Tensor networks, and coherent and dissipative dynamics of AMO systems

Andrew Daley

Department of Physics and SUPA
University of Strathclyde

AMO systems for studying many-body physics

- Atoms

- Molecules
e.g., Bose-Hubbard: D. Jaksch et al. PRL '98

$$
H=-J \sum_{\langle i, j\rangle} \hat{b}_{i}^{\dagger} \hat{b}_{j}+\frac{U}{2} \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)
$$

- Microscopic understanding / control
- Extendable to many well-controlled models
- Study thermodynamics / quantum phases
- Study out of equilibrium dynamics
e.g., variable-range Ising model:
D. Porras, J. I. Cirac, PRL ‘04
$H=\sum_{k l} \frac{\bar{J}}{|k-l|^{\alpha}} \sigma_{k}^{x} \sigma_{l}^{x}+B \sum_{l} \sigma_{l}^{z}$

Experiments - cold gases:
Munich, Zurich, NIST / JQI, MIT, Harvard, Innsbruck, Hamburg, Pisa, Florence, Oxford, Cambridge, Austin, Chicago, Penn State, Kyoto, Toronto, Stony Brook, Paris, Strathclyde, Illinois, Cornell, Stanford, Berkeley, Heidelberg \qquad
Experiments - ions and molecules:
Maryland, Innsbruck, NIST, JILA,

Non-equilibrium dynamics with quantum simulators:

- Millisecond timescales - track+control in real time
- Long coherence times; isolated system
M. Greiner et al., Nature 419, 51 (2002).
S. Will et al., Nature 465, 197 (2010).
M. Cheneau et al., Nature 481, 484 (2012)
J.-S. Bernier et al., PRL 106, 200601 (2011)

Calabrese, Cardy, Essler, Olshanii, Rigol,......
Läuchli, Kollath, Heidrich-Meissner, Fazio, Montangero, Schollwöck, White,

- Intrinsic / fundamental questions
- Quench Dynamics / correlation spreading / growth of entanglement
- Thermalisation in quantum systems
- Behaviour near critical points
- Emergence of many-body states in driven/dissipative dynamics
- ...

Tensor network methods

Matrix product states

$$
\begin{aligned}
& |\psi\rangle=\sum_{i_{1}, i_{2}, \ldots, i_{L}=1}^{d} c_{i_{1} i_{2} \ldots i_{L}}\left|i_{1}\right\rangle_{[1]} \otimes\left|i_{2}\right\rangle_{[2]} \otimes \cdots \otimes \left\lvert\, \begin{array}{l}
6 \text { particles, } 6 \text { sites: } \\
50 \text { particles, } 50 \text { sites: }
\end{array} \quad 5 \times 10^{28}\right. \text { states }
\end{aligned}
$$

Vector:

Matrix-Vector product - -
Full lattice quantum state (M sites)
Matrix product state

- State coefficients expressed as a product of dMD^{2} coefficients
G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)
G. Vidal, Phys. Rev. Lett. 93, 040502 (2004)
A. J. Daley et al., J. Stat. Mech. P04005 (2004)
S. R. White and A. E. Feiguin, PRL 93, 076401 (2004)
F. Verstraete et al., Adv. in Phys. 57, 143 (2008).

Ground state calculations

- Density Matrix Renormalisation Group
- Direct tensor optimisation
- Imaginary time evolution

Time evolution

- Time evolution via operations on states, e.g., via Trotter decomposition (Time Evolving Block Decimation algorithm / adaptive time-dependent DMRG)
G. Vidal, Phys. Rev. Lett. 93, 040502 (2004)
A. J. Daley et al., J. Stat. Mech. P04005 (2004)
S. R. White and A. E. Feiguin, PRL 93, 076401 (2004)

$$
\begin{aligned}
& H=\sum_{i} H_{i, i+1} \\
& \mathrm{e}^{-i H \delta t}=\prod_{i} \mathrm{e}^{-i H_{i, i+1} \delta t}+O\left(\delta t^{2}\right)
\end{aligned}
$$

- Also time-dependent variational principle
- Quench dynamics lead to entanglement growth, and limit computations
- Short-time dynamics after a quench, and long time near-adiabatic dynamics computable

Spatial Entanglement in Many-body states

$$
|\psi\rangle=\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle
$$

$\rho_{A}=\operatorname{tr}_{B}(|\psi\rangle\langle\psi|)$

Von Neumann entropy

$$
S_{\mathrm{vN}}\left(\rho_{A}\right)=-\operatorname{tr}_{\mathrm{A}}\left[\rho_{A}\left(\log _{2} \rho_{A}\right)\right]
$$

$$
|\psi\rangle \neq\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle
$$

Rényi entropy

$S_{n}\left(\rho_{A}\right)=\frac{1}{1-n} \log \operatorname{tr}\left\{\rho_{A}^{n}\right\}$
L. Amico, R. Fazio, A. Osterloh and V. Vedral, Rev. Mod. Phys. 80, 517 (2008).
J. Eisert, M. Cramer and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010).

Entanglement and the matrix product state ansatz

- Matrix product states can represent a state exactly if entanglement is small (necessary condition: von Neumann; sufficient condition: Rényi, order < I)

F. Verstraete and J.I. Cirac Phys. Rev. B 73, 094423 (2006)
N. Schuch, M. M. Wolf, K. G. H. Vollbrecht, and J. I. Cirac, New J. Phys. 10, 033032 (2008)
N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 100, 030504 (2008)

- ID systems with local Hamiltonians have low ground state entanglement (S bounded in M for gapped systems; grows as $\log (M)$ for critical systems)

Entanglement and quench dynamics (local ID system)

- Quench experiment for bosons

- Propagation of quasi-particle pairs, velocity limited by Lieb-Robinson bound
E. H. Lieb and D. W. Robinson, Comm. Math. Phys. 28, 251 (1972).
P. Calabrese and J. Cardy, J. Stat. Mech, P04010 (2005)

- Linear von Neumann entropy increase

$$
\max \left(S_{\mathrm{vN}}\right)=\log _{2}(D)
$$

- For exact simulation: $D \propto \exp [c t]$
- In practice:

D	Runtime:
512	1 day
1024	8 days
2048	2 months

Control over accuracy

- Convergence in the maximum allowed truncation error is used to control validity of the calculation
e.g., experiment vs. t-DMRG in a quantum quench
S. Trotzky et al., Nature Physics 8, 325 (2012)

Entanglement growth leads to breakdown of simulation via tensor networks

How can we measure entanglement in an experiment?

- Parallel measurements:
- Purity of the whole state
- Entanglement for subsystems

Ingredients:

- Multiple copies prepared in low-entropy initial states in 1D tubes or 2D layers
- Coupling between copies
- Local occupation number measurements (quantum gas microscope)

Measure: Purity/consistency of whole state; Renyi entropy of order n using n copies.

$$
S_{n}\left(\rho_{A}\right)=\frac{1}{1-n} \log \operatorname{tr}\left\{\rho_{A}^{n}\right\} \leq S_{V N}\left(\rho_{A}\right)
$$

Bosons: A. J. Daley, H. Pichler, J. Schachenmayer, P. Zoller, Phys. Rev. Lett. 109, 020505 (2012)
Fermions: H. Pichler, L. Bonnes, A. J. Daley, A. M. Läuchli, and P. Zoller, New J. Phys. 15063003 (2013)

Experiment: Measurement of entanglement for itinerant bosons in optical lattices

R. Islam et al., arXiv: 1509.01160

More general tensor networks:

Application to long-range interactions

Tuneable-range interactions in ion traps:

State-dependent-force, spin-flip process mediated by coupling many motional modes

- Range determined by detuning (off-resonant contributions from different modes)
- Additional control varying axial confinement
- Long strings, hot axial modes
A. Sørensen and K. MøImer, PRA 62, 0223II (2000)
D. Porras, J. I. Cirac, Phys. Rev. Lett. 92, 20790I (2004)
R. Islam et al, Science, 340, 583 (2013)

JW Britton et al. Nature 484, 489 (2012)
P. Jurcevic et al., Nature 5II, 202 (2014)

Quench in an ion trap experiment

- Initial polarised state, then interactions switched on

$$
0 \leq \alpha \leq 3
$$

J. Schachenmayer et al., Phys. Rev. X 3, 031015 (2013) A. Buyskikh et al., Phys. Rev. A 93, 053620 (2016)

Entanglement growth across bipartite splitting $B \xlongequal[\uparrow]{\bar{J}}$

$$
\begin{aligned}
& \alpha \gtrsim 1
\end{aligned}
$$

> Logarithmic?
> Algebraic?

Open quantum systems

A. J. Daley, Advances in Physics 63, 77 (2014)

Dissipative dynamics / open many-body quantum systems:

Analogies to quantum optics in many-body systems:

- Quantum Optics description - microscopic models, well-controlled approximations (master equation, quantum stochastic Schrödinger equations)
- Quantum Optics tools (laser cooling, optical pumping / dissipative preparation)

REVIEWS: A. J. Daley, Advances in Physics 63, 77 (2014) M. Müller, S. Diehl, G. Pupillo, and P. Zoller, Adv. At. Mol. Opt. Phys 61, 1 (2012)

Dissipative dynamics / open many-body quantum systems:

$\Gamma, \Omega_{0}, \Delta \ll \omega_{\mathrm{opt}}$

$|e\rangle$
H. Pichler, A. J. Daley, and P. Zoller, PRA 82, 063605 (2010)
S. Sarkar, S. Langer, J. Schachenmayer, and A. J. Daley, PRA. 90, 023618 (2014)
$|g\rangle$
J. Schachenmayer, L. Pollet, M. Troyer, and A. J. Daley, PRA 89, 011601(R) (2014)

Two-body loss experiments: Rempe group (2008); Jin/Ye (2013)

Three-body loss:

A. J. Daley et al., PRL 102, 040402 (2009)
A. Kantian et al., A. J. Daley, PRL 103, 240401 (2009)

De Marco group (2014); Oberthaler group (2013); Porto/Rolston

Single atom or Dark state cooling:

A. J. Daley et al., PRA 69, 022306 (2004)
A. Griessner et al., PRL 97, 220403 (2006)

REVIEWS: A. J. Daley, Advances in Physics 63, 77 (2014)
M. Müller, S. Diehl, G. Pupillo, and P. Zoller, Adv. At. Mol. Opt. Phys 61, 1 (2012)

Spontaneous emissions in optical lattices

- Master equation (Born/Markov)
- Adiabatic elimination of excited state

For single particle version, see:
J. P. Gordon and A. Ashkin, PRA 21, 1606 (1980)
F. Gerbier and Y. Castin, PRA 82, 013615 (2010)

$$
\dot{\rho}=-i[\hat{H}, \rho]-\frac{1}{2} \frac{\Gamma}{4 \Delta^{2}} \sum_{\mu} \underbrace{\left|\Omega_{0, \mu}\right|^{2} \int d^{3} x \int d^{3} y F_{\mathbf{e}_{\mu}}(k(\mathbf{x}-\mathbf{y})) \epsilon_{\mu}(\mathbf{x}) \epsilon_{\mu}(\mathbf{y})\left[\hat{\psi}^{\dagger}(\mathbf{x}) \hat{\psi}(\mathbf{x}),\left[\hat{\psi}^{\dagger}(\mathbf{y}) \hat{\psi}(\mathbf{y}), \rho\right]\right]}_{\text {bosonic field oberator }}
$$

Many-body Hamiltonian (including optical potential)

- Localization (position measurement) on scale of wavelength

- Transfer to higher bands [measurement within site] suppressed by Lamb-Dicke factor

$$
\Gamma_{\mathrm{eff}}=\frac{\Omega_{0}^{2}}{4 \Delta^{2}} \Gamma \quad \eta=\frac{\pi a_{0}}{a}=\left(\frac{1}{4 V / E_{R}}\right)^{1 / 4}
$$

H. Pichler, A. J. Daley, P. Zoller, PRA 82, 063605 (2010)

Role of thermalisation in heating

- Total rate of energy increase

- But the system will not thermalise on experimental timescales

$$
\omega \gg U, J
$$

- Within a band, thermalises sometimes

- Need to consider full time-dependent dynamics

Time-dependent dynamics in 1D: t-DMRG + Quantum Trajectories

$$
\dot{\rho}=-i[H, \rho]-\frac{\Gamma}{2} \sum_{m}\left[c_{m}^{\dagger} c_{m} \rho+\rho c_{m}^{\dagger} c_{m}-2 c_{m} \rho c_{m}^{\dagger}\right]
$$

- Quantum trajectories (or the Monte-Carlo Wavefunction method) was developed to compute dynamics described by master equations via propagation of pure states
H. Carmichael, An Open Systems Approach to Quantum Optics
K. Mølmer, J. Dalibard, Y. Castin, JOSA B 10, 524 (1993)
R. Dum et al., PRA 46, 4382 (1992)
- Simple (first-order) version [arbitrary-order possible]:

Evolve stochastic trajectories (states) with two possible operations per timestep:

- Evolution under

$$
\begin{aligned}
& \text { lution under } \\
& \qquad \begin{aligned}
\delta p & =\delta t\langle\phi(t)| i\left(H_{\mathrm{eff}}-H_{\mathrm{eff}}^{\dagger}\right)|\phi(t)\rangle \\
H_{\mathrm{eff}}=H-i \frac{\Gamma}{2} \sum_{m} c_{m}^{\dagger} c_{m} &
\end{aligned} \quad \delta t \sum_{m}\langle\phi(t)| c_{m}^{\dagger} c_{m}|\phi(t)\rangle=\sum_{m} \delta p_{m}
\end{aligned}
$$

- Quantum Jumps (after appropriate stochastic sampling of m)

$$
|\psi\rangle=\frac{c_{m}|\psi\rangle}{\| c_{m}|\psi\rangle \|}
$$

$$
\Pi_{m}=\delta p_{m} / \delta p
$$

- Expectation values by stochastic average.
- Trade-off: Smaller local Hilbert space vs. trajectory averages

Simple example of quantum trajectories averaging

- Example trajectories: heating of hard-core bosons, $U / J \rightarrow \infty$ - kinetic energy:

$$
\begin{aligned}
\dot{\rho} & =-\frac{i}{\hbar}[H, \rho]+\mathcal{L}_{1} \rho \\
\mathcal{L}_{1} \rho & =\frac{\gamma}{2} \sum_{i}\left(2 n_{i} \rho n_{i}-n_{i} n_{i} \rho-\rho n_{i} n_{i}\right)
\end{aligned}
$$

- Averaged trajectories vs exact solutions

- Statistical error and discrepancy to exact results $(1 / \sqrt{N})$

A. J. Daley, Advances in Physics 63, 77 (2014)

Decay of characteristic correlation functions

- Solve master equation in lowest band via t-DMRG + quantum trajectories
A. J. Daley, Advances in Physics 63, 77 (2014)

36 sites
36 atoms
$U / J=3, \Gamma=0.01 \mathrm{~J}$
$\mathrm{TJ}=30$

- Long-range correlations in Superfluid strongly affected, Mott Insulator relatively robust
- Decay proportional to scattering rate (worse for red detuning)
H. Pichler, A. J. Daley, P. Zoller, PRA 82, 063605 (2010)

Computational costs

- Sampling over trajectories
- Requirement of large D to represent large entanglement
- Often mixed states can have less entanglement than pure-state trajectories

Alternative: represent the density matrix directly

Matrix product state

Matrix product operator (density operator)

F. Verstraete, J.J. García-Ripoll, and J.I. Cirac, PRL 93, 207204 (2004)
M. Zwolak and G. Vidal, PRL 93, 207205 (2004)
F. Verstraete et al., Adv. Phys. 57, 143 (2008).
S. Montangero, J. Eisert et al., M.-C. Banuls, J. I. Cirac et al., M. Plenio et al.

See the talks by P. Silvi and M.-C. Bañuls

t-DMRG + trajectories

- Local Hilbert space dimension d
- MPS bond dimension doesn't represent classical correlations (trajectory average)
- Code parallelisation with perfect scaling
- With right choice of unravelling, can exhibit symmetries not present in the density operator
- Local jumps can lead to entanglement growth, entanglement can be artificially enhanced [optimise?]
- Need to average stochastic trajectories, statistical errors smaller for global quantities

Matrix Product Density Operators

- Local Hilbert space dimension d^{2}
- MPS bond dimension increases to represent classical correlations
- Code sometimes difficult to parallelise
- Often has more limited symmetries than the pure-state trajectories
- Mixed states will often have smaller actual entanglement
- Answer obtained without stochastic averages
- Questions surrounding positivity

Anton Buyskikh
Saubhik Sarkar Guanglei Xu Jorge Yago Rosaria Lena

Suzanne McEndoo
Alexandre Tacla Araceli Venegas Gomez

Samantha Hume Ella Wylie Malcolm Jardine

Johannes Schachenmayer (JILA)
Hannes Pichler (Harvard) Peter Zoller (Innsbruck)

Summary / Outlook

- Coherent and dissipative dynamics provide a new toolbox of techniques for controlling many-body systems of cold atoms
- Tensor networks offer controllable variational calculation of static properties and real-time dynamics
- We have two routes to compute dynamics in open many-body systems

- This has many applications to understanding many-body dynamics, and to directly modelling ongoing experiments

$|e\rangle$
$|g\rangle$

