Time-dependent semiclassical simulation of (dissipative) quantum dynamics

Frank Grossmann

Institute for Theoretical Physics

TU Dresden

Semiclassical initial value representations (SC-IVR)

- Thawed Gaussian Wavepacket Dynamics: TGWD
- Frozen Gaussians: multiple trajectories for N DOF
- 2 Semiclassical hybrid dynamics (SCHD)
 - Combination of FGWD and TGWD
 - Interference Quenching in the Caldeira-Leggett (CL) model

- Hubbard-Stratonovich Uncompleting of the Square
- Feynman-Vernon influence functional for CL model
- Realization of stochastic semiclassical propagation
- Anharmonic Brownian Motion
- Dissipative tunneling

1

Semiclassical initial value representations (SC-IVR)

- Thawed Gaussian Wavepacket Dynamics: TGWD
- Frozen Gaussians: multiple trajectories for N DOF
- 2 Semiclassical hybrid dynamics (SCHD)
 - Combination of FGWD and TGWD
 - Interference Quenching in the Caldeira-Leggett (CL) model

- Hubbard-Stratonovich Uncompleting of the Square
- Feynman-Vernon influence functional for CL model
- Realization of stochastic semiclassical propagation
- Anharmonic Brownian Motion
- Dissipative tunneling

Semiclassical initial value representations (SC-IVR)

- Thawed Gaussian Wavepacket Dynamics: TGWD
- Frozen Gaussians: multiple trajectories for N DOF
- 2 Semiclassical hybrid dynamics (SCHD)
 - Combination of FGWD and TGWD
 - Interference Quenching in the Caldeira-Leggett (CL) model

- Hubbard-Stratonovich Uncompleting of the Square
- Feynman-Vernon influence functional for CL model
- Realization of stochastic semiclassical propagation
- Anharmonic Brownian Motion
- Dissipative tunneling

Semiclassical Initial Value Representations (SC-IVR)

Heller's Thawed Gaussian Wavepacket Dynamics (TGWD)

$$\Psi(x,t) = \left(\frac{\gamma_0}{\pi}\right)^{1/4} \exp\left\{-\frac{\gamma_t}{2}(x-q_t)^2 + \frac{i}{\hbar}p_t(x-q_t) + \frac{i}{\hbar}\delta_t\right\}$$

 $\gamma_0, p_t, q_t \in \mathbf{R}, \qquad \gamma_t, \delta_t \in \mathbf{C}$

Ansatz for the solution of the time-dependent Schrödinger equation

$$i\hbar\dot{\Psi}(x,t) = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x,t)\right]\Psi(x,t)$$

E. J. Heller, J. Chem. Phys. 62, 1544 (1975)

second order Taylor expansion of potential around q_t leads to

$$\dot{q}_t = rac{p_t}{m}$$
 $\dot{p}_t = -V'(q_t, t)$

Hamilton's equations with initial conditions $(q_t, p_t) = (q_\alpha, p_\alpha)$

$$-i\hbar\dot{\gamma_t} = -\frac{\hbar^2}{m}{\gamma_t}^2 + V''(\mathbf{q_t}, t)$$

time dependent width parameter γ_t with IC $\gamma_{t=0} = \gamma_0$

$$\dot{\delta_t} = rac{p_t^2}{2m} - V(q_t, t) - rac{\hbar^2}{2m}\gamma_t$$

Thawed GWD: Phase- and position space

single trajectory initial value method

E. J. Heller, J. Chem. Phys. 62, 1544 (1975)

A simple example: Morse oscillator

Multiple trajectory method: Frozen Gaussians for N DOF

$$\Psi(\mathbf{x},t) = \int \mathrm{d}^{N} \mathbf{x}' \mathcal{K}(\mathbf{x},t;\mathbf{x}',0) \Psi(\mathbf{x}',0)$$

Initial value Herman-Kluk propagator

$$\mathcal{K}(\mathbf{x},t;\mathbf{x}',0) \approx \int \frac{\mathrm{d}^{N} \mathbf{p}' \mathrm{d}^{N} \mathbf{q}'}{(2\pi\hbar)^{N}} \langle \mathbf{x} | g_{\gamma}(\mathbf{p}_{t},\mathbf{q}_{t}) \rangle \mathcal{R} e^{i S(\mathbf{p}',\mathbf{q}',t)/\hbar} \langle g_{\gamma}(\mathbf{p}',\mathbf{q}') | \mathbf{x}' \rangle$$

$$\mathcal{R}(\mathbf{p}',\mathbf{q}',t) = \sqrt{\det rac{1}{2} \left(\mathbf{m}_{pp} + \mathbf{m}_{qq} - oldsymbol{\gamma} i \hbar \mathbf{m}_{qp} - rac{oldsymbol{\gamma}^{-1}}{i \hbar} \mathbf{m}_{pq}
ight)} = \sqrt{|\mathbf{h}|}$$

- $\bullet ~|g_{\boldsymbol{\gamma}}\rangle$ are Gaussians with fixed ("frozen") width parameter matrix
- Hamilton's principal function $S(\mathbf{p}', \mathbf{q}', t) = \int_0^t Ldt'$
- initial value solutions of Hamilton's equations $\mathbf{p}_t(\mathbf{p}',\mathbf{q}'), \mathbf{q}_t(\mathbf{p}',\mathbf{q}')$

Heller ('81), Herman and Kluk ('84), Kay ('94), F.G. and Xavier ('98)

• $\mathbf{m}_{pp}, \mathbf{m}_{qq}, \ldots$ are elements of the stability (monodromy) matrix **M**

$$\mathsf{M} = \begin{pmatrix} \mathsf{m}_{\rho\rho} & \mathsf{m}_{\rhoq} \\ \mathsf{m}_{q\rho} & \mathsf{m}_{qq} \end{pmatrix} = \begin{pmatrix} \partial \mathsf{p}_t / \partial \mathsf{p}' & \partial \mathsf{p}_t / \partial \mathsf{q}' \\ \partial \mathsf{q}_t / \partial \mathsf{p}' & \partial \mathsf{q}_t / \partial \mathsf{q}' \end{pmatrix}$$

• M fulfills linear differential equation

$$\frac{d}{dt}\mathbf{M} = \left(\begin{array}{cc} 0 & -H_{qq} \\ H_{pp} & 0 \end{array}\right)\mathbf{M}$$

• H_{qq}, H_{pp} : Hessian

- purely classical input!
- symplectic integration routines (leap frog) \Rightarrow parallelization

Frozen GWD: Phase- and position space

multitrajectory initial value method

Simple example revisited

HK-FGA

- Time-dependent initial value method for arbitrary dynamics
- no storage problems due to locality of classical mechanics
- Initial Gaussian $\Rightarrow |\langle g_{\gamma}|\Psi(0)
 angle|$ Monte Carlo weight
- SPA \Rightarrow Van Vleck-Gutzwiller propagator (boundary value problem)

$$\mathcal{K}(\mathbf{x}, t; \mathbf{x}', 0) \sim \sum_{j} \left| \frac{1}{\det \mathbf{m}_{qp}} \right|^{1/2} \exp\{iS_{j}(\mathbf{x}, \mathbf{x}', t)/\hbar - i\pi\nu_{j}/2\}$$

- good long-time accuracy ⇒ Harabati et al JCP (2004)
- no problems at caustics, HK-FGA is uniform $\Rightarrow_{Kay \ ARPC \ (2005)}$
- HK-FGA is unitary (in SPA) \Rightarrow Herman JCP (1986)
- Approximation to CCS \Rightarrow Miller JPCB (2002), Shalashilin and Child CP (2004)
- iterative improvement is possible \Rightarrow Zhang & Pollak PRL (2003), Hochman & Kay JPA (2008)
- "on the fly" determination of forces is possible \Rightarrow Ceotto et al. PCCP (2009)
- LSCIVR: classical Wigner dynamics (or CTMC) \Rightarrow Sun, Wang, Miller JCP (1998)

Some applications

- "understanding" of quantum effects \Rightarrow van de Sand & Rost, PRL (1999)
- (laser) driven systems ⇒Zagoya et al, PRA Rapid (2012),...
- non-adiabatic dynamics ⇒ Meyer & Miller, JCP (1981), Stock & Thoss, PRL (1997) (MMST)
- hybrid method ⇒ Sun & Miller, JCP (1997), Ovchinnikov & Apkarian, JCP (1998), FG, JCP (2006)
- environment-induced qc transition ⇒ Wang et al., JCP ('01), Goletz & FG, JCP ('09),....
- dissipative relaxation dynamics ⇒ W. Koch et al., PRL (2008)
- scattering dynamics ⇒ Miller, JCP (1970), FG, CPL (1996), Garashchuk, FG & Tannor, JCS (1997),...
- electrons with/w/o magnetic fields \Rightarrow Harabati & Kay, JCP (2007), FG & Kramer, JPB (2011)
- discrete breathers (FPUT) ⇒ Igumenshchev et al., Mol. Phys (2012), Zagoya et al., JPA (2014)
- IR spectroscopy ⇒Noid et al JCP (2003), Buchholz et al (2016)
- interacting Bose particles ⇒ Simon and Strunz (2014), Ray et al (2016)

Semiclassical initial value representations (SC-IVR)

- Thawed Gaussian Wavepacket Dynamics: TGWD
- Frozen Gaussians: multiple trajectories for N DOF
- 2 Semiclassical hybrid dynamics (SCHD)
 - Combination of FGWD and TGWD
 - Interference Quenching in the Caldeira-Leggett (CL) model

- Hubbard-Stratonovich Uncompleting of the Square
- Feynman-Vernon influence functional for CL model
- Realization of stochastic semiclassical propagation
- Anharmonic Brownian Motion
- Dissipative tunneling

Semiclassical Hybrid Dynamics: SCHD

problem: exponential scaling of numerical effort in grid based qm $\sim 10^N$ possible solution: Frozen Gaussian Wavepacket Dynamics

$$\Psi_{lpha}(\mathbf{x},t) = \int \mathrm{d}^{N} x' \mathcal{K}^{\mathrm{FGA}}(\mathbf{x},t;\mathbf{x}',0) \langle \mathbf{x}' | \Psi_{lpha}(0)
angle$$

$$\Psi_{\alpha}(\mathbf{x},t) = \int \frac{\mathrm{d}^{N} \boldsymbol{p}' \mathrm{d}^{N} \boldsymbol{q}'}{(2\pi\hbar)^{N}} \langle \mathbf{x} | \boldsymbol{g}(\mathbf{p}_{t},\mathbf{q}_{t}) \rangle Re^{\frac{i}{\hbar} S(\mathbf{p}',\mathbf{q}',t)} \langle \boldsymbol{g}(\mathbf{p}',\mathbf{q}') | \Psi_{\alpha}(0) \rangle$$

- S Monte Carlo integration over initial conditions
- © no storage problems due to locality of cm
- © linear scaling not generic M. L. Brewer, JCP 111, 6168 ('99)
- \odot expanding the exponent around $(\mathbf{p}_{\alpha}, \mathbf{q}_{\alpha}) \Rightarrow \mathsf{TGWD}$: too crude!

Semiclassical Hybrid Dynamics: SCHD

"divide and conquer"

 $\textbf{q}'=(\textbf{q}_1',\textbf{q}_2')$

q'₂ are *n* "nearly harmonic" DOFs ⇒TGWD
q'₁ are *N* − *n* "strongly anharmonic" DOFs ⇒FGWD

$$\Psi_{\alpha}(\mathbf{x},t) = \int \frac{\mathrm{d}^{N-n} p_{1}^{\prime} \mathrm{d}^{N-n} q_{1}^{\prime}}{(2\hbar)^{N} \pi^{N-n}} \sqrt{\frac{\sqrt{\det \gamma}}{\pi^{N/2} \det \mathbf{A}_{2}}} R \exp\left\{\frac{1}{4} \mathbf{b}_{2}^{\mathrm{T}} \cdot \mathbf{A}_{2}^{-1} \cdot \mathbf{b}_{2} + c_{2}\right\}$$

 A_2, b_2, c_2 contain fully coupled classical dynamics

FG, JCP 125, 014111 (2006)

Interference Quenching in the Caldeira-Leggett (CL) model

(quantum) system will behave classically if coupled to a (large) environment

W.H. Zurek, Physics Today 44, October, 36 - 44, (1991)

Caldeira-Leggett model for molecule in solution

q₁ "system": 2 phase space variables (p, q)**q**₂ "bath": 2*n* phase space variables (p_j, x_j)

$$H = \frac{p^2}{2m} + V(q) + \sum_{j=1}^n \frac{p_j^2}{2m_j} + \frac{m_j \omega_j^2}{2} \left(x_j - \frac{c_j}{m_j \omega_j^2} q \right)^2$$

- counterterm $\sim q^2$ compensates for shift of minimum/frequency
- "system": Morse oscillator for I_2, $\omega_{
 m S} pprox 200 cm^{-1}$
- "bath": T = 0, discretized (n = 20) Ohmic spectral density $J(\omega) = \eta \omega \Theta(\omega - \omega_c)$ with cutoff $\omega_c \approx 20 \text{cm}^{-1} \ll \omega_S$ H. Wang et al JCP '01
- blue shift:

$$\lambda_0^2 = \frac{\omega_{\rm S}^2}{1 + \frac{2}{\pi} \frac{\eta}{m} \int_0^{\omega_c} d\omega (\omega^2 - \lambda_0^2)^{-1}}$$

E. Pollak, PRA 33, 4244 (1986)

Interference quenching, diagonal of $\hat{ ho}_{ m S}(t) = { m Tr}_{ m B} \hat{ ho}(t)$

 $\eta_{\rm eff} = 1.0$

blue shift and transition to classicality

0 2.4

T-V/b¹b⁸d 4

 $\rho_s(q,q)/\hat{A}^{-1}$

ρ_s(q,q)/Â⁻¹

t=192 fs

C.-M. Goletz and FG, JCP 130, 244107 (2009)

2.6

q/Å

2.8

More recent SCHD developments

- mimicing an infinite bath C.-M. Goletz, W. Koch and FG, CP 375, 227 (2010)
- vibrational decoherence of molecules in clusters Buchholz et al., J. Phys. Chem. A 116, 11199 (2012)
- calculating IR response functions F.G., Phys. Scr. 91, 044004 (2016)
- combining SCHD with time averaging M. Buchholz, FG, M. Ceotto, JCP 144, 094102 (2016)

Semiclassical initial value representations (SC-IVR)

- Thawed Gaussian Wavepacket Dynamics: TGWD
- Frozen Gaussians: multiple trajectories for N DOF
- 2 Semiclassical hybrid dynamics (SCHD)
 - Combination of FGWD and TGWD
 - Interference Quenching in the Caldeira-Leggett (CL) model

- Hubbard-Stratonovich Uncompleting of the Square
- Feynman-Vernon influence functional for CL model
- Realization of stochastic semiclassical propagation
- Anharmonic Brownian Motion
- Dissipative tunneling

Hubbard-Stratonovich Uncompleting of the Square

$$\sqrt{\pi/a}\exp\{-\overset{\downarrow}{b^2}/(4a)\} = \int dy \exp\{-ay^2 + i\overset{\downarrow}{b}y\}$$

M: Stochastic averaging, $\xi(t)$ Gaussian noise

$$M[\exp\left(\frac{i}{\hbar}\int_{t_0}^t dt'\xi(t')q(t')\right)]$$

equivalent to

$$\exp\left(-\frac{1}{\hbar^2}\int_{t_0}^t dt' \int_{t_0}^{t'} dt'' q(t') M[\xi(t')\xi(t'')]q(t'')\right)$$

J. Hubbard, PRL 3, 77 (1959)

Diploar driving by noise

x

$$H(t) = H_{S} - \xi(t) q$$

additional phase

$$\mathcal{F}_{\xi}\left[q_{1},q_{2}\right] = \mathcal{M}\left[\exp\left\{\frac{i}{\hbar}\int_{t_{0}}^{t}dt'\xi\left(t'\right)\left[q_{1}\left(t'\right) - q_{2}\left(t'\right)\right]\right\}\right]$$

"forward path" q_1 , "backward path" q_2

Diploar driving by noise

additional phase

$$\mathcal{F}_{\boldsymbol{\xi}}\left[q_{1},q_{2}\right] = \mathcal{M}\left[\exp\left\{\frac{i}{\hbar}\int_{t_{0}}^{t}dt'\xi\left(t'\right)\left[q_{1}\left(t'\right)-q_{2}\left(t'\right)\right]\right\}\right]$$

"forward path" q_1 , "backward path" q_2

Diploar driving by noise

$$H(t) = H_S - \xi(t) q$$

additional phase

$$\mathcal{F}_{\xi}\left[q_{1},q_{2}\right] = \mathcal{M}\left[\exp\left\{\frac{i}{\hbar}\int_{t_{0}}^{t}dt'\xi\left(t'\right)\left[q_{1}\left(t'\right) - q_{2}\left(t'\right)\right]\right\}\right]$$

"forward path" q_1 , "backward path" q_2

Reduced Density matrix evolution

$$\begin{split} \rho(q_f, q'_f, t) &= \mathcal{M}[\rho_{\xi}(q_f, q'_f, t)] \\ &= \sum_{\text{paths}} e^{\frac{i}{\hbar}(S_{\text{S}}[q_1] - S_{\text{S}}[q_2]}) \mathcal{F}[q_1, q_2] \rho(q_i, q'_i, t_0) \end{split}$$

• "completing the square" \Rightarrow non-Markovian dynamics

$$\mathcal{F}\left[q_{1},q_{2}\right] = e^{-\frac{1}{\hbar^{2}}\int_{t_{0}}^{t}dt'\int_{t_{0}}^{t'}dt''[q_{1}(t')-q_{2}(t')]\mathcal{M}[\xi(t')\xi(t'')][q_{1}(t'')-q_{2}(t'')]}$$

• "uncompleting the square" \Rightarrow memory free dynamics + averaging

$$\mathcal{F}[q_1, q_2] = Me^{\frac{i}{\hbar}\int_{t_0}^t dt'\xi(t')[q_1(t') - q_2(t')]} = M\mathcal{F}_{\xi}[q_1]\mathcal{F}_{\xi^*}[q_2]$$

two summations: \sum_{paths} and M

.

is this only a mathematical trick?

Feynman-Vernon influence functional for CL model $x \equiv q_1(t) - q_2(t), r \equiv [q_1(t) + q_2(t)]/2$

$$\mathcal{F}[x, r] = e^{-\frac{1}{\hbar^2} \int_{t_0}^t dt' \int_{t_0}^{t'} dt'' x(t') [\operatorname{Re}L(t'-t'')x(t'')+2i\operatorname{Im}L(t'-t'')r(t'')]} e^{-\frac{i\mu}{\hbar^2} \int_{t_0}^t dt' x(t')r(t')}$$

$$L(t) = \frac{\hbar}{\pi} \int d\omega J(\omega) \left(\coth \frac{\hbar \omega \beta}{2} \cos(\omega t) - i \sin(\omega t) \right)$$

contains both fluctuation and dissipation

• $J(\omega) = \frac{\eta \omega}{(1+\omega^2/\omega_c^2)^2}$ Ohmic with algebraic cutoff • $\beta = 1/kT$ inverse bath temperature • $\mu = \frac{2}{\pi} \int_0^\infty d\omega \frac{J(\omega)}{\omega}$ due to "counter term" (preserving translational invariance in the free particle case)

R. P. Feynman and F. L. Vernon, Ann. Phys. (NY) 24, 118 (1963)

FV path integral \Leftrightarrow stochastic LvN differential equation

$$i\hbar\dot{\hat{
ho}} = [\hat{H}_{\mathrm{S}},\hat{
ho}] - \boldsymbol{\xi(t)}[\hat{q},\hat{
ho}] + \frac{\mu}{2}[\hat{q}^2,\hat{
ho}] - \frac{\hbar}{2}\nu(t)[\hat{q},\hat{
ho}]_+$$

with two (fluctuation and dissipation) *complex-valued* noise sources $z \equiv (\xi, \nu)$ with zero mean $M[\xi(t)] = M[\nu(t)] = 0$

$$M[\xi(t)\xi(t')] = \operatorname{Re} L(t-t')$$

$$M[\xi(t)\nu(t')] = (2i/\hbar)\Theta(t-t')\operatorname{Im} L(t-t')$$

$$M[\nu(t)\nu(t')] = 0$$

- single realization not norm conserving (anticommutator!)
- stochastic averaging ⇒norm conserving dynamics
- incorporate counter term as delta-correlated noise term
- noise generation via FFT

Stochastic unraveling a la Stockburger/Grabert

$$\boxed{\hat{\rho} = |\Psi_1\rangle\langle\Psi_2|} \quad \Rightarrow \quad \dot{\hat{\rho}} = |\dot{\Psi_1}\rangle\langle\Psi_2| + |\Psi_1\rangle\langle\dot{\Psi_2}|$$

$$\begin{split} i\hbar|\dot{\Psi}_1\rangle &= [\hat{H}_{\rm S} - \xi(t)\hat{q} - \frac{\mu}{2}\hat{q}^2 - \frac{\hbar}{2}\nu(t)\hat{q}]|\Psi_1\rangle \\ i\hbar|\dot{\Psi}_2\rangle &= [\hat{H}_{\rm S} - \xi^*(t)\hat{q} - \frac{\mu}{2}\hat{q}^2 + \frac{\hbar}{2}\nu^*(t)\hat{q}]|\Psi_2\rangle \end{split}$$

$$\hat{
ho}(t)=M|\Psi_1(t)
angle\langle\Psi_2(t)|$$

- Two independent complex noise "driven" Schrödinger eqns.
- Same initial conditions
- a) Herman-Kluk semiclassical propagation ⇒vibrational relaxation
 b) Bohmian Mechanics with complex action ⇒tunneling

J. Cao, Ungar and G. Voth JCP 104, 4189 (96); W. T. Strunz et al PRL 82, 1801 ('99); J. T. Stockburger and H. Grabert, PRL

88, 170407 ('02), Y. Yan et al CPL 395, 216 ('04)

Realization of stochastic semiclassical propagation

Elimination of diffusion of $Tr(\rho)$ with guiding trajectory $\bar{q}!$ \Rightarrow norm conservation of single noise realization

nested sampling

noise sampling loop

q from Schrödinger state

IVR sampling loop

propagate

W. Koch, FG, J. T. Stockburger, J. Ankerhold, CP 370, 34 (2010)

Realization of stochastic semiclassical propagation

Elimination of diffusion of $Tr(\rho)$ with guiding trajectory \bar{q} ! \Rightarrow norm conservation of single noise realization

W. Koch, FG, J. T. Stockburger, J. Ankerhold, CP 370, 34 (2010)

Improvement of Numerics: Brownian harmonic oscillator

nested sampling $\mathbf{2}$ $\langle x \rangle^2$ 1 $\langle x^2 \rangle$ 0 -1 1 $\langle x \rangle$ 0 -1 $\mathbf{2}$ 8 6 10 0 4 t

Improvement of Numerics: Brownian harmonic oscillator

unified sampling without guide trajectory

Improvement of Numerics: Brownian harmonic oscillator

Anharmonic Brownian Motion: Thermalization

$$V = D(1 - \exp\{-\lambda \tilde{x}\})^2 \quad D = 30, \lambda = 0.08$$

$$\eta = 0.1, T = 0.1, 1, 2$$

W. Koch, FG, J. T. Stockburger, J. Ankerhold, PRL 100, 230402 (2008)

Trapping by Thermalization

$$V = D(1 - \exp\{-\lambda \tilde{x}\})^2 \quad D = 1, \lambda = 0.2, \langle \tilde{x} \rangle(0) = -4$$

Dissipative tunneling through a parabolic potential in the Lindblad theory of open quantum systems

Isar, A., Sandulescu, A., and Scheid, W., The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 12:3-10 (2000)

. . . Caldeira and Leggett [1,2] concluded that dissipation tends to suppress quantum tunneling. Using a different method, Schmid obtained similar results in reference [13]. Widom and Clark [14] considered a parabolic potential barrier and found that dissipation enhances tunneling. Bruinsma and Bak [15] also considered tunneling through a barrier and found that at zero temperature the tunneling rate can be either increased or decreased by dissipation. Leggett [16] considered tunneling in the presence of an arbitrary dissipation mechanism and found that, normally, dissipation impedes tunneling, but he also found an anomalous case in which dissipation assists the tunneling process. Razavy [17] considered tunneling in a symmetric double-well potential and concluded that dissipation can inhibit or suppress tunneling. . . .

Dissipative tunneling through an Eckart barrier

$$V = D/\cosh^{2}(\lambda x) D = 40, \lambda = 4.32$$

$$\eta = 0.2 T = 400 \langle x_{0} \rangle = -0.7, -1.7, -2.7, -3.7$$

W. Koch, FG, D. J. Tannor, PRL 105, 230 (2010)

Dissipative tunneling through an Eckart barrier

$$V = D/\cosh^{2}(\lambda x) D = 40, \lambda = 4.32$$

$$\eta = 0.2, 0.6 T = 400 \langle x_{0} \rangle = -0.7$$

W. Koch, FG, D. J. Tannor, PRL 105, 230 (2010)

Non-Markovian dissipative tunneling

Conclusions and Outlook

- Semiclassical IVR: TGWD, Herman-Kluk FGWD
- Semiclassical hybrid dynamics combines TGWD and HK
- Transition to classicality in Caldeira-Leggett model
- Non-Markovian dissipative/decoherence dynamics via driving by complex noise:
 F [q₁, q₂] = M*F*_ξ [q₁]*F*_{ξ*} [q₂]
- (An)harmonic Brownian dynamics up to thermalization
- Dissipative tunneling
- quantify non-Markovianity
- go beyond bilinear coupling
- better convergence: J. Stockburger, arXiv:1608.03438
- compare to HEOM

Thanks:

- Christoph-Marian Goletz, VW
- Werner Koch, Weizmann Institute
- Jürgen Stockburger, University of Ulm
- Joachim Ankerhold, University of Ulm
- David Tannor, Weizmann Institute

DFG: GR-1210/4-1,2

For your interest!