

Seminar zur Vorlesung Physikalische Chemie III Wintersemester 2013/2014

Prof. Dr. Timo Jacob, Institut für Elektrochemie Übungsblatt 9, Aufgaben 26–28

Seminartermin 20.01.2014

Aufgabe 26

In der Aufgabe 18 wurde f"ur die Entropie eines idealen Gases, das aus NTeilchen besteht und sich in einem Volumen Vbefindet, folgender Ausdruck

$$S(N,U) = k_B N \left[\frac{5}{2} + \ln \left(\frac{g_s}{h^3} \cdot \frac{V}{N} \left(\frac{4\pi m U}{3N} \right)^{3/2} \right) \right] + C.$$
 (1)

hergeleitet.

- (a) Berechnen Sie mit Hilfe der Gleichung (1) die Zustandssumme eines einatomigen $(g_s = 1)$ idealen Gases.
- (b) Geben Sie einen genährten Ausdruck der Zustandssumme an, indem Sie die Stirlingformel $e^N \cdot N^N \approx N!$ benutzen.
- (c) Vergleichen Sie diesen Ausdruck mit dem in der Vorlesung hergeleiteten Ausdruck.

Aufgabe 27

Ein einatomiges Gas, daß aus N Teilchen besteht, befindet sich in einem Behälter mit dem Volumen V_1 . Es expandiert und nimmt nach der Expansion das Volumen V_2 an. Berechnen Sie die Änderung der inneren Energie und der Entropie des Gases für den Fall, daß die Expansion

- (a) isotherm
- (b) isentrop
- (c) irreversibel (Expansion ins Vakuum)

abgelaufen ist. Wie groß ist die vom Gas geleistete Arbeit?

Dr. Josef Anton, 14.01.2014