Tensor Networks for dissipative systems

Mari-Carmen Bañuls,
with J. I. Cirac (MPQ), J. Cui (Ulm),
I. de Vega (LMU)
PRL I 14, 22060| (2015)
PRA 92, 052116 (2015)

Max-Planck-Institut
für Quantenoptik
624.WE-Heraeus Seminar

MPQ (Garching b. München)

What are TNS?
 - TNS = Tensor Network States

Context: quantum many body systems

What are TNS?
 - TNS $=$ Tensor Network States

Context: quantum many body systems

What are TNS?
 - TNS = Tensor Network States

Context: quantum many body systems
interacting with each
other
N

What are TNS?
 - TNS $=$ Tensor Network States

Context: quantum many body systems
interacting with each
other
$\{|i\rangle\}_{i=0}^{d-1}$
N

Goal: describe equilibrium states

What are TNS?
 - TNS $=$ Tensor Network States

Context: quantum many body systems
interacting with each
other
$\{|i\rangle\}_{i=0}^{d-1}$
N

Goal: describe equilibrium states ground, thermal states

What are TNS?
 - TNS $=$ Tensor Network States

Context: quantum many body systems
$\{|i\rangle\}_{i=0}^{d-1}$
N

interacting with each
other
Goal: describe equilibrium states ground, thermal states interesting states?

What are TNS?

- TNS = Tensor Network States

A general state of the N body Hilbert space has exponentially many

$$
|\Psi\rangle=\sum_{i_{j}} c_{i_{1} \ldots i_{N}}\left|i_{1} \ldots i_{N}\right\rangle
$$ coefficients

N

What are TNS?

- TNS = Tensor Network States

A general state of the N body Hilbert space has exponentially many coefficients

$$
|\Psi\rangle=\sum_{i_{j}} \underbrace{}_{\begin{array}{c}
\text { N-legged } \\
\text { tensor }
\end{array}}
$$

N

What are TNS?

- TNS = Tensor Network States

A general state of the N body Hilbert space has exponentially many coefficients

$$
|\Psi\rangle=\sum_{i_{j}} \underbrace{}_{\begin{array}{c}
\text { N-legged } \\
\text { tensor }
\end{array}}
$$

ID SYSTEMS: MPS
 - MPS = Matrix Product States

$$
|\Psi\rangle=\sum_{i_{1} \ldots i_{N}} c_{i_{1} \ldots i_{N}}\left|i_{1} \ldots i_{N}\right\rangle
$$

ID SYSTEMS: MPS

- MPS = Matrix Product States

$$
|\Psi\rangle=\sum_{i_{1} \ldots i_{N}} \operatorname{tr}\left(A_{1}^{i_{1}} A_{2}^{i_{2}} \ldots A_{N}^{i_{N}}\right)\left|i_{1} \ldots i_{N}\right\rangle
$$

ID SYSTEMS: MPS

- MPS = Matrix Product States

$N d D^{2}$

$$
|\Psi\rangle=\sum_{i_{1} \ldots i_{N}} \operatorname{tr}\left(A_{1}^{i_{1}} A_{2}^{i_{2}} \ldots A_{N}^{i_{N}}\right)\left|i_{1} \ldots i_{N}\right\rangle
$$

ID SYSTEMS: MPS

- MPS = Matrix Product States

$N d D^{2}$

$$
|\Psi\rangle=\sum_{i_{1} \ldots i_{N}} \operatorname{tr}\left(A_{1}^{i_{1}} A_{2}^{i_{2}} \ldots A_{N}^{i_{N}}\right)\left|i_{1} \ldots i_{N}\right\rangle
$$

Area law by construction

ID SYSTEMS: MPS

- MPS = Matrix Product States

$N d D^{2}$

$$
|\Psi\rangle=\sum_{i_{1} \ldots i_{N}} \operatorname{tr}\left(A_{1}^{i_{1}} A_{2}^{i_{2}} \ldots A_{N}^{i_{N}}\right)\left|i_{1} \ldots i_{N}\right\rangle
$$

Area law by construction
Bounded entanglement $S(L / 2) \leq \log D$

What can MPS be used for?
 MPS extremely successful tool

What can MPS be used for?

MPS extremely successful tool

What can MPS be used for?

MPS extremely successful tool

good approximation of ground states gapped finite range Hamiltonian
\Rightarrow area law (ground state)

What can MPS be used for?

MPS extremely successful tool

good approximation of ground states gapped finite range Hamiltonian
\Rightarrow area law (ground state)

Verstraete, Cirac, PRB 2006
Hastings J. Stat. Phys 2007
extremely successful for GS, low energy
White, PRL 1992 Schollwöck, RMP 2005, Ann. Phys. 201 I Verstraete, Porras, Cirac, PRL 2004

What can MPS be used for?

MPS extremely successful tool

good approximation of ground states gapped finite range Hamiltonian
\Rightarrow area law (ground state)

Verstraete, Cirac, PRB 2006
Hastings J. Stat. Phys 2007
extremely successful for GS, low energy
small entanglement White, PRL 1992 Schollwöck, RMP 2005, Ann. Phys. 201 I Verstraete, Porras, Cirac, PRL 2004

What can MPS be used for?

MPS extremely successful tool

good approximation of ground states gapped finite range Hamiltonian
\Rightarrow area law (ground state)

Verstraete, Cirac, PRB 2006
Hastings J. Stat. Phys 2007
extremely successful for GS, low energy
small entanglement White, PRL 1992 Schollwöck, RMP 2005, Ann. Phys. 201 I Verstraete, Porras, Cirac, PRL 2004
time evolution can be simulated too
Vidal, PRL 2003, PRL 2007 White, Feiguin, PRL 2004
Daley et al., 2004
Haegeman et al., 201 I

What can MPS be used for?

MPS extremely successful tool

good approximation of ground states gapped finite range Hamiltonian \Rightarrow area law (ground state)

Verstraete, Cirac, PRB 2006
Hastings J. Stat. Phys 2007
extremely successful for GS, low energy
small entanglement White, PRL I 992 Schollwöck, RMP 2005, Ann. Phys. 20 II Verstraete, Porras, Cirac, PRL 2004
time evolution can be simulated too but entanglement can grow fast!

Vidal, PRL 2003, PRL 2007 White, Feiguin, PRL 2004
Daley et al., 2004
Haegeman et al., 201 I

FOR MIXED STATES...

MIXED STATES
 - MPO = Matrix Product Operator

Same kind of ansatz for operators

MIXED STATES
 - MPO = Matrix Product Operator

Same kind of ansatz for operators

MIXED STATES

- MPO = Matrix Product Operator

Same kind of ansatz for operators

$$
\hat{M}=\sum_{i_{1}, j_{1} \ldots i_{N}, j_{N}} \operatorname{tr}\left(M_{1}^{i_{1} j_{1}} M_{2}^{i_{2} j_{2}} \ldots M_{N}^{i_{N} j_{N}}\right)\left|i_{1} \ldots i_{N}\right\rangle\left\langle j_{1} \ldots j_{N}\right|
$$

Routinely used for H and $U(t)$

MIXED STATES

- MPDO = Matrix Product Density Operator

density
operators need some properties

$$
\rho=\sum_{i_{1}, j_{1} \ldots i_{N}, j_{N}} \operatorname{tr}\left(M_{1}^{i_{1} j_{1}} M_{2}^{i_{2} j_{2}} \ldots M_{N}^{i_{N} j_{N}}\right)\left|i_{1} \ldots i_{N}\right\rangle\left\langle j_{1} \ldots j_{N}\right|
$$

MIXED STATES

- MPDO = Matrix Product Density Operator

density
operators need some properties

$$
\begin{gathered}
\rho=\sum_{i_{1}, j_{1} \ldots i_{N}, j_{N}} \operatorname{tr}\left(M_{1}^{i_{1} j_{1}} M_{2}^{i_{2} j_{2}} \ldots M_{N}^{i_{N} j_{N}}\right)\left|i_{1} \ldots i_{N}\right\rangle\left\langle j_{1} \ldots j_{N}\right| \\
\rho=\rho^{\dagger} \quad \operatorname{tr} \rho=1
\end{gathered}
$$

MIXED STATES

- MPDO = Matrix Product Density Operator

density
operators need some properties

$$
\begin{gathered}
\rho=\sum_{i_{1}, j_{1} \ldots i_{N}, j_{N}} \operatorname{tr}\left(M_{1}^{i_{1} j_{1}} M_{2}^{i_{2} j_{2}} \ldots M_{N}^{i_{N} j_{N}}\right)\left|i_{1} \ldots i_{N}\right\rangle\left\langle j_{1} \ldots j_{N}\right| \\
\rho=\rho^{\dagger} \quad \operatorname{tr} \rho=1 \quad \rho \geq 0
\end{gathered}
$$

MIXED STATES

- MPDO = Matrix Product Density Operator
purification

density operators need some properties

$$
\rho=\sum_{i_{1}, j_{1} \ldots i_{N}, j_{N}} \operatorname{tr}\left(M_{1}^{i_{1} j_{1}} M_{2}^{i_{2} j_{2}} \ldots M_{N}^{i_{N} j_{N}}\right)\left|i_{1} \ldots i_{N}\right\rangle\left\langle j_{1} \ldots j_{N}\right|
$$

can we impose them locally?

$$
\overbrace{}^{\rho=\rho^{\dagger}} \begin{gathered}
\rho \geq 0 \\
\text { in a way } \\
\rho_{S}=\operatorname{tr}_{A}\left|\Psi_{S A}\right\rangle\left\langle\Psi_{S A}\right|
\end{gathered}
$$

MIXED STATES

- MPO = Matrix Product Operator

Similar problems can be attacked

MIXED STATES

- MPO = Matrix Product Operator

Similar problems can be attacked
equilibrium \rightarrow thermal states

MIXED STATES

- MPO = Matrix Product Operator

Similar problems can be attacked
equilibrium \rightarrow thermal states
imaginary time evolution

Verstraete, García-Ripoll, Cirac PRL 2004
Prosen, Znidaric et al., PRL 2008,...

MIXED STATES

- MPO = Matrix Product Operator

Similar problems can be attacked
equilibrium \rightarrow thermal states imaginary time evolution
time-dependent \rightarrow real time evolution

MIXED STATES

- MPO = Matrix Product Operator

Similar problems can be attacked
equilibrium \rightarrow thermal states imaginary time evolution
time-dependent \rightarrow real time evolution

$$
\text { unitary } \quad \rho(t)=U(t) \rho(0) U(t)^{\dagger}
$$

MIXED STATES

- MPO = Matrix Product Operator

Similar problems can be attacked
equilibrium \rightarrow thermal states imaginary time evolution
time-dependent \rightarrow real time evolution

$$
\begin{aligned}
& \text { unitary } \quad \rho(t)=U(t) \rho(0) U(t)^{\dagger} \\
& \text { non-unitary } \quad \frac{d \rho(t)}{d t}=\mathcal{L}(\rho)
\end{aligned}
$$

MIXED STATES

- MPO = Matrix Product Operator

Similar problems can be attacked
equilibrium \rightarrow thermal states
imaginary time evolution
time-dependent \rightarrow real time evolution

$$
\begin{aligned}
& \text { unitary } \quad \rho(t)=U(t) \rho(0) U(t)^{\dagger} \\
& \text { non-unitary } \quad \frac{d \rho(t)}{d t}=\mathcal{L}(\rho)
\end{aligned}
$$

MIXED STATES

- MPO = Matrix Product Operator

Similar problems can be attacked
equilibrium \rightarrow thermal states imaginary time evolution
time-dependent \rightarrow real time evolution

$$
\begin{aligned}
& \text { unitary } \quad \rho(t)=U(t) \rho(0) U(t)^{\dagger} \\
& \text { non-unitary } \quad \frac{d \rho(t)}{d t}=\mathcal{L}(\rho)
\end{aligned}
$$

In this talk...

Variational method to find MPO approximations for the steady states of Lindblad equations

with J. Cui, J. I. Cirac
PRL \| \| 4, 22060| (20|5)

In this talk...
Variational method to find MPO approximations for the steady states of Lindblad equations (some)
with J. Cui, J. I. Cirac
PRL \| \| 4, 22060| (20|5)

In this talk...

Variational method to find MPO approximations for the steady states of Lindblad equations
 (some)
 with J. Cui, J. I. Cirac
 PRL \| \| 4, 22060| (20|5)

Using MPS to describe whole system coupled to a thermal environment
with I. de Vega
PRA 92, 052116 (2015)

MIXED STATES

- MPO = Matrix Product Operator

A possibility for open systems
Real-time dynamics produces a steady state

MIXED STATES

- MPO = Matrix Product Operator

A possibility for open systems

$$
\frac{d \rho(t)}{d t}=\mathcal{L}(\rho)
$$

Real-time dynamics produces a steady state

MIXED STATES

- MPO = Matrix Product Operator

A possibility for open systems
Real-time dynamics produces
$\frac{d \rho(t)}{d t}=\mathcal{L}(\rho) \longrightarrow \mathcal{L}\left(\rho_{S}\right)=0 \quad$ a steady state
fixed point of
Liouvillian map

MIXED STATES

- MPO = Matrix Product Operator

A possibility for open systems
Real-time dynamics produces

$$
\begin{array}{cc}
\frac{d \rho(t)}{d t}=\mathcal{L}(\rho) \longrightarrow & \mathcal{L}\left(\rho_{S}\right)=0 \\
\text { fixed point of } & \begin{array}{l}
\text { dissipative QC } \\
\text { Liouvillian map }
\end{array} \\
\text { dissipative QPT }
\end{array}
$$

MIXED STATES

- MPO = Matrix Product Operator

A possibility for open systems
Real-time dynamics produces

$$
\begin{array}{cc}
\frac{d \rho(t)}{d t}=\mathcal{L}(\rho) \longrightarrow & \mathcal{L}\left(\rho_{S}\right)=0 \\
\text { fixed point of steady state } & \\
\text { dissipative QC } \\
\text { Liouvillian map } & \text { dissipative QPT }
\end{array}
$$

We can approximate it as a MPO

MIXED STATES

- MPO = Matrix Product Operator

A possibility for open systems
Real-time dynamics produces
$\begin{array}{cc}\frac{d \rho(t)}{d t}=\mathcal{L}(\rho) \longrightarrow & \mathcal{L}\left(\rho_{S}\right)=0 \\ \text { fixed point of } & \text { a steady state } \\ \text { Lissipatillian map } & \text { dissipative QPT }\end{array}$
We can approximate it as a MPO
simulating long
time evolution
~imaginary time evolution

MIXED STATES

- MPO = Matrix Product Operator

A possibility for open systems
Real-time dynamics produces
$\begin{array}{cc}\frac{d \rho(t)}{d t}=\mathcal{L}(\rho) \longrightarrow & \mathcal{L}\left(\rho_{S}\right)=0 \\ \text { fixed point of } & \text { a steady state } \\ \text { Lissipatillian map } & \text { dissipative QPT }\end{array}$
We can approximate it as a MPO
simulating long
time evolution
variationally
~imaginary time evolution

VARIATIONAL STEADY STATES

METHOD

VARIATIONAL STEADY STATES

METHOD
Dynamics determined by Liouvillian

VARIATIONAL STEADY STATES

METHOD
Dynamics determined by Liouvillian

$$
\frac{d \rho}{d t}=\mathcal{L}(\rho)
$$

VARIATIONAL STEADY STATES

METHOD
Dynamics determined by Liouvillian

$$
\frac{d \rho}{d t}=\mathcal{L}(\rho)
$$

VARIATIONAL STEADY STATES

METHOD
Dynamics determined by Liouvillian

$$
\frac{d \rho}{d t}=\mathcal{L}(\rho)
$$

VARIATIONAL STEADY STATES

METHOD
Dynamics determined by Liouvillian

$$
\frac{d \rho}{d t}=\mathcal{L}(\rho)
$$

vectorize $|\rho\rangle$

VARIATIONAL STEADY STATES

METHOD
Dynamics determined by Liouvillian

$$
\frac{d \rho}{d t}=\mathcal{L}(\rho)
$$

vectorize $|\rho\rangle$
superoperator $\hat{\mathcal{L}}$

VARIATIONAL STEADY STATES

METHOD
Dynamics determined by Liouvillian

$$
\frac{d \rho}{d t}=\mathcal{L}(\rho)
$$

vectorize $|\rho\rangle$
superoperator $\hat{\mathcal{L}}$

WANTED
fixed point of evolution

VARIATIONAL STEADY STATES

METHOD
Dynamics determined by Liouvillian

$$
\frac{d \rho}{d t}=\mathcal{L}(\rho)
$$

vectorize $|\rho\rangle$
superoperator $\hat{\mathcal{L}}$
Search for the null vector

WANTED
fixed point of evolution

$$
\hat{\mathcal{L}}|\rho\rangle=0
$$

VARIATIONAL STEADY STATES

METHOD

VARIATIONAL STEADY STATES

METHOD
Analogy to GS search

VARIATIONAL STEADY STATES

 METHOD
Analogy to GS search

H

VARIATIONAL STEADY STATES

 METHOD
Analogy to GS search

$$
\begin{gathered}
H \\
\min \lambda
\end{gathered}
$$

VARIATIONAL STEADY STATES

 METHOD
Analogy to GS search

H
$\min \lambda$
$\left|\Psi_{\mathrm{GS}}\right\rangle$

VARIATIONAL STEADY STATES

 METHOD
Analogy to GS search

$$
\begin{array}{cc}
H & \hat{\mathcal{L}} \\
\min \lambda &
\end{array}
$$

$\left|\Psi_{\mathrm{GS}}\right\rangle$

VARIATIONAL STEADY STATES

 METHOD
Analogy to GS search

$$
\begin{array}{cc}
H & \hat{\mathcal{L}} \\
\min \lambda & \lambda=0 \\
\left|\Psi_{\mathrm{GS}}\right\rangle &
\end{array}
$$

VARIATIONAL STEADY STATES

 METHODAnalogy to GS search

$$
\begin{array}{cc}
H & \hat{\mathcal{L}} \\
\min \lambda & \lambda=0
\end{array}
$$

$$
e^{\hat{\mathcal{L}}}\left|\rho_{S}\right\rangle=\left|\rho_{S}\right\rangle
$$

$\left|\Psi_{\mathrm{GS}}\right\rangle$

VARIATIONAL STEADY STATES

 METHODAnalogy to GS search

$$
\begin{array}{ccc}
H & \hat{\mathcal{L}} \\
\min \lambda & \lambda=0 & \\
\left|\Psi_{\mathrm{GS}}\right\rangle & \left|\rho_{\mathrm{S}}\right\rangle & e^{\hat{\mathcal{L}}}\left|\rho_{S}\right\rangle=\left|\rho_{S}\right\rangle
\end{array}
$$

VARIATIONAL STEADY STATES

 METHODAnalogy to GS search

Hermitian H
$\min \lambda$
$\left|\Psi_{\mathrm{GS}}\right\rangle$
$\hat{\mathcal{L}}$ non-Hermitian

$$
\lambda=0
$$

$$
e^{\hat{\mathcal{L}}}\left|\rho_{S}\right\rangle=\left|\rho_{S}\right\rangle
$$

$\left|\rho_{\mathrm{S}}\right\rangle$

VARIATIONAL STEADY STATES

 METHODAnalogy to GS search

Hermitian H
$\min \lambda$
$\left|\Psi_{\mathrm{GS}}\right\rangle$
$\hat{\mathcal{L}}$ non-Hermitian

$$
\lambda=0
$$

$$
e^{\hat{\mathcal{L}}}\left|\rho_{S}\right\rangle=\left|\rho_{S}\right\rangle
$$

$\left|\rho_{\mathrm{S}}\right\rangle$
$\hat{\mathcal{L}}^{\dagger} \hat{\mathcal{L}} \geq 0$

VARIATIONAL STEADY STATES

 METHODAnalogy to GS search

Hermitian H
$\min \lambda$
$\left|\Psi_{\mathrm{GS}}\right\rangle$
$\hat{\mathcal{L}}$ non-Hermitian

$$
\lambda=0
$$

$$
e^{\hat{\mathcal{L}}}\left|\rho_{S}\right\rangle=\left|\rho_{S}\right\rangle
$$

$\left|\rho_{\mathrm{S}}\right\rangle$

$$
\begin{array}{cc}
\hat{\mathcal{L}}^{\dagger} \hat{\mathcal{L}}\left|\rho_{S}\right\rangle=0 & \text { lowest } \\
\text { eigenvalue }
\end{array}
$$

VARIATIONAL STEADY STATES

METHOD

VARIATIONAL STEADY STATES

METHOD
Master equation of Lindblad form

VARIATIONAL STEADY STATES

METHOD
Master equation of Lindblad form

$$
\frac{d \rho}{d t}=-i[H, \rho]+\sum_{k} \gamma_{k}\left(L_{k} \rho L_{k}^{\dagger}-\frac{1}{2} \rho L_{k}^{\dagger} L_{k}-\frac{1}{2} L_{k}^{\dagger} L_{k} \rho\right)
$$

VARIATIONAL STEADY STATES

METHOD
Master equation of Lindblad form

$$
\begin{aligned}
& \frac{d \rho}{d t}=-i[H, \rho]+\sum_{k} \gamma_{k}\left(L_{k} \rho L_{k}^{\dagger}-\frac{1}{2} \rho L_{k}^{\dagger} L_{k}-\frac{1}{2} L_{k}^{\dagger} L_{k} \rho\right) \\
& \sim \text { local (MPO) }
\end{aligned}
$$

VARIATIONAL STEADY STATES

METHOD
Master equation of Lindblad form

$$
\begin{aligned}
& \frac{d \rho}{d t}=-i[H, \rho]+\sum_{k} \gamma_{k}\left(L_{k} \rho L_{k}^{\dagger}-\frac{1}{2} \rho L_{k}^{\dagger} L_{k}-\frac{1}{2} L_{k}^{\dagger} L_{k} \rho\right) \\
& \sim \text { local }(\mathrm{MPO}) \\
& \frac{d|\rho\rangle}{d t}=\left[-i\left(H \otimes I-I \otimes H^{T}\right)+\sum_{k} \gamma_{k}\left(L_{k} \otimes L_{k}^{*}-\frac{1}{2} I \otimes L_{k}^{T} L_{k}^{*}-\frac{1}{2} L_{k}^{\dagger} L_{k} \otimes I\right)\right]|\rho\rangle
\end{aligned}
$$

VARIATIONAL STEADY STATES

METHOD

Master equation of Lindblad form

$$
\begin{aligned}
& \frac{d \rho}{d t}=-i[H, \rho]+\sum_{k} \gamma_{k}\left(L_{k} \rho L_{k}^{\dagger}-\frac{1}{2} \rho L_{k}^{\dagger} L_{k}-\frac{1}{2} L_{k}^{\dagger} L_{k} \rho\right) \\
& \sim{ }^{\text {local }}(\mathrm{MPO})
\end{aligned}
$$

$$
\frac{d \mid \rho)}{d t}=[\underbrace{}_{\left.-i\left(H \otimes I-I \otimes H^{T}\right)+\sum_{k} \gamma_{k}\left(L_{k} \otimes L_{k}^{*}-\frac{1}{2} I \otimes L_{k}^{T} L_{k}^{*}-\frac{1}{2} L_{k}^{t} L_{k} \otimes I\right)\right]}{ }^{\circ}
$$

VARIATIONAL STEADY STATES

METHOD

Master equation of Lindblad form

$$
\begin{aligned}
& \frac{d \rho}{d t}=-i[H, \rho]+\sum_{k} \gamma_{k}\left(L_{k} \rho L_{k}^{\dagger}-\frac{1}{2} \rho L_{k}^{\dagger} L_{k}-\frac{1}{2} L_{k}^{\dagger} L_{k} \rho\right) \\
& \sim \text { local }(\mathrm{MPO}) \\
& \frac{d|\rho\rangle}{d t}=-i\left(H \otimes I-I \otimes H^{T}\right)+\sum_{k} \gamma_{k}\left(L_{k} \otimes L_{k}^{*}-\frac{1}{2} I \otimes L_{k}^{T} L_{k}^{*}-\frac{1}{2} L_{k}^{\dagger} L_{k} \otimes I\right)|\rho\rangle
\end{aligned}
$$

VARIATIONAL STEADY STATES

METHOD

Master equation of Lindblad form

$$
\begin{aligned}
& \frac{d \rho}{d t}=-i[H, \rho]+\sum_{k} \gamma_{k}\left(L_{k} \rho L_{k}^{\dagger}-\frac{1}{2} \rho L_{k}^{\dagger} L_{k}-\frac{1}{2} L_{k}^{\dagger} L_{k} \rho\right) \\
& \sim \text { local }(\mathrm{MPO}) \\
& \frac{d|\rho\rangle}{d t}=-i\left(H \otimes I-I \otimes H^{T}\right)+\sum_{k} \gamma_{k}\left(L_{k} \otimes L_{k}^{*}-\frac{1}{2} I \otimes L_{k}^{T} L_{k}^{*}-\frac{1}{2} L_{k}^{t} L_{k} \otimes I\right)|\rho\rangle
\end{aligned}
$$

VARIATIONAL STEADY STATES

METHOD

Master equation of Lindblad form

$$
\left.\frac{d|\rho\rangle}{d t}=-i\left(H \otimes I-I \otimes H^{T}\right)+\sum_{k} \gamma_{k}\left(L_{k} \otimes L_{k}^{*}-\frac{1}{2} I \otimes L_{k}^{T} L_{k}^{*}-\frac{1}{2} L_{k}^{\dagger} L_{k} \otimes I\right)\right]|\rho\rangle
$$

$$
\begin{aligned}
& \frac{d \rho}{d t}=-i[H, \rho]+\sum_{k} \gamma_{k}\left(L_{k} \rho L_{k}^{\dagger}-\frac{1}{2} \rho L_{k}^{\dagger} L_{k}-\frac{1}{2} L_{k}^{\dagger} L_{k} \rho\right) \\
& \text { local (MPO) } \\
& \hat{\mathcal{L}} \quad \mathrm{MPO} \longrightarrow \hat{\mathcal{L}}^{\dagger} \hat{\mathcal{L}}
\end{aligned}
$$

VARIATIONAL STEADY STATES

METHOD
Master equation of Lindblad form

$$
\frac{d|\rho\rangle}{d t}=\left[-i\left(H \otimes I-I \otimes H^{T}\right)+\sum_{k} \gamma_{k}\left(L_{k} \otimes L_{k}^{*}-\frac{1}{2} I \otimes L_{k}^{T} L_{k}^{*}-\frac{1}{2} L_{k}^{\dagger} L_{k} \otimes I\right)\right]|\rho\rangle
$$

VARIATIONAL STEADY STATES

METHOD
Master equation of Lindblad form

$$
\frac{d|\rho\rangle}{d t}=\left[-i\left(H \otimes I-I \otimes H^{T}\right)+\sum_{k} \gamma_{k}\left(L_{k} \otimes L_{k}^{*}-\frac{1}{2} I \otimes L_{k}^{T} L_{k}^{*}-\frac{1}{2} L_{k}^{\dagger} L_{k} \otimes I\right)\right]|\rho\rangle
$$

VARIATIONAL STEADY STATES

METHOD
Master equation of Lindblad form

$$
\frac{d|\rho\rangle}{d t}=\left[-i\left(H \otimes I-I \otimes H^{T}\right)+\sum_{k} \gamma_{k}\left(L_{k} \otimes L_{k}^{*}-\frac{1}{2} I \otimes L_{k}^{T} L_{k}^{*}-\frac{1}{2} L_{k}^{\dagger} L_{k} \otimes I\right)\right]|\rho\rangle
$$

$$
=-\hat{\mathcal{L}}
$$

VARIATIONAL STEADY STATES

METHOD
Master equation of Lindblad form

$$
\frac{d|\rho\rangle}{d t}=\left[-i\left(H \otimes I-I \otimes H^{T}\right)+\sum_{k} \gamma_{k}\left(L_{k} \otimes L_{k}^{*}-\frac{1}{2} I \otimes L_{k}^{T} L_{k}^{*}-\frac{1}{2} L_{k}^{\dagger} L_{k} \otimes I\right)\right]|\rho\rangle
$$

VARIATIONAL STEADY STATES

METHOD
Master equation of Lindblad form

$$
\frac{d|\rho\rangle}{d t}=\left[-i\left(H \otimes I-I \otimes H^{T}\right)+\sum_{k} \gamma_{k}\left(L_{k} \otimes L_{k}^{*}-\frac{1}{2} I \otimes L_{k}^{T} L_{k}^{*}-\frac{1}{2} L_{k}^{\dagger} L_{k} \otimes I\right)\right]|\rho\rangle
$$

lowest eigenvalue

BASIC ALGORITHM

Variational minimization of energy

BASIC ALGORITHM

Variational minimization of energy

White, PRL 1992
Verstraete, Porras, Cirac, PRL 2004
Schollwöck, RMP 2005, Ann. Phys. 201 I

BASIC ALGORITHM

Variational minimization of energy

$$
\begin{aligned}
& \text { local } \\
& \text { Hamiltonian }
\end{aligned} H=
$$

White, PRL 1992
Verstraete, Porras, Cirac, PRL 2004
Schollwöck, RMP 2005, Ann. Phys. 201 I

BASIC ALGORITHM

Variational minimization of energy

$$
\begin{aligned}
& \begin{array}{l}
\text { local } \\
\text { Hamiltonian }
\end{array} \quad= \\
& \left|E_{0}\right\rangle
\end{aligned}
$$

BASIC ALGORITHM

Variational minimization of energy

$$
\left|E_{0}\right\rangle \simeq-0-0-0-0
$$

Variational principle

$$
\min _{\{A\}} \frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

```
White, PRL 1992
Verstraete, Porras, Cirac, PRL 2004
Schollwöck, RMP 2005, Ann. Phys. 201 I
```


BASIC ALGORITHM

Variational minimization of energy

Variational principle

$$
\min _{\{A\}} \frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \longrightarrow \min _{A} \frac{\bar{A} H_{\mathrm{eff}} A}{\bar{A} N_{\mathrm{eff}} A}
$$

```
White, PRL 1992
Verstraete, Porras, Cirac, PRL 2004
Schollwöck, RMP 2005, Ann. Phys. 201 I
```


BASIC ALGORITHM

Variational minimization of energy

Variational principle

$$
\min _{\{A\}} \frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \longrightarrow \min _{A} \frac{\bar{A} H_{\mathrm{eff}} A}{\bar{A} N_{\mathrm{eff}} A}
$$

sweep back and forth over tensors

White, PRL 1992
Verstraete, Porras, Cirac, PRL 2004
Schollwöck, RMP 2005, Ann. Phys. 201 I

VARIATIONAL STEADY STATES

POTENTIAL ISSUES
de las Cuevas, 2013

VARIATIONAL STEADY STATES

POTENTIAL ISSUES

Positivity

de las Cuevas, 2013

VARIATIONAL STEADY STATES

POTENTIAL ISSUES

Positivity

fixed point of the evolution
no need to use purification
de las Cuevas, 2013

VARIATIONAL STEADY STATES

POTENTIAL ISSUES

Positivity
fixed point of the evolution
no need to use purification

Accuracy of MPO approximation

VARIATIONAL STEADY STATES

POTENTIAL ISSUES

Positivity
fixed point of the evolution
no need to use purification
de las Cuevas, 2013
Accuracy of MPO approximation
Degeneracies

VARIATIONAL STEADY STATES

POTENTIAL ISSUES

Positivity
fixed point of the evolution
no need to use purification

Accuracy of MPO approximation
de las Cuevas, 2013

Degeneracies
maybe smaller gaps? \Rightarrow metastable states?

VARIATIONAL STEADY STATES

POTENTIAL ISSUES

Positivity
fixed point of the evolution
no need to use purification
de las Cuevas, 2013
Accuracy of MPO approximation
Degeneracies
maybe smaller gaps? \Rightarrow metastable states?
local effective Lindblad operator does not preserve any property \Rightarrow symmetries?

Some examples...

DICKE MODEL

N 2-level atoms coupled to same EM mode

Dicke, 1954

Hepp, Lieb, 1973
Carmichael, 1980

DICKE MODEL

N 2-level atoms coupled to same EM mode

Dicke, 1954

Hepp, Lieb, 1973
Carmichael, 1980
collective coupling

DICKE MODEL

N 2-level atoms coupled to same EM mode

Dicke, 1954
Hepp, Lieb, 1973
Carmichael, 1980
collective coupling
phase transition to superradiant phase

DICKE MODEL

N 2-level atoms coupled to same EM mode

collective coupling
phase transition to superradiant phase analytic solution conserved total spin

DICKE MODEL

N 2-level atoms coupled to same EM mode

collective coupling
phase transition to superradiant phase analytic solution conserved total spin
experimentally difficult

```
Baumann et al., 2010
Hamner et al., 2014
Baden et al., 2014
```


Do simpler models show similar phenomena?

more local

A SIMPLER MODEL

A SIMPLER MODEL

Lower dimensional version of Dicke model

A SIMPLER MODEL

Lower dimensional version of Dicke model

N 2-level systems with dissipation coupling NN

A SIMPLER MODEL

Lower dimensional version of Dicke model

N 2-level systems with dissipation coupling NN

$$
\frac{d \rho}{d t}=-i \Omega\left[S_{x}, \rho\right]+\Gamma \sum_{n}\left(S_{n}^{-}{ }_{n+1} \rho S_{n}^{+}{ }_{n+1}-\frac{1}{2} \rho S_{n+1}^{+} S_{n}^{-}{ }_{n+1}-\frac{1}{2} S_{n}^{+}{ }_{n+1} S_{n+1}^{-}{ }_{n+1} \rho\right)
$$

A SIMPLER MODEL

Lower dimensional version of Dicke model

N 2-level systems with dissipation coupling NN

$$
\begin{gathered}
\frac{d \rho}{d t}=-i \Omega\left[S_{x}, \rho\right]+\Gamma \sum_{n}\left(S_{n+1}^{-} \rho_{n}^{+} S_{n+1}^{+}-\frac{1}{2} \rho S_{n+1}^{+} S_{n+1}^{-}-\frac{1}{2} S_{n n+1}^{+} S_{n+1}^{-} \rho\right) \\
S_{n}^{+}{ }_{n+1}=\sigma_{n+1}^{+} \otimes I+I \otimes \sigma_{n+1}^{+}
\end{gathered}
$$

LOW DIM DICKE MODEL

EXAMPLE MODEL: DISSIPATIVE ISING CHAIN

$$
H=\sum_{n} \sigma_{z}^{[n]} \sigma_{z}^{[n+1]}+g \sigma_{x}^{[n]}
$$

EXAMPLE MODEL: DISSIPATIVE ISING CHAIN

$$
H=\sum_{n} \sigma_{z}^{[n]} \sigma_{z}^{[n+1]}+g \sigma_{x}^{[n]}
$$

local dissipation

$$
L_{n}=\sqrt{\gamma} \sigma_{n}^{+}
$$

EXAMPLE MODEL: DISSIPATIVE ISING CHAIN

$$
H=\sum_{n} \sigma_{z}^{[n]} \sigma_{z}^{[n+1]}+g \sigma_{x}^{[n]}
$$

local dissipation

$$
L_{n}=\sqrt{\gamma} \sigma_{n}^{+}
$$

can be realized by Rydberg atoms

EXAMPLE MODEL: DISSIPATIVE ISING CHAIN

$$
H=\sum_{n}\left[\frac{V}{2} \sigma_{z}^{[n]} \sigma_{z}^{[n+1]}+\frac{\Omega}{2} \sigma_{x}^{[n]}+\frac{\Delta-V}{2} \sigma_{z}^{[n]}\right]
$$

local dissipation

$$
L_{n}=\sqrt{\gamma} \sigma_{n}^{+}
$$

can be realized by Rydberg atoms

EXAMPLE MODEL: DISSIPATIVE ISING CHAIN

$$
H=\sum_{n}\left[\frac{V}{2} \sigma_{k}^{[n]} \sigma_{z}^{[n+1]}+\frac{\Omega}{2} \sigma_{x}^{[n]}+\frac{\Delta-V}{2} \sigma_{2}^{[n]}\right]
$$

local dissipation

$$
L_{n}=\sqrt{\gamma} \sigma_{n}^{+}
$$

can be realized by Rydberg atoms steady state can show AFM ordering

DISSIPATIVE ISING CHAIN

AF order
(staggered magnetization)

$$
\gamma=1, V=5, \Omega=1.5
$$

DISSIPATIVE ISING CHAIN

AF order
(staggered magnetization)

local polarization

 $\left\langle\sigma_{z}^{[n]}\right\rangle$
$\gamma=1, V=5, \Omega=1.5$

DISSIPATIVE ISING CHAIN

AF order
(staggered magnetization)

local polarization $\left\langle\sigma_{z}^{[n]}\right\rangle$

$\gamma=1, V=5, \Omega=1.5$

DISSIPATIVE ISING CHAIN

AF order
(staggered magnetization)

local polarization $\left\langle\sigma_{z}^{[n]}\right\rangle$

$\gamma=1, V=5, \Omega=1.5$

DISSIPATIVE ISING CHAIN

local polarization $\left\langle\sigma_{z}^{[n]}\right\rangle$

$\gamma=1, V=5, \Omega=1.5$

DISSIPATIVE ISING CHAIN

local polarization $\left\langle\sigma_{z}^{[n]}\right\rangle$

$\gamma=1, V=5, \Omega=1.5$

DISSIPATIVE ISING CHAIN

local polarization $\left\langle\sigma_{z}^{[n]}\right\rangle$

$\gamma=1, V=5, \Omega=1.5$

DISSIPATIVE ISING CHAIN

local polarization $\left\langle\sigma_{z}^{[n]}\right\rangle$

$\gamma=1, V=5, \Omega=1.5$

DISSIPATIVE ISING CHAIN

AF order

(staggered magnetization)

DISSIPATIVE ISING CHAIN

SUMMARY

PRL I I 4, 22060 (2015)

SUMMARY

NESS can be found variationally

SUMMARY

NESS can be found variationally
Very good convergence (varying models, parameters) Very small bond dimension required

SUMMARY

NESS can be found variationally
Very good convergence (varying models, parameters)
Very small bond dimension required
Stability can be delicate Warm-up phase needed!

SUMMARY

NESS can be found variationally
Very good convergence (varying models, parameters) Very small bond dimension required

Stability can be delicate Warm-up phase needed!

Symmetries can be included, trace one, degeneracies... things to be understood about MPDOs representations

Other scenarios for MPO/MPS...

Master equation may not be enough

Master equation may not be enough strong system-environment coupling correlations between system and environment similar time scales for both

Master equation may not be enough strong system-environment coupling correlations between system and environment similar time scales for both

Alternative: solving the whole dynamics
large number of degrees of freedom involved typically a truncation in environment dof required

CHAIN MAPPINGS

CHAIN MAPPINGS

discretized environment

star geometry

$$
H=H_{S}+\sum_{\lambda} \omega_{\lambda} a_{\lambda}^{\dagger} a_{\lambda}+\sum_{\lambda} g_{\lambda}\left(a_{\lambda}^{\dagger} L+L^{\dagger} a_{\lambda}\right)
$$

CHAIN MAPPINGS

discretized environment

chain geometry

tight-binding model

CHAIN MAPPINGS

discretized environment

chain geometry

tight-binding model
NRG approach: exponentially decaying couplings
Krishnamurthy et al., 1980
Guo et al, 2009

CHAIN MAPPINGS

discretized environment
chain geometry

tight-binding model
NRG approach: exponentially decaying couplings
Krishnamurthy et al., I 980
Guo et al, 2009
Continuous environment mapped to semiinfinite chain
Prior et al., PRL 2010
Chin et al., J Math Phys 2010

CHAIN MAPPINGS

Bulla et al RMP 2008;
Hughes et al J Chem Phys 2009
Prior et al., PRL 2010
Chin et al., J Math Phys 2010

CHAIN MAPPINGS

Bulla et al RMP 2008;
Hughes et al J Chem Phys 2009
Prior et al., PRL 2010
Chin et al., J Math Phys 2010

CHAIN MAPPINGS

State of system and bath represented as MPS

$$
|\Psi(0)\rangle=\left|\psi_{0}\right\rangle_{S} \otimes\left|0_{E}\right\rangle \quad T=0 \text { bath corresponds }
$$ to vacuum

CHAIN MAPPINGS

State of system and bath represented as MPS

$$
|\Psi(0)\rangle=\left|\psi_{0}\right\rangle_{S} \otimes\left|0_{E}\right\rangle \begin{aligned}
& T=0 \text { bath corresponds } \\
& \text { to vacuum }
\end{aligned}
$$

Dynamics can be applied using MPO-MPS (t-DMRG)

$$
H=H_{S}+\beta_{0}\left(b_{0}^{\dagger} L+L^{\dagger} b_{0}\right)+\sum_{n=0} \alpha_{n} b_{n}^{\dagger} b_{n}+\sum_{n=0} \beta_{n+1}\left(b_{n+1}^{\dagger} b_{n}+h . c .\right)
$$

CHAIN MAPPINGS

State of system and bath represented as MPS

$$
|\Psi(0)\rangle=\left|\psi_{0}\right\rangle_{S} \otimes\left|0_{E}\right\rangle \quad T=0 \text { bath corresponds }
$$ to vacuum

Dynamics can be applied using MPO-MPS (t-DMRG)

$$
H=H_{S}+\beta_{0}\left(b_{0}^{\dagger} L+L^{\dagger} b_{0}\right)+\sum_{n=0} \alpha_{n} b_{n}^{\dagger} b_{n}+\sum_{n=0} \beta_{n+1}\left(b_{n+1}^{\dagger} b_{n}+h . c .\right)
$$

CHAIN MAPPINGS

- ••••••••

Can also be used for $T>0$ environment

CHAIN MAPPINGS

Can also be used for $T>0$ environment MPO approximation to thermal state

CHAIN MAPPINGS

Can also be used for $T>0$ environment MPO approximation to thermal state mixed state description

CHAIN MAPPINGS

Can also be used for $T>0$ environment
MPO approximation to thermal state mixed state description
could even be positive

CHAIN MAPPINGS

Can also be used for $T>0$ environment
MPO approximation to thermal state mixed state description
could even be positive
computational overhead approximation already involved at $\mathrm{t}=0$

THERMOFIELD APPROACH

An alternative to deal with $T>0$ also with pure MPS

THERMOFIELD APPROACH

$$
\hat{H}=H-\sum_{k} \omega_{k} c_{k}^{\dagger} c_{k}
$$

An alternative to deal with $T>0$ also with pure MPS introduce auxiliary decoupled environment

THERMOFIELD APPROACH

$$
\begin{gathered}
a_{1 k}(\theta), a_{2 k}(\theta) \\
\cosh \theta_{k}=\sqrt{1+n_{k}} \\
n_{k}=\frac{1}{e^{\beta \omega_{k}}-1}
\end{gathered}
$$

$$
\hat{H}=H-\sum_{k} \omega_{k} c_{k}^{\dagger} c_{k}
$$

An alternative to deal with $T>0$ also with pure MPS
introduce auxiliary decoupled environment
thermal Bogoliubov transformation

THERMOFIELD APPROACH

$$
\begin{gathered}
a_{1 k}(\theta), a_{2 k}(\theta) \\
\cosh \theta_{k}=\sqrt{1+n_{k}} \\
n_{k}=\frac{1}{e^{\beta \omega_{k}}-1}
\end{gathered}
$$

$$
\hat{H}=H-\sum_{k} \omega_{k} c_{k}^{\dagger} c_{k}
$$

An alternative to deal with $T>0$ also with pure MPS

introduce auxiliary decoupled environment thermal Bogoliubov transformation
 Takahasi 1975

thermal vacuum

$$
|\Omega\rangle \propto e^{-\beta H_{B} / 2} \sum_{n} \begin{gathered}
\left|E_{n}\right\rangle_{b}\left|E_{n}\right\rangle_{c} \\
\rho_{B}(\beta)=\operatorname{tr}_{c}(|\Omega\rangle\langle\Omega|)
\end{gathered}
$$

THERMOFIELD APPROACH

$$
\begin{gathered}
a_{1 k}(\theta), a_{2 k}(\theta) \\
\cosh \theta_{k}=\sqrt{1+n_{k}} \\
n_{k}=\frac{1}{e^{\beta \omega_{k}}-1}
\end{gathered}
$$

$$
\hat{H}=H-\sum_{k} \omega_{k} c_{k}^{\dagger} c_{k}
$$

An alternative to deal with $T>0$ also with pure MPS

introduce auxiliary decoupled environment thermal Bogoliubov transformation

thermal vacuum

$$
\begin{aligned}
& |\Omega\rangle \propto e^{-\beta H_{B} / 2} \sum_{n}\left|E_{n}\right\rangle_{b}\left|E_{n}\right\rangle_{c} \\
& \langle\Omega| b_{k}^{\dagger} b_{k}|\Omega\rangle=n_{k} \quad \sin _{B}\left(|\Omega\rangle=\operatorname{tr}_{c}(\Omega\rangle\langle\Omega|\right)
\end{aligned}
$$

THERMOFIELD APPROACH

$$
\hat{H}=H-\sum_{k} \omega_{k} c_{k}^{\dagger} c_{k}
$$

Thermal state mapped to two environments at $T=0$
initially no excitations
in the environment

THERMOFIELD APPROACH

ororsorororonoronouroronous

Thermal state mapped to two environments at $T=0$
Double chain mapping
initially no excitations
in the environment

THERMOFIELD APPROACH

ornoraraoronanouronousuousus

Thermal state mapped to two environments at $T=0$
Double chain mapping initially no excitations in the environment
Pure MPS methods can be applied

THERMOFIELD APPROACH

Thermal state mapped to two environments at $T=0$
Double chain mapping initially no excitations in the environment

Pure MPS methods can be applied
Population imbalance between chains gives deviation of bath from thermal distribution

THERMOFIELD APPROACH

Thermal state mapped to two environments at $T=0$
Double chain mapping initially no excitations in the environment
Pure MPS methods can be applied
Population imbalance between chains gives deviation of bath from thermal distribution
Applies to bosonic and fermionic systems

THERMOFIELD APPROACH

EXAMPLE
spin in a bosonic bath
$J(\omega)=\eta \omega^{s} e^{-\omega / \omega_{c}} \quad$ Caldeira-Legget model
exact solution for $\quad H_{S} \propto \sigma_{z}$
$L \propto \sigma_{z}$

I. de Vega, MCB, PRA 92, 052 II 6 (20|5)

converged with thaximum occupation $n=3$

THERMOFIELD APPROACH

EXAMPLE
spin in a bosonic bath
$J(\omega)=\eta \omega^{s} e^{-\omega / \omega_{c}} \quad$ Caldeira-Legget model
not exactly solvable for $H_{S} \propto \sigma_{z}$

$$
L \propto \sigma_{x}
$$

can only compare to master equation

THERMOFIELD APPROACH

I. de Vega, MCB, PRA 92, 052II 6 (20|5)

THERMOFIELD APPROACH

I. de Vega, MCB, PRA 92, 052 II 6 (20|5)

TO CONCLUDE

Generally speaking, out of equilibrium dynamics is hard forTNS/MPS, but...

TO CONCLUDE

Generally speaking, out of equilibrium dynamics is hard forTNS/MPS, but...
in some scenarios, $\mathrm{MPO} \longrightarrow$ mixed states can be successful operators

TO CONCLUDE

Generally speaking, out of equilibrium dynamics is hard forTNS/MPS, but...
in some scenarios, MPO \longrightarrow mixed states can be successful operators

Applications of MPS/MPO to non-equilibrium

TO CONCLUDE

Generally speaking, out of equilibrium dynamics is hard forTNS/MPS, but...
in some scenarios, MPO \longrightarrow mixed states can be successful operators

Applications of MPS/MPO to non-equilibrium non-equilibrium steady states of QMB systems

TO CONCLUDE

Generally speaking, out of equilibrium dynamics is hard forTNS/MPS, but...
in some scenarios, MPO \longleftrightarrow mixed states can be successful operators

Applications of MPS/MPO to non-equilibrium non-equilibrium steady states of QMB systems modelling system-bath interactions beyond master equation

THANKS

Generally speaking, out of equilibrium dynamics is hard forTNS/MPS, but...
in some scenarios, MPO
can be successful mixed states $_{\text {operators }}$

Applications of MPS/MPO to non-equilibrium non-equilibrium steady states of QMB systems modelling system-bath interactions beyond master equation

THANKS!

DICKE MODEL

Dicke, 1954
Hepp, Lieb, 1973
Carmichael, 1980

DICKE MODEL

N 2-level atoms coupled to same EM mode

DICKE MODEL

N 2-level atoms coupled to same EM mode

DICKE MODEL

N 2-level atoms coupled to same EM mode

DICKE MODEL

N 2-level atoms coupled to same EM mode

$$
\frac{d \rho}{d t}=-i \Omega\left[S_{x}, \rho\right]+\Gamma\left(S^{-} \rho S^{+}-\frac{1}{2} \rho S^{+} S^{-}-\frac{1}{2} S^{+} S^{-} \rho\right)
$$

Dicke, 1954 Hepp, Lieb, 1973

DICKE MODEL

N 2-level atoms coupled to same EM mode

$$
\frac{d \rho}{d t}=-i \Omega\left(S_{x} \rho\right]+\Gamma\left(S^{-} \rho S^{+}-\frac{1}{2} \rho S^{+} S-\frac{1}{2} S^{+} S^{-} \rho\right)
$$

collective coupling

DICKE MODEL

N 2-level atoms coupled to same EM mode

$$
\begin{gathered}
\left.\frac{d \rho}{d t}=-i \Omega\left(S_{x} \rho\right]+\Gamma\left(S^{-} \rho S^{+}-\frac{1}{2} \rho S^{+} S\right)-\frac{1}{2} S^{+} S^{-} \rho\right) \\
S_{x}=\sum_{n=1}^{N} s_{x} \quad \text { collective coupling }
\end{gathered}
$$

DICKE MODEL

N 2-level atoms coupled to same EM mode

$$
\begin{gathered}
\frac{d \rho}{d t}=-i \Omega\left(S_{x} \rho\right]+\Gamma\left(S^{-} \rho S^{+}-\frac{1}{2} \rho S^{+} S-\frac{1}{2} S^{+} S^{-} \rho\right) \\
S_{x}=\sum_{n=1}^{N} s_{x} \quad \text { collective coupling }
\end{gathered}
$$

phase transition to superradiant phase

DICKE MODEL

N 2-level atoms coupled to same EM mode

$$
\begin{gathered}
\left.\frac{d \rho}{d t}=-i \Omega\left(S_{x}\right) \rho\right]+\Gamma\left(S^{-} \rho S^{+}-\frac{1}{2} \rho S^{+} S-\frac{1}{2} S^{+} S^{-} \rho\right) \\
S_{x}=\sum_{n=1}^{N} s_{x} \quad \text { collective coupling }
\end{gathered}
$$

phase transition to superradiant phase $\frac{\Omega}{\Gamma}=\frac{N}{2}$

DICKE MODEL

N 2-level atoms coupled to same EM mode

$$
\begin{gathered}
\left.\frac{d \rho}{d t}=-i \Omega\left(S_{x}\right) \rho\right]+\Gamma\left(S^{-} \rho S^{+}-\frac{1}{2} \rho S^{+} S-\frac{1}{2} S^{+} S^{-} \rho\right) \\
S_{x}=\sum_{n=1}^{N} s_{x} \quad \text { collective coupling }
\end{gathered}
$$

phase transition to superradiant phase $\frac{\Omega}{\Gamma}=\frac{N}{2}$ analytic solution

DICKE MODEL

N 2-level atoms coupled to same EM mode

$$
\begin{gathered}
\left.\frac{d \rho}{d t}=-i \Omega\left(S_{x}\right) \rho\right]+\Gamma\left(S^{-} \rho S^{+}-\frac{1}{2} \rho S^{+} S-\frac{1}{2} S^{+} S^{-} \rho\right) \\
S_{x}=\sum_{n=1}^{N} s_{x} \quad \text { collective coupling }
\end{gathered}
$$

phase transition to superradiant phase $\frac{\Omega}{\Gamma}=\frac{N}{2}$ analytic solution conserved total spin

DICKE MODEL

DICKE MODEL

DICKE MODEL

DICKE MODEL

from Carmichael, J Phys B 1980

DICKE MODEL

from Carmichael, J Phys B 1980

DICKE MODEL

DICKE MODEL

DICKE MODEL

DICKE MODEL

DICKE MODEL

is an interesting model...

DICKE MODEL

is an interesting model...
phase transitions dissipative

DICKE MODEL

is an interesting model...
phase transitions dissipative collective phenomena

DICKE MODEL

is an interesting model...
phase transitions dissipative
collective phenomena
entanglement

DICKE MODEL

is an interesting model...
phase transitions dissipative
collective phenomena
entanglement
but experimentally difficult

Do simpler models show similar phenomena?

Do simpler models show similar phenomena?

more local

A SIMPLER MODEL

A SIMPLER MODEL

Lower dimensional version of Dicke model

A SIMPLER MODEL

Lower dimensional version of Dicke model

N 2-level systems with dissipation coupling NN

A SIMPLER MODEL

Lower dimensional version of Dicke model

N 2-level systems with dissipation coupling NN

$$
\frac{d \rho}{d t}=-i \Omega\left[S_{x}, \rho\right]+\Gamma \sum_{n}\left(S_{n}^{-}{ }_{n+1} \rho S_{n}^{+}{ }_{n+1}-\frac{1}{2} \rho S_{n+1}^{+} S_{n}^{-}{ }_{n+1}-\frac{1}{2} S_{n}^{+}{ }_{n+1} S_{n+1}^{-}{ }_{n+1} \rho\right)
$$

A SIMPLER MODEL

Lower dimensional version of Dicke model

N 2-level systems with dissipation coupling NN

$$
\begin{gathered}
\frac{d \rho}{d t}=-i \Omega\left[S_{x}, \rho\right]+\Gamma \sum_{n}\left(S_{n+1}^{-} \rho_{n}^{+} S_{n+1}^{+}-\frac{1}{2} \rho S_{n+1}^{+} S_{n+1}^{-}-\frac{1}{2} S_{n n+1}^{+} S_{n+1}^{-} \rho\right) \\
S_{n}^{+}{ }_{n+1}=\sigma_{n+1}^{+} \otimes I+I \otimes \sigma_{n+1}^{+}
\end{gathered}
$$

LOW DIM DICKE MODEL

Liouvillian can be expressed as a small MPO of

LOW DIM DICKE MODEL

Liouvillian can be expressed as a small MPO of

$$
\chi=5
$$

LOW DIM DICKE MODEL

Liouvillian can be expressed as a small MPO of

$$
\chi=5
$$

Approximate the steady state by a MPO

LOW DIM DICKE MODEL

Liouvillian can be expressed as a small MPO of

$$
\chi=5
$$

Approximate the steady state by a MPO fixed $D \rightarrow$ check convergence

LOW DIM DICKE MODEL

Liouvillian can be expressed as a small MPO of

$$
\chi=5
$$

Approximate the steady state by a MPO
fixed $D \rightarrow$ check convergence no explicit positivity

LOW DIM DICKE MODEL

Liouvillian can be expressed as a small MPO of

$$
\chi=5
$$

Approximate the steady state by a MPO
fixed $D \rightarrow$ check convergence no explicit positivity no explicit Hermiticity

LOW DIM DICKE MODEL

Liouvillian can be expressed as a small MPO of

$$
\chi=5
$$

Approximate the steady state by a MPO

fixed $D \rightarrow$ check convergence no explicit positivity no explicit Hermiticity

No special symmetry

LOW DIM DICKE MODEL

Other interesting models...

Interesting models...

SUMMARY

PRL I I4, 22060| (20|5)

SUMMARY

NESS can be found variationally

SUMMARY

NESS can be found variationally
Very good convergence (varying models, parameters) Very small bond dimension required

SUMMARY

NESS can be found variationally
Very good convergence (varying models, parameters)
Very small bond dimension required
Stability can be delicate Warm-up phase needed!

SUMMARY

NESS can be found variationally
Very good convergence (varying models, parameters)
Very small bond dimension required
Stability can be delicate Warm-up phase needed!

Future: symmetries, trace one, degeneracies... much to understand about MPDOs representations

