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What are  TNS?

A general state of the N-
body Hilbert space has 

exponentially many 
coefficients

A TNS has only a 
polynomial number 

of parameters

N-legged 
tensor

|�� =
�

ij

ci1...iN |i1 . . . iN �

• TNS = Tensor Network States

dN

poly(N)
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Area law by construction
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•MPS = Matrix Product States

number of 
parameters

NdD2

Bounded entanglement S(L/2) � log D
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MPS extremely successful tool 

LOCAL HAMILTONIAN

good approximation of ground states
Verstraete, Cirac, PRB 2006
Hastings J. Stat. Phys 2007gapped finite range Hamiltonian 

⇒ area law (ground state)

extremely successful for GS, low energy

Verstraete, Porras, Cirac, PRL 2004
White, PRL 1992 Schollwöck, RMP 2005, Ann. Phys. 2011small entanglement

time evolution can be simulated too Vidal, PRL 2003, PRL 2007
White, Feiguin, PRL 2004
Daley et al., 2004
Haegeman et al., 2011

but entanglement can grow fast!
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can we impose them locally?

density 
operators 
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purification

in a way

Werner et al., PRL 2016

http://arxiv.org/abs/1412.5746
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Variational method to find MPO 
approximations for the steady states 

of Lindblad equations
(some)

Using MPS to describe whole system 
coupled to a thermal environment

In this talk...

with J. Cui, J. I. Cirac
PRL 114, 220601 (2015)

with I. de Vega
PRA 92, 052116 (2015)
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A possibility for open systems
Real-time dynamics produces 

a steady state

We can approximate it as a MPO

d�(t)
dt

= L(�)

fixed point of 
Liouvillian map

L(�S) = 0

dissipative QPT
dissipative QC

simulating long 
time evolution

variationally

~imaginary time evolution
~DMRG
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METHOD

Dynamics determined by Liouvillian

d�

dt
= L(�)

Search for the null vector

L̂

L̂|�� = 0

vectorize |��
superoperator L̂

|��

fixed point of evolution
WANTED

Mascarenhas et al., PRA92, 022116 (2015)

http://arxiv.org/abs/1412.5746
http://arxiv.org/abs/1412.5746
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L̂ non-Hermitian

� = 0

L̂†L̂|�S� = 0

eL̂|�S� = |�S�

lowest 
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ĀNe�A
min
{A}

��|H|��
��|��

iii

local 
Hamiltonian H =

|E0� �



BASIC ALGORITHM

Verstraete, Porras, Cirac, PRL 2004
White, PRL 1992

Schollwöck, RMP 2005, Ann. Phys. 2011

Variational minimization of energy

Variational principle

sweep back and forth 
over tensors

min
A

ĀHe�A

ĀNe�A
min
{A}

��|H|��
��|��

iii

local 
Hamiltonian H =

|E0� �
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VARIATIONAL STEADY STATES
POTENTIAL ISSUES

Positivity

Accuracy of MPO approximation

Degeneracies

fixed point of the evolution

maybe smaller gaps? ⇒ metastable states?
local effective Lindblad operator does not 
preserve any property ⇒ symmetries?

Prosen, Znidaric, 2009
Kastoryano, Eisert, 2013
Bonnes et al, PRA 2014

no need to use 
purification

de las Cuevas, 2013
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DICKE MODEL

N  2-level atoms coupled to same EM mode

analytic solution

phase transition to superradiant phase

conserved total spin

collective coupling

Dicke, 1954
Hepp, Lieb, 1973
Carmichael, 1980

experimentally difficult Baumann et al., 2010
Hamner et al., 2014
Baden et al., 2014
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EXAMPLE MODEL:
DISSIPATIVE ISING CHAIN

local dissipation
Ln = ���+

n

can be realized by Rydberg atoms

steady state can show AFM ordering

PRL 114, 220601 (2015)
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SUMMARY

Very good convergence (varying models, parameters)

Symmetries can be included, trace one, degeneracies...

Stability can be delicate
Warm-up phase needed!

things to be understood about MPDOs 
representations

NESS can be found variationally

Very small bond dimension required

PRL 114, 220601 (2015)
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Master equation may not be enough
strong system-environment coupling
correlations between system and environment
similar time scales for both

Alternative: solving the whole dynamics
large number of degrees of freedom involved
typically a truncation in environment dof required
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chain geometry

discretized environment

tight-binding model

NRG approach: exponentially decaying couplings
Krishnamurthy et al., 1980
Guo et al, 2009

Prior et al., PRL 2010
Chin et al., J Math Phys 2010

Continuous environment mapped to semiinfinite chain
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CHAIN MAPPINGS

Can also be used for T>0 environment
MPO approximation to thermal state

could even be positive
mixed state description

computational overhead
approximation already involved at t=0
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we became aware of this analytic solution. The results reported here were obtained 
using direct numerical techniques to solve the master equation (2.6) in theDicke 
representation. The (N + 1)' equations for matrix elements in this representation 
separate into two dynamically independent schemes: a system of t N ( N  + 1) equations 
coupling only off-diagonal elements, and a system of ($N + 1)(N + 1) equations which 
couple both diagonal and off -diagonal elements. Providing the steady state is unique 
the former can have only the trivial solution, and from the outset we find 

Dynamics within the second system of equations are governed by a matrix having at 
most six non-zero entries in any row. For the majority of cases considered we were able 
to employ an efficient numerical algorithm tailored to the specific form of this sparse 
matrix and yielding steady-state matrix elements directly. Unfortunately, for large N 
and small fl/sZo this method could not be applied as the algorithm became increasingly 
ill conditioned. Here the steady-state density matrix was developed from an initial 
ground state by direct integration. All such cases were restricted to the region below 
threshold and therefore avoided any problems with a rapid oscillatory approach to the 
steady state. 

4.1. Single operator averages 

As a direct consequence of (4.1) ( s + ) ~ ~  is pure imaginary and ( s ~ ) ~ ~  = 0 for all values of 
sZ/flo. The behaviour for ( s y ) s s  and ( s , ) ~ ~  is shown in figure 3. In both instances results 
for ten, twenty and fifty atoms support strongly an approach towards the asymptotic 
expressions from the previous section. In the region above threshold saturation 
features are molded from the underlying oscillatory dynamics and are understood 
simply from the perspective of § 3.4. Equation (3.36) accomplishes two averages; the 
first by integration around trajectories on the Bloch sphere and the second by 
integration over a distribution of such trajectories. Saturation of the population 
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Figure 3. Steady-state averages ( a )  ( s ~ ) ~ ~  and ( b )  (s, . )~~ for: A, N = 10; B, N = 20 and C, 
N = 50. The broken curve gives the asymptotic results. 
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for ten, twenty and fifty atoms support strongly an approach towards the asymptotic 
expressions from the previous section. In the region above threshold saturation 
features are molded from the underlying oscillatory dynamics and are understood 
simply from the perspective of § 3.4. Equation (3.36) accomplishes two averages; the 
first by integration around trajectories on the Bloch sphere and the second by 
integration over a distribution of such trajectories. Saturation of the population 
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Figure 3. Steady-state averages ( a )  ( s ~ ) ~ ~  and ( b )  (s, . )~~ for: A, N = 10; B, N = 20 and C, 
N = 50. The broken curve gives the asymptotic results. 
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but experimentally difficult
Baumann et al., 2010
Hamner et al., 2014
Baden et al., 2014

phase transitions
collective phenomena
entanglement
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is an interesting model...
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fixed D →check convergence
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SUMMARY

Very good convergence (varying models, parameters)

Future: symmetries, trace one, degeneracies...

Stability can be delicate
Warm-up phase needed!

much to understand about MPDOs 
representations
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