores 

revealed 12 variants (Table 1) and several known and novel polymorphisms (Table 2). Nine sequence variants, 
c.1589G>A(p.Arg530His), c.1840C>T(p.Arg614Cys), c.6488G>C(p.Arg2163Pro), c.6502G>A(p.Val2168Met), 
c.6635T>A(p.Val2212Asp), c.7025A>G(p.Asn2342Ser), c.7361G>A(p.Arg2454His), c.11708G>A 
(p.Arg3903Gln) and c.12700G>C(p.Val4234Leu), were previously associated with MHS status [Robinson et al., 
2006], among which three (p.Arg614Cys, p.Val2168Met, p.Arg2454His) were found to be MH-causative 
(www.emhg.org), and one, p.Arg530His, was reported [Robinson et al., 2006] as a personal communication 
without characterization data. Lastly, we found the p.Arg3903Gln sequence variant in a patient who had myopathy 
associated to altered distribution of oxidative enzymes and minicores in muscle (biopsy analysis, Dr. F. Cornelio, 
Milan, Italy, personal communication). Three missense changes, c.7112A>G(p.Glu2371Gly), 
c.7355G>C(p.Arg2452Pro) and c.13990T>C(p.Cys4664Arg) (Table 1), are novel sequence variants; these were 
absent in more than 100 alleles in MHN subjects and resulted in changes of amino acid residues conserved in all 
the RYR isoforms of various species. We also identified the variants c.2920G>A(p.Val974Met) and c.9674G>A 
(p.Arg3225Gln) (Table 2), each detected also in one MHN individual, and c.9457G>A(p.Gly3153Arg) and 
c.6599C>T(p.Ala2200Val) (Table 2), which did not segregate with the MHS phenotype in the pedigrees we 
analyzed. Therefore, these sequence variants are probably polymorphisms (Table 2). The variants p.Glu2371Gly 
and p.Arg2452Pro occurred in two single MHS subjects, whereas p.Arg530His and p.Cys4664Arg segregated with 
the disease (Fig. 1). Family NA-15, in which p.Cys4664Arg segregated with the MHS phenotypes, also carried the 
p.Arg3225Gln substitution, and subject II:2 had both sequence variants (Fig. 1). Considering the mutations and 
putative causative variants identified in this study, each in a single patient, the mutation rate was 50%.  
 
 
 

 
Table 1. RYR1 sequence variants identified in the 23 MHS subjects and in the one MmD subject screened 
 

Exon Nucleotide change Amino acid change Role of mutation References 

15 c.1589G>A p.Arg530His  MHS c.m.* Robinson et al. 2006  

17 c.1840C>T p.Arg614Cys MHS c.m. Robinson et al. 2006  

39  c.6488G>C p.Arg2163Pro  MHS c.m.* Robinson et al. 2006  

39 c.6502G>A p.Val2168Met MHS c.m. Robinson et al. 2006  

40 c.6635T>A p.Val2212Asp MHS p.c.m. Galli et al 2006 

43 c.7025A>G p.Asn2342Ser  MHS c.m.* Robinson et al. 2006  

44 c.7112A>G p.Glu2371Gly  MHS c.m.* This study 

46 c.7355G>C p.Arg2452Pro MHS p.c.m. This study 

46 c.7361G>A p.Arg2454His  MHS c.m. Robinson et al. 2006  

85 c.11708G>A p.Arg3903Gln MHS/ 
MmD p.c.m 

Robinson et al. 2006 
 and this study 

91 c.12700G>C p.Val4234Leu MHS p.c.m. Robinson et al. 2006  

95 c.13990T>C p.Cys4664Arg  MHS c.m.* This study 
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c.m.: causative mutation;  c.m.*: causative mutation demonstrated in this study; p.c.m: putative causative mutation. 
Nucleotide numbering reflects cDNA numbering based on cDNA Ref Seq: NM_000540.2, with +1 corresponding to the 
A of the ATG translation initiation codon in the reference sequence. The initiation codon is codon 1.   
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Table 2. Polymorphisms detected in the MHS population screened 

 
Nucleotide change 

genomic cDNA 
Location Amino acid Ref SNP ID 

(NCBI) References 

g.27135G>T c.165+35G>T Intron 2   This study 

g.28716G>A c.270+27G>A Intron 3  rs3745843  

g.30855C>T c.573C>T Exon 7 p.Asp191 rs892054  

g.30876A>G c.594A>G Exon 7 p.Leu198 rs12985668  

g.30952_30953insC c.631+39_40insC Intron 7   This study 

g.35004T>C c.1077T>C Exon 11 p.Ala359 rs10406027  

g.41447T>C c.1441-24T>C Intron 13  rs7254832  

g.41778G>A c.1668G>A Exon 15 p.Ser556 rs2288888  

g.41811G>C c.1672+29G>C Intron 15  rs2288889  

g.44559C>G c.2167+30C>G Intron 18  rs2071086  

g.45499C>T c.2286C>T Exon 19 p.Pro762 rs3745847  

g.49592A>G c.2678-67A>G Intron 20  rs2304148  

g.52376G>A c.2920G>A Exon 24 p.Val974Met  This study 

g.52399G>A c.2943G>A Exon 24 p.Thr981 rs2228069  

g.52435C>T c.2979C>T Exon 24 p.Asn993 rs2228070  

g.55276C>T c.3456C>T Exon 26 p.Ile1152 rs11083462  

g.61548T>C c.4161-6T>C Intron 28  rs55845760  

g.64095C>T c.4443C>T Exon 30 p.Asn1481  This study 

g.72251C>T c.5360C>T Exon 34 p.Pro1787Leu rs34934920  

g.75487A>G c.5622A>G Exon 35 p.Glu1874  Robinson et al. 
2006 

g.75714C>G c.5814+35C>G Intron 35  rs16972654  

g.76880A>G c.6039A>G Exon 37 p.Lys2013 rs2228068  

g.78776G>T c.6178G>T Exon 38 p.Gly2060Cys rs35364374  

g.80697C>T c.6384C>T Exon 39 p.Tyr2128  This study 

g. 80871C>T c.6548+10C>T Intron 39   This study 

g.82501C>T c.6599C>T Exon 40 p.Ala2200Val  Robinson et al. 
2006 

g.85932C>T c.7089C>T Exon 44 p.Cys2363 rs2228071  
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Nucleotide change 

genomic cDNA 
Location Amino acid Ref SNP ID 

(NCBI) References 

g.85941C>T c.7098C>T Exon 44 p.Pro2366 rs2229147  

g.86189C>T c.7260C>T Exon 45 p.His2420 rs12973632  

g.86794G>T c.7324-48G>T Intron 45   This study 

g.87112G>T c.7500G>T Exon 47 p.Ala2500 rs2228072  

g.87139G>A c.7527G>A Exon 47 p.Val2509 rs2071088  

g.87236C>G c.7614+10C>G Intron 47  rs2960323  

g.89143C>T c.7863C>T Exon 49 p.His2621 rs2229142  

g.89152C>T c.7872C>T Exon 49 p.Arg2624 rs1469698  

g.89234A>G c.7926+28A>G Intron 49  rs1469699  

g.90506G>A c.7977G>A Exon 50 p.Thr2659 rs2229144  

g.90953_90955delCCT c.8068-30_32delCCT Intron 50  rs10532729  

g.91034T>C c.8118T>C Exon 51 p.Ile2706 rs2960340  

g.91106T>C c.8190T>C Exon 51 p.Asp2730 rs2915951  

g.91571G>A c.8337G>A Exon 53 p.Glu2779 rs2915952  

g.91610G>A c.8376G>A Exon 53 p.Arg2792  This study 

g.91662A>G c.8400+28A>G Intron 53  rs2915953  

g.92216C>T c.8541+34C>T Intron 54  rs2960342  

g.92219T>G c.8541+37T>G Intron 54  rs2960343  

g.92221G>C c.8541+39G>C Intron 54   This study 

g.92236A>G c.8541+52A>G Intron 54  rs2915954  

g.92586T>C c.8589T>C Exon 55 p.Ser2863 rs2229146  

g.92620G>A c.8616+7G>A Intron 55   This study 

g.92635G>C c.8616+22G>C Intron 55   This study 

g.92672C>T c.8617-35C>T Intron 55  rs2960344  

g.92673T>C c.8617-34T>C Intron 55   This study 

g.92810T>G c.8692+28T>G Intron 56  rs2960345  

g.92960_92961insTCA c.8693-105_104insTCA Intron 56  rs35973146  

g.92996A>T c.8693-69A>T Intron 56   This study 

g.93055G>C c.8693-10G>C Intron 56  rs2915958  
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Nucleotide change 

genomic cDNA 
Location Amino acid Ref SNP ID 

(NCBI) References 

g.93205T>A c.8816+16T>A Intron 57  rs2915959  

g.93231A>C c.8816+42A>C Intron 57  rs2960346  

g.94097_94098insC c.8932+34_35insC Intron 58  rs5828009  

g.97960G>A c.9172+114G>A Intron 61   This study 

g.98287C>T c.9173-21C>T Intron 61  rs2960338  

g.98321A>G c.9186A>G Exon 62 p.Pro3062 rs2071089  

g.98704G>A c. 9457G>A Exon 63 p.Gly3153Arg  This study 

g.102442G>A c.9674G>A Exon 65 p.Arg3225Gln  This study 

g.105619C>T c.10188C>T Exon 67 p.Asp3396 rs2229145  

g.105655C>T c.10218C>T Exon 67 p.Tyr3406  Robinson et al. 
2006 

g.105697G>A c.10259+7G>A Intron 67   This study 

g.109668G>T c.10440+122G>T Intron 69   This study 

g.8585C>T c.10687-7C>T Intron 72  rs2960354  

g.9458A>G c.10938-86A>G Intron 74  rs6508806  

g.15671C>G c.11266C>G Exon 79 p.Gln3756Glu rs4802584  

g.17914C>T c.11608+201C>T Intron 83   This study 

g.24356T>A c.11754T>A Exon 85 p.Thr3918 rs45613041  

g.11427C>T c.13317C>T Exon 91 p.Ala4439  Robinson et al. 
2006 

g.16392C>G c.13671C>G Exon 94 p.Ser4557 rs35959206  

g.32386G>T c.15021+37G>T Intron 105   This study 

  
 
Nucleotide location was determined using the Mutalyzer program (Wildelman et al., 2008) from the genomic sequences 
AC011469.6 (from intron 2 to intron 69), AC067969.1 (from intron 72 to exon 85) and AC0059333.1 (from exon 91 to intron 
105) and from cDNA sequence Ref Seq: NM_000540.2 (nucleotides were numbered on cDNA with +1 corresponding to the A 
of the ATG translation initiation codon in the reference sequence. The initiation codon is codon 1).  
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Figure 1. Pedigrees of families NA-33 (A) and NA-15 (B) showing the segregation of RYR1 sequence variants, which are 
listed on the left of each panel. Solid symbols: MHS individuals identified by the IVCT; N: individuals MHN typed by the 
IVCT; ?: untested members of the pedigree; +/–: presence or absence of the sequence variants. The arrow indicates the index 
case who experienced an MH episode. 

Proton release measurements in EBV-immortalized normal lymphoblastoid cells  
The rate of extracellular acidification in chemically stimulated cultured myocytes was reported to be 

significantly higher in MHS myotubes than in MHN myotubes [Klingler et al., 2002]. Previous studies have also 
demonstrated that human B-lymphocytes express RYR1 [Sei et al., 1999] and could be used as a model to test the 
effect of sequence variants on RYR1 function [Sei et al., 2002, 1999; Girard et al., 2001]. We therefore applied the 
proton release assay in EBV-immortalized lymphoblastoid cells from patients carrying RYR1 variants. First, we 
characterized proton release in response to 4-CmC. The latter compound specifically activates the RYR1 channel 
and can be used to discriminate between MHN and MHS phenotypes [Herrmann-Frank et al., 1996]. 
Lymphoblastoid cells from normal subjects responded to 4-CmC by increasing the proton secretion rate (Fig. 2). 
The cellular response to the triggering agent was independent of extracellular calcium since it was not affected by 
the addition of 15 mM EGTA to the medium (data not shown).  
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Figure 2. Acidification rate recorded in lymphoblastoid cells from an MHN control. The bars indicate perfusion of the chamber 
with the medium containing the indicated concentrations of 4-CmC. The increase in the acidification rate expressed as 
percentage of predrug value plotted versus 4-CmC concentration is shown in the inset.   
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To evaluate whether the metabolic response to 4-CmC was due to Ca2+ release from the endoplasmic reticulum, 
the cells were treated with CPA or with thapsigargin, which are SERCA pump blockers that deplete Ca2+ stores by 
blocking Ca2+ uptake and allowing passive leakage of Ca2+ [Duke et al., 1998; Thastrup et al., 1990]. 
Lymphoblastoid cells from an MHN subject were stimulated with 600 µM 4-CmC after preincubation with 50 µM 
CPA or 5 µM thapsigargin. The proton release rate increased in the first 2 min after the addition of CPA or 
thapsigargin to the perfusion medium (not shown) as a result of the block of the Ca2+ flux from the cytosol to the 
endoplasmic reticulum, and stabilized to basal values in about 15 min. Stimulation with 600 µM 4-CmC in the 
presence of CPA or thapsigargin reduced the response rate by about 50% (Fig. 3) as a result of Ca2+ store depletion 
due to the continuous SERCA pump inhibition [Duke et al., 1998]. These data confirm that endoplasmic reticulum 
Ca2+ is essential for the full cellular response to 4-CmC in the microphysiometer system. 

Dantrolene is an RYR1 antagonist that blocks calcium release from the sarco/endoplasmic reticulum stores and 
is the only specific agent available for the treatment of an MH attack. Thus, we used dantrolene to evaluate the 
effect of RYR1 channel opening on the acidification response to 4-CmC. Dantrolene treatment reduced the 
response to 600 µM 4-CmC by about 70% (Fig. 3), which indicates that RYR1 plays a major role in 4-CmC-
induced acidification. 
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Figure 3. Effect of cyclopiazonic acid (CPA), thapsigargin and dantrolene on the acidification rate in response to 4-CmC in 
lymphoblastoid cells from an MHN control. Increases in the acidification rate in response to 600 µM 4-CmC after pretreatment 
with 50 µM CPA or 5 µM thapsigargin or 80 µM dantrolene are expressed as percentage of the response in the absence of 
inhibitors. Error bars show the SEM except for the third column where only one experiment could be performed. 

Proton release measurements in EBV-immortalized lymphoblastoid cells carrying RYR1 channel variants 
B-lymphocytes from patients with RYR1Arg530His (subject II:1 of family NA-33, Fig. 1), RYR1Arg2163Pro (proband 

of family NA-3 [Fortunato et al., 2000]), RYR1Asn2342Ser, RYR1Glu2371Gly, RYR1Arg2454His and RYR1Cys4664Arg variants 
were available and were immortalized with EBV. Regarding the RYR1Cys4664Arg variant, three cell lines, MHS5, 
MHS6 and MHS7, were prepared from subjects II:1, II:2 and II:3, respectively, of family NA-15 (Fig.1). 

The cell lines were used for the functional characterization using proton release measurements in response to 4-
CmC. Two cell lines were used as controls, named MHN1 from an unrelated MHN subject and MHN10 from 
subject II:2 of family NA-33 (Fig. 1). Metabolic responses to 4-CmC were significantly higher in the cell line with 
the RYR1Arg530His mutant channel (Fig. 4) and in the cell lines harboring RYR1 channels with the other sequence 
variants located at the central region of the protein than in wild-type RYR1 cell lines (Fig. 5). On the contrary, the 
metabolic responses to 4-CmC were lower in the three cell lines carrying RYR1Cys4664Arg than in controls (Fig. 5). 
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However, the response to 800 µM 4-CmC of the MHS6 cell line with two substitutions, p.Arg3225Gln and 
p.Cys4664Arg, each transmitted from one parent (Fig. 1), did not significantly differ from controls. The basal 
metabolism was unaffected, since the acidification rate of all the three cell lines expressing RYR1Cys4664Arg 
recorded in the absence of 4-CmC was indistinguishable from that of the MHN control cells (data not shown). 
Mutations in the C-terminal membrane-spanning domain have been reported to show a smaller thapsigargin-
induced increase in cytosolic [Ca2+], in the absence of external Ca2+, than controls [Treves et al., 2008; Lynch et 
al., 1999]. This result has been taken to indicate Ca2+ store depletion due to “leaky” mutant RYR1 channels, since 
the signal obtained with the SERCA blocker reflects the size of the rapidly releasable intracellular Ca2+ stores 
[Tilgen et al., 2001]. To determine if theRYR1Cys4664Arg variant reacts in a similar way, we analyzed the 
acidification response of the MHS5 cell line to thapsigargin. The early increase (in the first 2 min) after treatment 
with the SERCA pump blocker was about 50% lower (data not shown) in this cell line than in the control. This 
result is consistent with partial Ca2+ store depletion in the cell line expressing RYR1Cys4664Arg, as confirmed by Ca2+ 
release measurements (unpublished results).  

We next used dantrolene to evaluate the contribution of RYR1 activation to the increase of the acidification rate 
of cell lines harboring RYR1 variants. The response to 600 µM 4-CmC was inhibited in each variant (Fig. 6). 
Moreover, the extent of inhibition of the hyperactivated mutant RYR1 channels tended to correlate inversely with 
the extent of 4-CmC activation in the absence of dantrolene (Fig. 6, inset). 
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Figure 4. Acidification rate of lymphoblastoid cells from two MHN controls and from a patient with the RYR1Arg530His channel 
stimulated with 4-CmC. The increase in the acidification rate is reported as percentage of the predrug value. Squares: cells with 
RYR1Arg530His; triangles: control cells MHN1; diamonds: control cells MHN10 (see text under Results). Error bars show the 
propagation of the SEM; at all the measured concentrations the responses were significantly different (P<0.05) from the 
controls.  
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Figure 5. Increase in the acidification rate of RYR1 variants. The increase in the acidification rate value of lymphoblastoid 
cells from normal subjects is taken as 100. Cell lines carrying RYR1 variants p.Arg530His, p.Arg2163Pro, p.Asn2342Ser, 
p.Glu2371Gly, p.Arg2454His, p.Cys4664Arg and p.Cys4664Arg/p.Arg3225Gln were stimulated with 400 µM, 600 µM or 800 
µM 4-CmC as indicated. Each block of three bars corresponds to a cell culture preparation derived from a RYR1 variant patient 
as indicated. MHS5, MHS7 and MHS6 correspond to three different cell lines (see text). Error bars show the propagation of the 
SEM; asterisks indicate responses significantly different (P<0.05) from the controls.  

DISCUSSION 

RYR1 gene screening showed that no RYR1 sequence variant is prevalent in MHS subjects and families from 
southern Italy. To examine the function of RYR1 channel variants in EBV-immortalized lymphoblastoid cells, we 
recorded extracellular acidification, as a measure of the energy metabolism of activated cells, with a sensitive pH-
metric biosensor. RYR1 is expressed in human B lymphocytes where it functions as a Ca2+-release channel during 
the B-cell receptor–stimulated Ca2+ signaling process [Sei et al., 1999], and Ca2+ homeostasis is altered in B cells 
of MHS individuals [Sei et al., 2002; Girard et al., 2001]. We demonstrate that the increase in the acidification rate 
of immortalized lymphoblastoid cells in response to 4-CmC is mainly due to the activation of the RYR1 calcium 
channel; therefore this assay can be used to analyze the activity of RYR1 in this cellular system.  

The metabolic responses of mutant RYR1 channels analyzed in this study were of two types, i.e. increase or 
decrease of proton release rate compared with the wild-type channel. The response seems to depend on the location 
of the mutation. The metabolic response was higher in RYR1 channels with mutations located in the N-terminal 
and the central regions of the protein, and these higher metabolic responses can account for the MHS phenotype. In 
our tests we included cells expressing RYR1Arg2454His, whose functional behavior has been already characterized by 
another method [Monnier et al., 2005]. The higher acidification rate in response to 4-CmC versus the wild-type 
channel detected in our experiments is in line with the higher sensitivity to caffeine detected by Ca2+-release 
measurements [Monnier et al., 2005]. This result indicates that the increase in proton release triggered by 4-CmC 
results from Ca2+ release and is an indirect indicator of altered Ca2+ metabolism. On the contrary, 4-CmC-induced 
activation was significantly lower in the cell lines harboring RYR1Cys4664Arg, and our results indicate that 
p.Cys4664Arg leads to a leaky channel with depletion of intracellular stores. The p.Cys4664Arg mutation is 
located at the C-terminal region of the protein in the M6 transmembrane segment [Zorzato et al., 1990]. Other 
mutations at the C-terminus of RYR1 and associated with the CCD phenotype have been reported to lead to 
channels that are non- or hypo-reactive to chemical stimulation  [Brini et al., 2005;  Ducreux et al., 2004;  Tilgen  
et al., 2001; Lynch et al., 1999]. In contrast, the p.Thr4826Ile mutation, associated to the MHS phenotype, was 
reported to have a higher 4-CmC and caffeine sensitivity compared to the wild-type RYR1 in transfected human 
myotubes [Yang et al. 2003]. The p.Cys4664Arg mutation has been identified in an MH family (Fig. 1) and no 
signs of myopathy compatible with CCD were found in the medical history of the patients.  
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Figure 6. Dantrolene inhibition of the acidification rate of RYR1 variants stimulated with 600 µM 4-CmC in the presence of 80 
µM dantrolene. The inhibition is expressed as percentage of the acidification rate in the absence of inhibitor. Error bars show 
the propagation of the SEM. The inverse correlation between the % of the increase in the acidification rate at 600 µM 4-CmC 
and the % of inhibition by dantrolene (80 µM) for the various RYR1 variants is shown in the inset.  

 
In conclusion, we identified three novel sequence variants in the RYR1 gene. Using the drug-induced proton 

release rate of lymphoblastoid cells harboring some of the sequence variants identified, we demonstrate that these 
genetic alterations are – as expected for impairments of the Ca2+ release channel – associated with changes in 
metabolic function. They, therefore, fulfill the requirements of the “guidelines for the molecular genetic detection 
of susceptibility to malignant hyperthermia” [Urwyler et al., 2001] for predictive genetic testing. 
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