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Applications to Quantum Processes

Quantum transport, PRL 116, 196803 (2016)

Light-harvesting energy transfer

PRL 110, 200402 (2013)
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Quantum heat engines (pumps) NJP 18, p 023003 (2016)

Heat transfer in Benzene Sci. Rep. 6, 28027 (2016)



Brownian Motion

Deterministic probability approach: Fokker-Planck Equation (1905)
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5 D@t =555

5 D(x,t)P(x,t)].

Ensemble averaging: A(t)= <A(x)>p,

Stochastic trajectory approach: Langevin Equation of Motion (1908)

d?x dx
L dt2 — 7] dt ' f (t) :
Fluctuation-dissipation relation: <fz (t) fj (t/>> — 2777;7j kBT5 (t — t’) .

Stochastic averaging: A(t)= <A[f(t)]>¢,



Dissipative Quantum Dynamics

Deterministic probability approach:

8/(0955?5) = —21Lp(t)

Ensemble averaging: A(t)= <A(x)>

p(t)
DMRG, HEOM, MCTDH, PIMC, QUAPI, Semi-classical, etc.

Stochastic trajectory approach:

Q) — ili o+ F6 V)
Fluctuation-dissipation relation: (f () f ")) = C(t)

Stochastic averaging: A(t)= <A[f(t)]>g,

Quantum state diffusion, Stochastic Liouville equation, Stochastic path integral, etc



A Novel Method for Simulating Quantum Dissipative Systems
J. Cao, L. W. Ungar, and G. A. Voth, J. Chem. Phys. 104, 4189 (1996)

1 Monte Carlo sampling of the Gaussian functional
X-
. eXp(_Sbath [Xc(t)])
X, B 2. Propagation of the system wave-function
oY
X, l¥=[HS+V(xc(t)>Q)]l/J
3. Average of the bath configurations
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Stochastic Wave-function for Gaussian Bath

Replace bath with stochastic force if V =f(x) A(q)
d
i— Y~ () = [Hs + f (DAY~ (D)
d
i——= Y7 () = [Hs + fT(OA]IYT ()

stochastic RDM p(t) = [T ()Y~ (B)]

dps(t) _

T —i[Hs, ps] — iAps (O f () +ips ®)Af (L)

Stockburger and Grabert, Phys. Rev. Lett., 88:170407, 2002

Goal: Generalize this equation to any bath models
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GHE

Generalized hierarchy equation

Bosonic bath

Fermionic bath

Spin bath (dual Fermion)
non-Gaussian bath

pt) = [YT ()Y~ (o)
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Stochastic path integrals

1. Imaginary time — thermal distribution
2. Absorption / Emission spectra
3. Multi-chromophor Forster rate

Hybrid

Deterministic + Stochastic

1. stochastic-HEOM (JCP139,13406,

2013)
2. Transfer tensor method
(PRL112, p11040, 2014)




System + Bath Quantum Dynamics
H — HS + Hb . n AB

p(0) = ps(0) ® p,°

dp(r)

b ~i|H,p@)]

Three classes of bath models :

1
Hb = Z wka;ﬁ A Hb = zk O)RC]-: Ck Hb = Z Eo-lg
k k

[ak, aj+] — 5k,j {Ck; C]:'-} = 5k,j [O'Iic, O',:(y] — lO',f

Bosons Fermions Spins



Stochastically Decoupled Quantum Dynamics

dp,(t)=—idt|H ,p,(1)]|- %Aﬁs (t)dW + ﬁ p.(H)AdV

dp(t ,
200 1
dp,(t)=—idt [Hb P, (t)]+ ﬁdW*Bﬁb 1)+ %dv*ﬁb (t)B
White Noise Statistics deW* — dVdV* =9 dt related work by J Shao

reduced density matrix

p,(t)=p, ()T, p,(t) AB

encodes the bath-induced dissipations.



Bath-induced Dissipations and Multi-time Correlation Functions

N , N | |
dpb(t)z—zdt[Hb,pb(t)]+$dW pr(t)+$dv p,(t)B

Take trace and obtain
formal solution

Trbﬁb (l’) = eXp(—%J[(dWS n d‘/s )B(S)) AnalOgOUS to the

0/v . influence functional.
forward / backward path The fluctuation and dissipation
In terms of noise realization kernels as well as higher order
responses encoded in bath’s
Bath-induced fluctuating field multi-time correlation functions.

B(t)="Tr, (B, (1))



Bath-induced Dissipations and Multi-time Correlation Functions

IOS (t) — ﬁs (t)Trb 1519 (t) n Bath-induced fluctuations

Tt p, (t) = exp(—%ﬂ dw. + dVS)B(s))

| y 1 et .
B =7 | aw, P (1:5)+ 7 | avio,, .9+

3
+(%) J;IJ: Sde dW dW (D41(t S1585583) + ...+

3
+ (%) J; J:l OSZ dV: dV:; dV;;(I)Al,S (2,8,,8,,8;)+

Analogous to the
influence functional.

Only first two terms exist for
Gaussian bath models.

Multi-time correlation
functions convoluted with
the noise histories.



Stochastic Liouville Equation (SLE)

A simple outline to obtain SLE, ps(t) Try pp(t) —  ps(t)

d ps(t)
dt

= —i[Hs, ps] F iAps (O F () + ips (O)Af~(¢)

All distinguishing properties of various bath models are now hidden under the details of the noise:
Complex-valued vs Grassmann-valued , Gaussian vs non-Gaussian etc.

Two-Time Statistics

frAOf () = Coyp (" = 1)
fr@Of =) = C-(t' —t)
fr@Of (") = C_(t' =t

Bath’s two-time correlation function (boson case)

C,i_(t) = ag(t) = fda)](a)) (cothﬁTwcos(wt) — isin(wt))

Stockburger and Grabert, Phys. Rev. Lett., 88:170407, 2002




Stochastic Liouville Equation (SLE)

A simple outline to obtain SLE, ps(t) Try pp(t) —  ps(t)

d ps(t)

dt

i[Hs, ps] F iAps (O)fF () + ips (DAf (1)

All distinguishing properties of various bath models are now hidden under the details of the noise:
Complex-valued vs Grassmann-valued , Gaussian vs non-Gaussian etc.

Two-Time Statistics

f+(t)f+(t,) — C++(t, o t) C++(t, N t) Boson

Boson (complex-valued) vs Fermion (Grassmann-valued)

ap([t’ —t])

f+(t)f_(t,) — C+_(t’ — t) N Ot —tHap(t—t")—0(t" — t)aF(t’ —t ) Fermion

f_ (t)f_ (t/) = C__ (tl . t) correlation functions with Bose-Einstein or Fermi-Dirac statistics.

Hsieh and Cao (to be submitted)



Stochastic Liouville Equation (SLE)

A simple outline to obtain SLE, Ps(t) Trp pp(t) —  ps(t)

P iy 5] T AR (OF(O) + i (DAF (0

All distinguishing properties of various bath models are now hidden under the details of the noise:
Complex-valued vs Grassmann-valued , Gaussian vs non-Gaussian etc.

Four-Time Statistics etc.

[HCYRCYR TR
FFOFFE) = Coy(t' — 1) o (b =ty be = £, — 1)

frf~(") = C-(t' - t)
fFOf~@)=Cc_t -1

Two-Time Statistics

f=@)f () f ~(t3)f~(ty)

C—_(tz =ty t3 =t ty — ty)



Deterministic Solutions for SLE

1. Formal Averaging over Stochastic Variables

550 — _i[Hy, 55 (0] F ip; OF O + ips (OF (O A

= —i[H,, ps (O] F iAps ) B(t) * ips (OB(t) A

2. Define Auxiliary Density Matrices (ADM), m =0 is RDM

pl™ = 5 B™ (1)

3. Deterministic Equations of Motions

di[psB™| = dy|ps| B™ + psdi B™ + dypydi B™.



From Stochastic to Hierarchical Equations

1. A suitable basis set: orthonormal function basis, exponential functions

=Y z,0 ], dsw(s)6,)9,(5)=3,

2. Decomposition of stochastic field B(t)

= 1 g
50 =Y e, w0=(55) [ e,

3. Correspondingly a refined definition of auxiliary density matrices (ADM)

n,=0,1,2,3.. for bosons

— ~ n n
pn(t) — ps(t)all(t) aKK (t) n;=0/1 for fermions

Hsieh and Cao (to be submitted)



Hierarchy Equation for Boson Bath

dpn

= —1 [ﬁs,ﬁn] +ZZ X7 (Aﬁn—l-lj — [_)n—l-le)
J
+ Z $;(0) (Apn_1, + pn_1,A)

J
3.3

exponential decay: HEOM (Tanimura)
extended-HEOM (Wu)
guantum phase transition in sub-ohmic spin-boson model (Ankerhold)




Hierarchy Equation for Fermions

(l/jn n
At = —1 [H pn] + ) Z \] A/)n+1 + /)n+1 A) ( )l IJ(l o n])

+1 Z C)J(O) (A/jn—lj + /311—1_7- *4) (_l)lnlj'n'j
J

negative sign due to anti-
commutativity

E - In|;+|n| ., o Pauli exclusion and
vy

finite-tiers for Fermions
correlation functions beyond exponential forms
application: dual fermion representation of spins

Related work on Fermion bath: Strunz, Yan, etc.




Spin-Based Quantum Devices

Nitrogen-Vacancy Spins in Diamond Spin-Based Qubit in Gated QM Dots

Bath spins
NV spi —0°
Spin T/a 0
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Applications:

Coish et. al.

guantum computing and

room-temperature ultra- S £ Spin Noi
precision magnetic sensors. ource ot >pin NOISEs.

Source of Spin Noises: Hyperfine coupling and 10*~10°
1/r3 dipolar coupling to 101~10% impurity spins. nuclear spins



Casting Spin Bath as Fermionic Bath
Dual Fermion Representation

o = ((,: _Cx)(d: +d1—) o = —i(c: +ck)(d; +dk) ;= —Z(C:Ck —%)

C-fermion: Jordan-Wigner Transformation. Represent spin algebra with fermions

D-fermion: Correct the minus sign of fermion representations for multiple spins.

1 o



The Effective Two-Bath Model

w
H = H; +27ka,f +U§nga,f
K K

Dual-Fermion Mapping

1
H=H+ ) o (cto—3)+i0§ ) gelci +a)(di + di)
k k

General Strategy:

1. Stochastically decouple C-Fermions and derive SLE for D-
Fermions and Central spins.

2. Trace out the D-Fermions in SLE.
3. Formally average out the C-Fermions to obtain the spin equation.



Coish et. al.

Spin Bath: Fermionic Mapping
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Condensed Phased Dynamics:
Spin Bath as an Anharmonic Environment

anharmonic bath model

W

1
H = %GZ +AC, +Z(5P,f + D, (1—e %" )2)

k>0

+6Z2gka

k>0

Energy

Effective spin bath when only 2
bound states in each bath
oscillator.

spin bath model

Q ~
H = %az +AoC, +27"a,§ +0,) §.0:

k>0 k>0



Generalized Hierarchy Equation (GHE) : Anharmonic Bath

atp[Al][AQ][Ag]... — [Hs;p[Al][AQ][AS]M] _ Z X;z—l—l,m [Ap[A"+(7n’J)]]
n,m.j
—3 Z i, (0)Ap < [An_1+(m’ 31)][An—(m.g)]- Z ¢, (0 [An 1+(m g1)l[An—(mg)]- 4
n,m,j n,m,j
a;%a:.‘l
T z Mii'P [ J J] (3-layers of hierarchy)
n,m.jj’

1. [A,] Block matrix accounts for the (N+1)-th cumulant expansion of the influence
functional. In case of Gaussian bath, only [A;] contains non-zero elements.

2. N-th order cumulant contributions only emerge at (N-1)-th tier with closed system
dynamics at zero-th tier.

3. When dealing with the Gaussian bath, the present approach reduces to the
extended Hierarchical Equations of motions.




Spin Bath: 4-th Order Corrections

H = 5 Y0 T Z 5 Yk T nggk " — ¥ider
k>0 k>0 ol 2" order
(H s ) () = (H s ) (@it <
['(t) = Z In [ Ag;‘ (1 — cos th)] 20 y/
k k f/'

O = we /1 + (4g2 /w?). i T



Summary

Paper |

The family of hierarchy equations provides a numerically exact description for generic
guantum environments. Specifically, we derived hierarchy equations for Grassmann noise
and non-Gaussian noise from the stochastic Liouville Equation.

Paper I

Spin bath is treated in two different approaches. Physical spins (such as nuclear spins)
should be treated in the dual-fermion approach and go deep down the hierarchical tiers.
Spin bath (as anharmonic condensed environment) is more conveniently handled by
generalized hierarchy equation (GHE) approach, which goes beyond the linear response and
the Gaussian assumption.
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GHE

Generalized hierarchy equation

Bosonic bath

Fermionic bath

Spin bath (dual Fermion)
non-Gaussian bath

p(t) = [PT ()Y~ (D)

Gumn ) B\ SV m—)
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Stochastic path integrals

1. Imaginary time — thermal distribution
2. Absorption / Emission spectra
3. Multi-chromophor Forster rate

N 7/

Hybrid

Deterministic + Stochastic

1. stochastic-HEOM (JCP139,13406, 2013)
2. Transfer tensor method
(PRL 112, p11040, 2014)




Reduced Density Matrix (RDM)

System-bath Hamiltonian: H=H,+ Hy+ Hg

canonical distribution: weak coupling to an equilibrium thermal bath

Goal: equilibrium RDM

1
p(B) = ng“be_ﬂH

1
- _/BHS
Z

(H, and H,, do not commute)

RDM is a non-canonical distribution function (i.e. not Boltzmann of the system)



Imaginary-time Path Integral

Integrating the bath:

p(xs, xs; hB) = % /D[qs]e_%(sf[qS]—q’[qs])

Feynman-Vernon influence functional:

A3 T
@[q] p— / dT / dt/q<7-)K(7‘ — T,)q<7-/> Richard Feynman
0 0
Imaginary-time correlation function: Bath spectral density:
2
dw cosh(hBw/2 — wT) J(w) = T &5 s
K(1) = =J w) =35> (w — wjy)
(7) L s (w) sinh(hBw/2) 2 PR !

The time non-local correlation is difficult to evaluate, so we use the Hubbard-
Stratonovich transformation to de-convolute the non-local influence functional

Feynman and Vernon, Ann. Phys. 24, 118, 1963



Stochastic Path Integral

o (t) C(t — ) o (1)

L% E(t1) £(t2) E(ts) &(ta) E(ts)
Stochastic unraveling
0 t o t
t1 to tz3 ta s t1 to t3 ta s
self-correlated system system-independent noise

Stochastic Schrodinger Equation (equivalent to GLE):

Lp(t) = —H(T)p(7) H(7) = H, +&(1)q
correlation function for quantum noise: <§(7’)£(7’l>> — K(T — T/)/ﬁ
Advantages

programs available for download
* Numerically exact

e Arbitrary spectral densities Moix, Zhao, and Cao, PRB, 85, 115412, (2012)

 Wave-function propagation



Basis Set Rotations

A (J)

0.5

0. system-bath correlation rises i
< 0.3} at low-T for weak coupling i
@
< 0.2}

0.1}

0
1 2 3 4 5 6 7 8 9 10

Temperature (J)

Lee, Cao, and Gong, PRE, 86,021109, (2012); Cerrillo and Cao, PRL 112, p110401 (2014)



Forster Energy Transfer Theory

Emission

spectrum

of S™

k Absorption
Speotrum
donor I e
A Z E(w)
J acceptor —_—
()
Frequency. v
2 o0
rate o ‘J‘ f d ol (a))E (a))
Q)
dipole coupling (1/R®) overlap of emission and absorption spectra

Forster theory works at far field and fails at near field



Photosynthetic Membranes of Purple Bacteria

LH1-RC dimers LH1

S ® N ET pathway @
v)&{@L-ATP synthase

LH2 domains

-3 +3
-2 +2
-1 +1
0
9-fold symmetry enhances transfer <> The lowest state is dark

Dipole selection rule suggests no transfer from the lowest state of LH2 B850



Generalized FRET rates

Forster rate between molecules:
Acceptor

koc J? [ dwI®™(w)EP(w)
Donor
Acceptor Complex TI'( EA’ D) =) D

Tr(I?) = 14

Multi-chromophoric Forster rate:
Donor Complex

ko [ Tr[J*PEP ()] ' 1" (0)]dw

Sumi, JPC, 103, 252 (1999)

the dipole selection rule breaks down at near field so the dark state transfers



System-bath Correlations in Emission

Why does the second-order work for absorption but fail for emission?

pt = I, @ py

(B) =0
Product state for absorption emission
D HSb
pP = = BHP /7D
Entangled state of the entire
system and bath
(emission from dark state) < B> — () absorption

Standard 2rd-order perturbation does not properly describe system-bath correlations

Ma, Moix, and Cao, JCP 142, p094108; p094107; p094106 (2015)



Absorption and Emission

Acceptor’s Absorption Operator: pA — /. X Pb
i T A i A
I~ (t) = Try, [e_ﬁH tphetn o t] Product state
D
Donor’s Emission Operator: ,()D — e BH / P
EP (t) = Try, [€+ = HDt,OD e + HEt] Entangled state of the entire
system and bath
hBw
Detailed balance relations: FE (w) — < = Vi (w)

Emission is equivalent to « 1 . - (o
absorption in complex time & (t) — 1 (t — thp ) () (w)
v

Ma and Cao, JCP 142, 094108



Integration Contours

Absorption operator
Wick’s Rotation A ( < )

Equilibrium RDM mission operator

P3)

S . S

E(s)  E(s”)

T
Imaginary time: Real time: Complex time:
reduced density matrix (RDM) absorption matrix emission matrix

Moix, Ma, Cao, JCP, 142, 094108 (2015)



Example |: Spectra of LH2 B850

Super-Ohmic

Ohmic

Drude

Absorption

2000

1000

=

A(w) (arb. units)

2000

1000 | -

900 600 __ -500 -400
-1
W — ®, (cm )

line-width increases with T, peak shift is sensitive to J(w)



Example Il: Spectra of LH2 B850

emission

T=25K
100~ T=50K ™
I T=75K
! ) T =100 K
Super-Ohmic 50 T=125K =
T =150 K
—_
n
=
=
=
. )
Ohmic g
N
—_
S
N——
=
Drude

At low T, the bright state becomes dark because of exp(-PE),
and k=0 becomes bright due to the LH-protein entanglement

the lowest state is dark
k=+/-1 1s bright state
(general for J-aggregates)

+3

+2
+1



Example lll. LH2 MC-Forster Transfer rates

I | |
Py ' T=300 K
‘—I* sPl: 9.3 ps

é ; Schulten: 9.5 ps
= O.

L

S

—
=

~ 0.05

o)
U 4
=

O A o 4 | |
200 400 600 800
T (K)
Transfer rate (with coherence): 9.3ps Transfer rate (with disorder): 20ps

Cleary and Cao, NJP (2013) and Moix, Ma, Cao, JCP 142, 094108 (2015)

1000

(b)

(b)




A family of hierarchy equations are obtained from the SLE.

Stochastic simulations are efficient and accurate for equilibrium and spectra calculations

Coworkers: Changyu Hsieh, Jeremy Moix, Javier Cerrillo

Funding: NSF and SMART



