

Green's function formalism and its applications to charge and energy transport through nanosystems

Fabian Pauly Bad Honnef, 20.09.2016

"Green function" or "Green's function"?

Other examples: Bessel's vs. Bessel function

German: "Greensche Funktion"

Charge and heat transport at the smallest scale

"Bottom-up" (Chemistry & biology)

Molecular junctions are ideal systems to understand charge & heat transport, heat dissipation, thermoelectricity at the atomic scale

Atomistic modeling of electron and phonon transport

Created by STM or mechanically controllable break-junction technique

Questions

- What is the electron current through a nanojunction?
- How large is the heat flow?

20.09.2016

Challenges to be solved for atomistic modeling

- Material- and molecule-specific description of electronic structure
- Determination of stable contact geometries
- Electric and phononic transport description

<u>Outline</u>

Green's function formalism

- What is a Green's function?
- Green's functions in quantum physics
 - Equilibrium Green's functions
 - Nonequilibrium Green's functions

Molecular electronics

Theoretical framework

Electrical properties

- Structure-conductance relationships
- Inelastic effects due to vibrations

Beyond electric conductance

- Thermoelectric properties
- Heat dissipation

Summary & outlook

Some good books

Green's Functions in Quantum Physics, E. N. Economou, Springer (2006)

Molecular Electronics: An Introduction to Theory and Experiment, J. C. Cuevas and E. Scheer, World Scientific Publishing Company (2010)

WILEYVCH Wolfram Koch, Max C. Holthausen A Chemist's Guide to Density Functional Theory Second Edition

A Chemist's Guide to Density Functional Theory, W. Koch and Max C. Holthausen, John Wiley & Sons (2001) Giantuca Stefanuco Robert van Leeuwen Many-Body Theory of Quantum Systems A Modern Introduction

Many-Body Quantum Theory in Condensed Matter Physics An Introduction Hereit Black Karsten Plontberg

<text><text><section-header><section-header>

Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction, G. Stefanucci and R. van

G. Stefanucci and R. van Leeuwen, Cambridge University Press (2013)

Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, H. Bruus and K. Flensberg, Oxford University Press (2004)

Interacting Electrons: Theory and Computational Approaches, R. M. Martin, L. Reining, D. M. Ceperley, Cambridge University Press (2016)

Green's function formalism

- What is a Green's function?
- Green's functions in quantum physics
 - Equilibrium Green's functions
 - Nonequilibrium Green's functions

Molecular electronics

• Theoretical framework

Electrical properties

- Structure-conductance relationships
- Inelastic effects due to vibrations

Beyond electric conductance

- Thermoelectric properties
- Heat dissipation

Summary & outlook

What is a Green's function?

For a given linear, inhomogeneous differential equation

 $\left[z - L(\vec{r})\right]u(\vec{r}) = f(\vec{r})$

define the Green's function

$$[z - L(\vec{r})]G(\vec{r}, \vec{r}'; z) = \delta(\vec{r} - \vec{r}')$$

to obtain the solution

$$u(\vec{r}) = \int G(\vec{r}, \vec{r}'; z) f(\vec{r}') d\vec{r}'$$

If u(r) describes physically the response of a system to a source f(r), then G(r,r') describes the response of the same system to a unit point source located at r.

Green's function of non-interacting electrons

Time-independent Schrödinger equation $H\psi(\vec{r}) = E\psi(\vec{r})$

Define Green's function via

$$[E-H]G(\vec{r},\vec{r}',E) = \delta(\vec{r}-\vec{r}')$$

Definition of retarded and advanced Green's function in energy space

$$G^{r,a}(E) = (E \pm i\eta - H)^{-1}$$

In a particular one-electron basis the different Green functions will be

$$G_{ij}^{r,a}(E) = \left\langle i \left| G^{r,a}(E) \right| j \right\rangle$$

Spectral representation and Dyson equation

Spectral representation

interacting electrons

$$G^{r,a}(E) = \sum_{n} \frac{\left|\psi_{n}\right\rangle \left\langle\psi_{n}\right|}{E \pm i\eta - \varepsilon_{n}} \longrightarrow G^{r,a}_{ij}(E) = \sum_{m} \frac{\left\langle\psi_{0}^{N}\left|c_{i\sigma}\left|\psi_{m}^{N+1}\right\rangle \left\langle\psi_{m}^{N+1}\left|c_{j\sigma}^{\dagger}\left|\psi_{0}^{N}\right\rangle\right.\right\rangle}{E - \left(E_{m}^{N+1} - E_{0}^{N}\right) \pm i\eta} + \sum_{m} \frac{\left\langle\psi_{0}^{N}\left|c_{j\sigma}^{\dagger}\left|\psi_{m}^{N-1}\right\rangle \left\langle\psi_{m}^{N-1}\left|c_{i\sigma}\left|\psi_{0}^{N}\right\rangle\right.\right\rangle}{E - \left(E_{m}^{N-1} - E_{0}^{N}\right) \pm i\eta}\right)$$

Dyson equation

$$\begin{array}{ccc} H = H_0 + V & \text{Hamiltonian with perturbation} \\ G(E) = (E - H_0 - V)^{-1} = \left[G_0^{-1}(E) - V \right]^{-1} = G_0(E) \sum_{n=0}^{\infty} VG_0(E) \\ G(E) = G_0(E) + G_0(E)VG(E) & = \\ G(E) = G_0(E) + G(E)VG_0(E) & = \\ \end{array}$$

$$G(E) = G_0(E) + G_0(E)\Sigma(E)G(E)$$

Nonequilibrium Green's functions – Keldysh formalism

Noninteracting electrons in equilibrium

$$\left\langle A(t) \right\rangle = \frac{\left\langle \phi_0 \left| S(-\infty,t) A_I(t) S(t,-\infty) \right| \phi_0 \right\rangle}{\left\langle \phi_0 \left| S(-\infty,t) S(t,-\infty) \right| \phi_0 \right\rangle}$$

$$\left\langle A(t) \right\rangle = \frac{\left\langle \phi_0 \left| T_c \left[A_I(t) S_c(\infty,-\infty) \right] \right| \phi_0 \right\rangle}{\left\langle \phi_0 \left| S_c(\infty,-\infty) \right| \phi_0 \right\rangle}$$

$$S(t,t_0) = T \exp\left[-i\int_{t_0}^t dt V_I(t)\right]$$
$$S_c(\infty,-\infty) = S_-(-\infty,\infty)S_+(\infty,-\infty)$$

T and T_c : time ordering operators along real axis and contour

11

Nonequilibrium Green's functions – Keldysh formalism

$$\begin{split} G_{ij}(t_{\alpha},t_{\beta}\,') &= -i \left\langle \Psi_{H} \left| T_{c} \left[c_{i}(t_{\alpha}) c_{j}^{\dagger}(t_{\beta}\,') \right] \right| \Psi_{H} \right\rangle = G_{ij}^{\alpha,\beta}(t,t'), \quad \alpha,\beta = +, - \\ G(t,t') &= \begin{pmatrix} G^{++}(t,t') & G^{+-}(t,t') \\ G^{-+}(t,t') & G^{--}(t,t') \end{pmatrix} & -\infty & \text{upper branch } (+) \\ -\infty & \text{lower branch } (-) \end{pmatrix} + \infty \\ G^{r} &= G^{++} - G^{-+} = -G^{--} + G^{-+} \\ G^{a} &= G^{++} - G^{-+} = -G^{--} + G^{-+} \\ G^{a} &= G^{++} - G^{-+} = -G^{--} + G^{-+} \\ G^{K} &= G^{++} + G^{--} = G^{+-} + G^{-+} \\ G^{r,a} &= g^{r,a} + g^{r,a} \Sigma^{r,a} G^{r,a} \\ G^{r-a} &= g^{r,a} + g^{r,a} \Sigma^{r,a} G^{r,a} \\ G^{+-} &= (1 + G^{r} \Sigma^{r}) g^{+-} (1 + \Sigma^{a} G^{a}) - G^{r} \Sigma^{+-} G^{a} \\ G^{-+} &= (1 + G^{r} \Sigma^{r}) g^{-+} (1 + \Sigma^{a} G^{a}) - G^{r} \Sigma^{-+} G^{a} \\ G^{r-a} &= G^{r-a} + G^{r-a} \\ G^{r-a} &= G^{$$

12

Current through a nanojunction

Expression for the current readily expressed through Keldysh Green's functions

$$I = \frac{ie}{\hbar} \sum_{i \in L, j \in C, \alpha, \beta, \sigma} \left(H_{i\alpha, j\beta} \left\langle c_{i\alpha, \sigma}^{\dagger} c_{j\beta, \sigma} \right\rangle - H_{j\beta, i\alpha} \left\langle c_{j\beta, \sigma}^{\dagger} c_{i\alpha, \sigma} \right\rangle \right)$$

$$I = \frac{2e}{h} \int_{-\infty}^{\infty} dE \operatorname{Tr} \left[G_{CL}^{+-}(E) H_{LC} - H_{CL} G_{LC}^{+-}(E) \right]$$

$$I = \frac{2e}{h} \int_{-\infty}^{\infty} dE \tau(E, V) \left(f_L - f_R \right) \qquad \text{Landauer formula for the current}$$
Transport elastic and coherent: all quantum interference paths

Transport elastic and conerent, all quantum interferice paths

20.09.2016

Green's function formalism

- What is a Green's function?
- Green's functions in quantum physics
 - Equilibrium Green's functions
 - Nonequilibrium Green's functions

Molecular electronics

Theoretical framework

Electrical properties

- Structure-conductance relationships
- Inelastic effects due to vibrations

Beyond electric conductance

- Thermoelectric properties
- Heat dissipation

Summary & outlook

Atomistic modeling of charge transport through nanosystems

TURBOMOLE software

- Quantum chemistry software package
- DFT module
- Localized Gaussian atomic orbitals

 \rightarrow Very accurate and efficient

Member of development team

Challenges

- Material- and molecule-specific a*b-initio* description of electronic structure
 → Density functional theory (DFT)
- Determination of stable contact geometries, vibrations, electron-phonon couplings \rightarrow DFT
- Electric transport

20.09.2016

 \rightarrow Green's function description

15

Landauer scattering theory for electron transport

Assumptions: Elastic, phase coherent electron transport

 \rightarrow Scattering region shorter than inelastic scattering lengths

20.09.2016

Electronic structure

Schrödinger equation in Born-Oppenheimer approximation:

 $H_{el}\psi = E\psi$

$$H_{el} = -\frac{\hbar^2}{2m_e} \sum_{\mu=1}^{N} \nabla_{\mu}^2 - \sum_{\mu=1}^{N} \sum_{A=1}^{M} \frac{Z_A e^2}{4\pi\varepsilon_0 r_{\mu A}} + \sum_{\mu=1}^{N} \sum_{\nu>\mu}^{M} \frac{e^2}{4\pi\varepsilon_0 r_{\mu \nu}} = T + V_{Ne} + V_{ee}$$

DFT: Kohn-Sham ansatz

W. Kohn et al., Phys. Rev. 140, A1133 (1965)

$$E[\rho] = T_{S}[\rho] + J[\rho] + E_{Ne}[\rho] + E_{XC}[\rho]$$

- Self-consistent, effective single-particle theory
 - Kohn-Sham eigenvalues interpreted as quasiparticle energies

Other methods: DFT+ Σ , GW, LDA+DMFT

Landauer scattering theory and Green's functions

20.09.2016

Level alignment at metal-molecule contact

Energy level diagram

Physical effects influencing level alignment

- Interfacial charge rearrangement
- Quantum mechanical coupling
- Nonlocal surface polarization

Spectral adjustment: "DFT+Σ"

S. Y. Quek et al., Nano Lett. 7, 3477 (2007)

On surface

GW quasiparticle methods

Metal

M. Strange et al., Phys. Rev. B 83, 115108 (2011)

HOMO Ionization Level

Gas phase

Overview of electronic structure methods

Quasiparticle equation

$$\hat{h}_0(r)\psi_i(r) + \int \Sigma(r, r'; \varepsilon_i / \hbar)\psi_i(r')d^3r' = \varepsilon_i\psi_i(r)$$

Approximations to the self-energy

Hartree-Fock
$$\Sigma^{HF}(r,r') = i\hbar G(r,r';-\eta)v(r,r')$$
DFT $\Sigma^{DFT}(r,r') = V_{XC}(r)\delta(r-r')$ GW $\Sigma^{GW}(r,r';\omega) = \frac{i\hbar}{2\pi} \int_{-\infty}^{\infty} G(r,r';\omega+\omega')W(r,r';\omega')d\omega'$ "HF" in screened
Coulomb interaction

Coulomb interaction

Screened Coulomb interaction

Dielectric function

Polarization function

20.09.2016

$$v(r,r') = e^2 / (4\pi\varepsilon_0 | r - r'|)$$

$$W(r,r';\omega) = \int \varepsilon^{-1}(r,r'';\omega)v(r'',r')d^3r''$$

$$\varepsilon(r,r';\omega) = \delta(r,r') - \int v(r,r'') P(r'',r';\omega) d^3r''$$

$$P(r, r'; \tau) = -i\hbar G(r, r'; \tau)G(r', r; -\tau)$$

The "band gap" problem

C. Friedrich and A. Schindlmayr, NIC Series, Vol. 31, pp. 335-355, 2006

Phonon dispersion relations

Figure 2.9. Phonon dispersion curves calculated for the semiconductor GaAs [154]. The points are from experiment and the curves from density functional theory using the response function method (Ch. 19). Similar agreement is found for the entire family of semiconductors. Calculations for many types of materials, e.g. in Figs. 19.4 and 19.5, have shown the wide applicability of this approach.

R. M. Martin, Electronic Structure, Cambridge University Press, 2008

Spring constants needed
$$K_{i\mu,j\nu} = \frac{\partial^2 E}{\partial R_{i\mu} \partial R_{j\nu}}$$
 Phonon or lattice heat transport

22

Green's function formalism

- What is a Green's function?
- Green's functions in quantum physics
 - Equilibrium Green's functions
 - Nonequilibrium Green's functions

Molecular electronics

Theoretical framework

Electrical properties

- Structure-conductance relationships
- Inelastic effects due to vibrations

Beyond electric conductance

- Thermoelectric properties
- Heat dissipation

Summary & outlook

Structure-conductance relationships

What is the influence of conjugation on molecular conductance?

Transition amplitude between rings $\propto \cos \varphi$

Transmission or conductance: $G \propto \cos^2 \varphi$

Influence of conjugation on conductance

A. Mishchenko et al., Nano Lett. 10, 156 (2010)

Molecule	Structure	Torsion angle φ (X-Ray, Acetyl)
M1		36.4°
M2	RS-CD-SR	1.1°
M3		16.8°
M4		44.7°
M5		57.8°
M6		71.5°
M7		79.7°
M8		89.0°

Tailor-made side groups gradually change the torsion angle

See also: L. Venkataraman et al., Nature 442, 904 (2006)

20.09.2016

Influence of conjugation on conductance

Transmission dominated by molecular π system (independent of binding site to Au)

Hollow-Hollow

26

M. Bürkle et al., Phys. Rev. B 85, 075417 (2012)

- → DFT allows to identify charge transport mechanism
- \rightarrow Change by more than 1 order of magnitude

Green's function formalism

- What is a Green's function?
- Green's functions in quantum physics
 - Equilibrium Green's functions
 - Nonequilibrium Green's functions

Molecular electronics

Theoretical framework

Electrical properties

- Structure-conductance relationships
- Inelastic effects due to vibrations

Beyond electric conductance

- Thermoelectric properties
- Heat dissipation

Summary & outlook

Inelastic interactions due to vibrations

Is there a molecule in the contact?

 \rightarrow Vibrations yield a fingerprint

Inelastic electron tunneling spectra (IETS)

- Energy of vibrational mode: ħω
- Conductance changes, if the voltage is eV≈ħω.
- Second derivative of the current shows changes clearly

Goal:

Determine inelastic electron tunneling spectra from first principles (DFT)

See for instance:

- J. K. Viljas et al., Phys. Rev. B 72, 245415 (2005)
- T. Frederiksen et al., Phys. Rev. B 75, 205413 (2007)
- J. C. Cuevas and E. Scheer, *Molecular Electronics*, World Scientific (2010)

Inelastic transport method

$$H = H_e + H_{vib} + H_{e-vib}; \ H_e = \sum_{i,j} d_i^{\dagger} H_{ij} d_j; \ H_{vib} = \sum_{\alpha} \hbar \omega_{\alpha} b_{\alpha}^{\dagger} b_{\alpha}; \ H_{e-vib} = \sum_{i,j} \sum_{\alpha} d_i^{\dagger} \lambda_{ij}^{\alpha} d_j \left(b_{\alpha}^{\dagger} + b_{\alpha} \right)$$

$$\lambda_{ij}^{\alpha} = \sqrt{\frac{\hbar}{2\omega_{\alpha}}} \sum_{k,\mu} \left\langle i \left| \nabla_{k\mu} H_{e} \right|_{\overline{Q}=0} \right| j \right\rangle A_{k\mu,\alpha}$$

 → Implementation in TURBOMOLE using density functional perturbation theory (DFPT) & "semianalytical" derivatives (available in official TURBOMOLE version)

Lowest-order expansion of current in electron-vibration coupling

$$I = I_{el} + \delta I_{el} + I_{inel}$$

$$I_{el} = \frac{2e}{h} \int dE \operatorname{Tr}[G^{r} \Gamma_{R} G^{a} \Gamma_{L}] (f_{L} - f_{R})$$

$$\delta I_{el} = \frac{4e}{h} \int dE \operatorname{Re}\operatorname{Tr}[\Gamma_{L} G^{r} \Sigma_{e\text{-vib}}^{r} G^{r} \Gamma_{R} G^{a}] (f_{L} - f_{R})$$

$$I_{inel} = -i \frac{2e}{h} \int dE \operatorname{Tr}\left[G^{a} \Gamma_{L} G^{r} \left\{ (f_{L} - 1) \Sigma_{e\text{-vib}}^{<} - f_{L} \Sigma_{e\text{-vib}}^{>} \right\} \right]$$

Transport theory:

20.09.2016

J. K. Viljas et al., Phys. Rev. B 72, 245415 (2005) M. Bürkle et al., Phys. Status Solidi B 250, 2468 (2013)

Molecules on surfaces

Problem: Molecules normally lie flat on a metal surface

 \rightarrow Decoupling of functional molecular unit from surface needed to avoid quenching

Tailor-made tripodal platform delivers 3D structure

Is the molecule positioned on the surface as intended, and how does the current proceed?

M. A. Karimi et al., Nanoscale 8, 10582 (2016)

Related STM study: L. Gerhard et al, under review in Nature Comm.

Current path for a conductive molecular wire on a tripodal platform

Conduction eigenchannel

- Elastic transmission agrees with average experimental conductance, $G \approx 10^{-3}G_0$
- \rightarrow indicates right junction geometry
- Inelastic tunneling spectra confirm transport through ۰ backbone

Green's function formalism

- What is a Green's function?
- Green's functions in quantum physics
 - Equilibrium Green's functions
 - Nonequilibrium Green's functions

Molecular electronics

Theoretical framework

Electrical properties

- Structure-conductance relationships
- Inelastic effects due to vibrations

Beyond electric conductance

- Thermoelectric properties
- Heat dissipation

Summary & outlook

Understanding thermoelectrics at the atomic scale

Thermoelectric elements

- Conversion of waste heat into electrical energy
- Nanorefrigerators

Figure of merit characterizes thermoelectric power generation efficiency: $ZT=S^2GT/\kappa$

Thermopower S Electric conductance GTemperature TThermal conductance κ

$$\kappa = \kappa_{el} + \kappa_{ph}$$

Enhancement of *ZT* through appropriate nanostructuring

How large is *ZT* for molecular junctions? How do κ_{el} and κ_{ph} compare?

Electron & phonon transport

Green's function formalism

- What is a Green's function?
- Green's functions in quantum physics
 - Equilibrium Green's functions
 - Nonequilibrium Green's functions

Molecular electronics

• Theoretical framework

Electrical properties

- Structure-conductance relationships
- Inelastic effects due to vibrations

Beyond electric conductance

- Thermoelectric properties
 - Thermopower
 - Phonon thermal transport
 - Figure of merit
- Heat dissipation

Summary & outlook

Why thermopower?

Seebeck effect

20.09.2016

Landauer-Büttiker formalism

Thermopower (electronic contribution):

$$S = -\frac{\Delta V}{\Delta T}\Big|_{I=0} \approx -\frac{\pi^2 k_B}{3e} k_B T \frac{\partial \ln(\tau(E))}{\partial E}\Big|_{E=E_F}$$

- Sign of S distinguishes "*electron* type" and *"hole* type" conduction
- \rightarrow Hint to position of E_F with respect to HOMO and LUMO

Theory suggestion M. Paulsson et al., Phys. Rev. B 67, 241403(R) (2003)

First experiment P. Reddy et al., Science 315, 1568 (2007)

Theoretical studies of the thermopower

40 Exp. 30 DFT S (µV/K) 20100 3 2 0 Ν 15 14 S (µV/K) 3 R2 $q_1 + q_2 \cos^2(\phi)$ 12 30 60 90 0 ϕ (deg) Metallic atomic contacts

Length dependence

$$\tau(E) \approx \alpha(E) \exp(-\beta(E)N)$$

$$S = S^{(0)} + S^{(1)}N$$

Exponential decay of conductance with length (tunneling) leads to linear increase of thermopower

Exp.: Theory:

P. Reddy et al., Science 315, 1568 (2007) F. Pauly et al., Phys. Rev. B 78, 035315 (2008)

Influence of conjugation

Change of conjugation leads only to slight variation of thermopower

F. Pauly et al., Phys. Rev. B 78, 035315 (2008) M. Bürkle et al., Phys. Rev. B 86, 115304 (2012)

F. Pauly et al., Phys. Rev. B 84, 195420 (2011) C. Evangeli et al., Nano Lett. 15, 1006 (2015)

36

Theory: DFT

N=3

Green's function formalism

- What is a Green's function?
- Green's functions in quantum physics
 - Equilibrium Green's functions
 - Nonequilibrium Green's functions

Molecular electronics

• Theoretical framework

Electrical properties

- Structure-conductance relationships
- Inelastic effects due to vibrations

Beyond electric conductance

- Thermoelectric properties
 - Thermopower
 - Phonon thermal transport
 - Figure of merit
- Heat dissipation

Summary & outlook

Phonon thermal transport

Phonon density of states of bulk gold

- Extracted from finite clusters
- Good agreement with experiment

M. Bürkle et al., Phys. Rev. B 91, 165419 (2015)

20.09.2016

Force constant matrix

 $K_{ij} = \frac{1}{\sqrt{M_i M_j}} \frac{\partial^2 E}{\partial R_i \partial R_j}$

Phonon transmission

 $\tau_{ph}(E) = \operatorname{Tr}\left[\Lambda_{L}(E)D^{r}(E)\Lambda_{R}(E)D^{a}(E)\right]$ $H \to K; E \to E^{2}$

Linear response properties

Phonons:
$$\kappa_{ph} = \frac{1}{h} \int_{0}^{\infty} dE \tau_{ph}(E) \frac{\partial n}{\partial T} E$$

Electrons: $G = G_0 K_0$ $S = -\frac{K_1}{eTK_0}$
 $\kappa_{el} = \frac{2}{hT} \left(K_2 - \frac{K_1^2}{K_0} \right)$
 $K_n = \int dE \tau_{el}(E) \left(-\frac{\partial f}{\partial E} \right) \left(E - \mu \right)^n$

Heat transport at the nanoscale

Growing interest in heat transport at the nanoscale Goal: Transfer knowledge on nanoelectronics to nanophononics

State of the art – Experiments

- Experiments with SAMs show chemical sensitivity (length, anchoring groups, ...)

20.09.2016

Length dependence of the thermal conductance

Alkane single-molecule junctions

- Chains with 2 to 30 units
- Units CY_2 with Y=H or F

20.09.2016

- Anchor group X=S or NH₂
- \rightarrow Thermal conductance rather lengthindependent for 5 or more CY₂ units

Green's function formalism

- What is a Green's function?
- Green's functions in quantum physics
 - Equilibrium Green's functions
 - Nonequilibrium Green's functions

Molecular electronics

• Theoretical framework

Electrical properties

- Structure-conductance relationships
- Inelastic effects due to vibrations

Beyond electric conductance

- Thermoelectric properties
 - Thermopower
 - Phonon thermal transport
 - Figure of merit
- Heat dissipation

41

Summary & outlook

Figure of merit without phonon thermal transport

20.09.2016

Figure of merit including phonon thermal transport

• $\kappa_{\rm ph}$ cannot be ignored for realistic estimate of ZT

-H Theory: 5 н -NH ۰NH DFT+Σ Full ZT -OH 4 -OH -NO₂ 4 ·NO₂ -COCF, -COCF₃ Z_{el}T·10⁻³ ZT.10⁻⁴ 3 $\frac{Z_{el}T}{1+\kappa_{ph}/\kappa_{el}}$ 3 ZT = $S^2 GT$ Z_{el} \mathcal{K}_{el} U 0 300 100 200 0 200 100 300 0 T [K] T [K]

M. Bürkle et al., Phys. Rev. B 91, 165419 (2015)

Outlook: Higher ZT junctions, role of anharmonicities, ...

Green's function formalism

- What is a Green's function?
- Green's functions in quantum physics
 - Equilibrium Green's functions
 - Nonequilibrium Green's functions

Molecular electronics

Theoretical framework

Electrical properties

- Structure-conductance relationships
- Inelastic effects due to vibrations

Beyond electric conductance

- Thermoelectric properties
- Heat dissipation

Summary & outlook

20.09.2016

Heat dissipation in atomic-scale junctions

Dimensions of the contact region in atomic-scale junctions are much smaller than the inelastic scattering length.

 \rightarrow Transport is elastic and heat dissipation takes place inside the electrodes.

Is the heat dissipated equally in both electrodes? What is the relation between the dissipated heat and electronic structure?

W. Lee et al., Nature 498, 209 (2013)

L. A. Zotti et al., New J. Phys. 16, 015004 (2014)

20.09.2016

Probing heat dissipation

R_{J,P,S}: Thermal resistance of junction, probe, substrate

 $R_J \gg R_P, R_S$

$$T_P = T_{Amb} + \Delta T_{TC}$$
$$Q_P(V) = \Delta T_{TC} / R_P$$

Power dissipation

$$Q_P(V) + Q_S(V) = Q_{Total}(V) = I \times V$$

W. Lee et al., Nature 498, 209 (2013)

46

Benzenediisonitrile (BDNC) single-molecule junctions

A positive (negative) bias corresponds to a scenario, where the probe is grounded, while the substrate is at a higher (lower) potential.

- Heat dissipation in the electrodes of Au-BDNC-Au junctions is bias-polarity-dependent and thus unequal.
- Why is the heat dissipation in the electrodes unequal in spite of the symmetric geometry of the molecular junctions?

Landauer theory of heat dissipation

Power dissipated in the electrodes

$$Q_{P}(V) = \frac{2}{h} \int_{-\infty}^{\infty} (\mu_{P} - E)\tau(E, V) [f_{P}(E, \mu_{P}) - f_{S}(E, \mu_{S})] dE$$
$$Q_{S}(V) = \frac{2}{h} \int_{-\infty}^{\infty} (E - \mu_{S})\tau(E, V) [f_{P}(E, \mu_{P}) - f_{S}(E, \mu_{S})] dE$$

nergy conservation:
$$Q_P(V) + Q_S(V) = IV = Q_{Total}(V)$$

Probe (P)

Substrate (S)

When the heat equally dissipated in both electrodes?

$$Q_P(V) = Q_S(V)$$
, if $\tau(E,V) = \tau(-E,V)$

Electron-hole symmetry implies equal dissipation

When is the power dissipation independent of bias polarity?

$$Q_P(V) = Q_P(-V), \text{ if } \tau(E,V) = \tau(-E,-V)$$

48

Ε

Landauer theory of heat dissipation

Conclusion from theoretical considerations

The heat dissipation in the electrodes of atomic-scale contacts is, in general, asymmetric and depends on both the bias polarity and the nature of the majority carriers (electrons vs. holes).

Low-bias expansions

$$Q_P(V) - Q_P(-V) = 2TGSV + O(V^2)$$

Temperature *T* Conductance *G* Thermopower *S*

Prediction

Heating asymmetry should change sign, if sign of S is changed.

W. Lee et al., Nature 498, 209 (2013)

Asymmetric heat dissipation: simple picture

- An electron flows elastically through the contact with energy *E*, leaving a hole behind.
- The electron thermalizes and dissipates an energy $(E-\mu_s)$ in the substrate.
- The hole left in the probe is filled by an electron releasing an energy (μ_P-E) in the probe.
- For hole conduction, the heating in the probe is stronger than in the substrate
- The opposite is true for electron conduction

20.09.2016

 \rightarrow An energy-dependent transmission leads to asymmetric heating.

Benzenediisonitrile (BDNC) single-molecule junctions: Comparison between theory & experiment

CN-anchors lead to electron conduction

20.09.2016

 \rightarrow Power dissipation higher for negative bias

W. Lee et al., Nature 498, 209 (2013)

Benzenediamine (BDA) single-molecule junctions: Comparison between theory and experiment

NH₂-anchors lead to hole conduction

20.09.2016

 \rightarrow Power dissipation higher for positive bias

W. Lee et al., Nature 498, 209 (2013)

Green's function formalism

- What is a Green's function?
- Green's functions in quantum physics
 - Equilibrium Green's functions
 - Nonequilibrium Green's functions

Molecular electronics

Theoretical framework

Electrical properties

- Structure-conductance relationships
- Inelastic effects due to vibrations

Beyond electric conductance

- Thermoelectric properties
- Heat dissipation

Summary & outlook

Summary – Electron and phonon transport

Electrical current

$$I = \frac{1}{h} \int dE 2e\tau(E) \left[f_L(E) - f_R(E) \right]$$

Heat current from electrons

$$I_Q^{el} = \frac{1}{h} \int dE 2(E - \mu)\tau(E) \left[f_L(E) - f_R(E) \right]$$

Fermi functions

$$I_Q^{el} = \frac{1}{h} \int dE 2(E - \mu)\tau(E) \left[f_L(E) - f_R(E) \right]$$

Heat current from phonons

$$I_Q^{ph} = \frac{1}{h} \int dE E \tau_{ph}(E) \left[n_L(E) - n_R(E) \right]$$
 Bose functions

Electrical conductance

$$G = \frac{2e^2}{h} \int dE \tau(E) \left(-\frac{\partial f}{\partial E} \right)$$

20.09.2016

Thermal conductance

$$\kappa_{ph} = \frac{\pi^2 k_B^2 T}{3\hbar} \int dE \tau_{ph}(E) \left[\frac{3}{\pi^2} \left(\frac{E}{k_B T} \right)^2 \left(-\frac{\partial n}{\partial E} \right) \right]$$

Observation of quantized conductance in neutral fermionic matter

S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, and T. Esslinger, Nature 517, 64 (2015)

$$I = \frac{1}{h} \int dE \tau(E) \left[f_L(E) - f_R(E) \right]$$

55

<u>Thanks to ...</u>

... my group, ...

Postdocs S. G. Bahoosh D. Li

Master students F. Hellbach L. Martin

- PhD students A. Irmler J. C. Klöckner S. Lamowski M. Ring W. Schosser M. Skripnik D. Yadav
- ... my collaborators, ...

Theory

J. C. Čuevas (UA Madrid) M. Bürkle & Y. Asai (AIST, Tsukuba)

... various funding agencies

20.09.2016

DFG Collaborative Research Center 767 Controlled Nanosystems

Experiment P. Reddy (U Michigan) E. Scheer (U Konstanz) W. Wulfhekel (KIT, Karlsruhe) M. Major (U Basel)

Carl-Zeiss Foundation

Ministry of Science, Research and the Arts

Summary

Structure-conductance relationship

Conjugation has strong impact on molecular conductance

Inelastic electron tunneling spectra

reveal orientation of tripodal platform on metal surface

Thermopower of single-molecule junctions and atomic contacts

can be understood based on electronic structure

Phonon thermal conductance of single-molecule junctions

for alkanes rather length-independent and ballistic

Figure of merit of molecular contacts

needs phonon thermal contribution for realistic estimate

Heat dissipation in atomic-scale junctions

connected to electronic structure and thermoelectric properties

Outlook

Electronic structure method development (DFT & quasiparticle methods in TURBOMOLE), e-ph and e-e interactions, spin-dependent electron transport, phonon transport (anharmonic effects), nanoscale thermoelectrics, ...

20.09.2016

57