

Seminar zur Vorlesung Physikalische Chemie III Wintersemester 2013/2014

Prof. Dr. Timo Jacob, Institut für Elektrochemie Übungsblatt 5, Aufgaben 14–16

Seminartermin 25.11.2013

Hintergrundinformationen

Ein Ensemble nichtwechselwirkender Teilchen kann in einem Einteilchenbild gut beschrieben werden. Dabei dürfen sich in jedem Volumenelement h^3 des Phasenraums höchstens g_s Teilchen befinden, wobei mit g_s der Entartungsgrad bezeichnet ist.

Die Anzahl der Zustände in einem infinitesimal kleinen Phasenraumvolumen $d^3 \vec{p} d^3 \vec{r}$ ist somit gleich $d\Gamma = g_s \frac{d^3 \vec{p} d^3 \vec{r}}{h^3}$. Ein solcher Zustand kann entweder besetzt oder unbesetzt sein. Die Wahrscheinlichkeit, daß ein Zustand besetzt ist, wird mit $n(\vec{p}, \vec{r})$ bezeichnet und kann im allgemeinen sowohl von allen drei Raumkoordinaten als auch allen drei Impulskoordinaten abhängen. Die Anzahl der Teilchen dN in einem Phasenraumvolumen läßt sich so

$$dN = n(\vec{p}, \vec{r}) d\Gamma \tag{1}$$

berechnen.

Das Integral über den gesammten Phasenraum

$$\int dN = \int n(\vec{p}, \vec{r}) d\Gamma, \qquad (2)$$

muß natürlich die Gesamtzahl der Teilchen im System ergeben.

Oft ist man nur an der Anzahl der Teilchen in einem bestimmten Raum-, Impuls- oder Energieinterval interessiert. In dem Fall muß über alle anderen Koordinaten im Phasenraum integriert werden. Wenn man z.B. nur an der Anzahl der Teilchen in einem infinitesimal kleinen Volumen $dV = d^3 \vec{r}$ interessiert ist, dann muß man über alle möglichen Impulse integrieren:

$$dN_V = \left(\int_{V_{\vec{p}}} n(\vec{p}, \vec{r}) \ d^3 \vec{p} \right) d^3 \vec{r}. \tag{3}$$

Der Koeffizient vor dem Volumenelement $d^3 \vec{r}$

$$\int_{V_{\vec{p}}} n(\vec{p}, \vec{r}) d^3 \vec{p} = \rho(\vec{r}) \tag{4}$$

ist dann die Teilchendichte.

Ist man dagegen nur an der Anzahl der Teilchen, deren z-Komponente des Impulses im Intervall $[p_z, p_z + d p_z]$ liegt, interessiert, dann muß über alle Raumkoordinaten und über die Koordinaten p_x und p_y integriert werden

$$dN_{p_z} = \left(\int_{-\infty}^{\infty} dp_x \int_{-\infty}^{\infty} dp_y \int_{V} n(\vec{p}, \vec{r}) d^3 \vec{r}\right) dp_z.$$
 (5)

Der Erwartungswert einer Observable $\hat{O}(\vec{p}, \vec{r})$ läßt sich im Einteilchenbild wie folgt

$$\left\langle \hat{O}(\vec{p}, \vec{r}) \right\rangle = \int \hat{O}(\vec{p}, \vec{r}) n(\vec{p}, \vec{r}) d\Gamma \tag{6}$$

berechnen.

Für die Observable Teilchenzahl ($\hat{O}=1$) erhält man somit gemäß Gleichung (2) die Gesamtzahl der Teilchen im System.

Es hat sich gezeigt, daß die Besetzungszahlen $n(\vec{p}, \vec{r})$ nur von der Energie eines Teilchens ϵ abhängen. Nach Boltzmann sind die Besetzungszahlen durch

$$n(\epsilon) = e^{(\mu - \epsilon)/k_B T} \tag{7}$$

gegeben. Mit μ ist hier das chemische Potential des Systems bezeichnet, das sich aus der Normierung der Verteilung ergibt.

Teilchen mit einem halbzahligen Spin werden nach der Dirac-Fermi-Statistik verteilt

$$n(\epsilon) = \frac{1}{e^{(\epsilon - \mu)/k_B T} + 1}.$$
 (8)

Teilchen mit einem ganzzahligen Spin werden nach der Bose-Einstein-Statistik verteilt

$$n(\epsilon) = \frac{1}{e^{(\epsilon - \mu)/k_B T} - 1}.$$
 (9)

Aufgabe 14

Betrachten Sie ideales Gas, dessen Dichte $\rho = N/V$ ist, bei Zimmertemperatur.

- (a) Wie werden die Teilchen im Phasenraum verteilt?
- (b) Stellen Sie die Verteilungsfunktion als eine Funktion der Teilchenenergie ϵ für unterschiedliche Temperaturen grafisch dar.
- (c) Berechnen Sie das chemische Potential des idealen Gases.
- (d) Berechnen Sie die Anzahl der Teilchen, dessen Energie ϵ im Intervall $[\epsilon, \epsilon + d \epsilon]$ liegt.
- (e) Vergleichen Sie das Ergebnis mit der Maxwell-Verteilung.
- (f) Berechnen Sie die innere Energie des idealen Gases.

Aufgabe 15

Betrachten Sie freies Elektronengas, dessen Dichte $\rho = N/V$ ist.

- (a) Wie werden die Elektronen im Phasenraum verteilt?
- (b) Stellen Sie die Verteilungsfunktion als eine Funktion der Teilchenenergie ϵ für T=0 und T>0 grafisch dar.
- (c) Wie werden die Elektronen im Phasenraum bei sehr großen Temperaturen verteilt?
- (d) Berechnen Sie das chemische Potential des freien Elektronengases bei T=0.
- (e) Berechnen Sie die Anzahl der Teilchen, deren Energie ϵ im Intervall $[\epsilon, \epsilon + d \epsilon]$ liegt.

Aufgabe 16

Betrachten Sie ein Photonengas, dessen Dichte $\rho = N/V$ ist.

- (a) Wie werden die Photonen im Phasenraum verteilt?
- (b) Stellen Sie die Verteilungsfunktion als eine Funktion der Teilchenenergie ϵ für unterschiedliche Temperaturen grafisch dar.
- (c) Wie werden die Photonen im Phasenraum bei sehr großen Temperaturen verteilt?
- (d) Zeigen Sie, daß für das chemische Potential $\mu \leq 0$ gilt.
- (e) Berechnen Sie die Anzahl der Teilchen, deren Energie ϵ im Intervall $[\epsilon, \epsilon + d \epsilon]$ liegt.
- (f) Vergleichen Sie das Ergebnis mit dem Planckschen Strahlungsgesetz.