

Applications of the ML-MCTDHB to the Nonequilibrium Quantum Dynamics of Ultracold Systems

Peter Schmelcher Zentrum für Optische Quantentechnologien Universität Hamburg

624. WE-HERAEUS-SEMINAR: SIMULATING QUANTUM PROCESSES AND DEVICES BAD HONNEF, SEPTEMBER 19-22, 2016

The Centre for Optical Quantum Technologies

Experiment and Theory -Workshop and Guest Program in collaboration with

- L. Cao, S. Krönke, O. Vendrell (ML-MCTDHB)
- L. Cao, S. Krönke, R. Schmitz, J. Knörzer and S. Mistakidis (Applications)

funded by the SFB 925 'Light induced dynamics and control of correlated quantum systems' of the German Science Foundation (DFG).

- 1. Introduction and motivation
- 2. Methodology: The ML-MCTDHB approach
- 3. Tunneling mechanisms in double and triple wells
- 4. Multi-mode quench dynamics in optical lattices
- 5. Many-body processes in black and grey matter-wave solitons
- 6. Correlated dynamics of a single atom coupling to an ensemble
- 7. Concluding remarks

1. Introduction and Motivation

An exquisite control over the external and internal degrees of freedom of atoms developed over decades lead to the realization of **Bose-Einstein Condensation** in dilute alkali gases at nK temperatures.

Key tools available:

- Laser and evaporative cooling
- Magnetic, electric and optical dipole traps
- Optical lattices and atom chips
- Feshbach resonances (mag-opt-conf) for tuning of interaction

Introduction and Motivation

Enormous degree of control concerning preparation, processing and detection of ultracold atoms !

Weak to strongly correlated many-body systems:

- BEC nonlinear mean-field physics (solitons, vortices, collective modes,...)
- Strongly correlated many-body physics (quantum phases, Kondo- and impurity physics, disorder, Hubbard model physics, high T_c superconductors,...)

Few-body regime:

- Novel mechanisms of transport and tunneling
- Atomtronics (Switches, diodes, transistors,)
- Quantum information processing

Introduction: Some facts

Hamiltonian:
$$\mathcal{H} = \sum_{i} \left(\frac{\mathbf{p}_{i}^{2}}{2m_{i}} + V(\mathbf{r}_{i}) \right) + \frac{1}{2} \sum_{i,j,i \neq j} W(\mathbf{r}_{i} - \mathbf{r}_{j})$$

V is the trap potential: harmonic, optical lattice, etc.

W describes interactions: contact $g\delta(\mathbf{r}_i - \mathbf{r}_j)$, dipolar, etc.

Dynamics is governed by TDSE: $i\hbar\partial_t\Psi(\mathbf{r}_1,...,\mathbf{r}_N,t) = \mathcal{H}\Psi(\mathbf{r}_1,...,\mathbf{r}_N,t)$

Ideal Bose-Einstein condensate: no interaction $g = 0 \Rightarrow$ Macroscopic matter wave.

$$\Phi(\mathbf{r}_1, ..., \mathbf{r}_N) = \prod_{i=1}^N \phi(\mathbf{r}_i)$$

Hartree product: bosonic exchange symmetry.

Interaction $g \neq 0$: Mean-field description leads to Gross-Pitaevskii equation with cubic nonlinearity, exact for $N \rightarrow \infty, g \rightarrow 0$.

Introduction: Some facts

Finite, and in particular 'stronger' interactions:

- Correlations are ubiquitous
- A multiconfigurational ansatz is necessary

$$\Psi(\mathbf{r}_1, ..., \mathbf{r}_N, t) = \sum_i c_i \Phi_i(\mathbf{r}_1, ..., \mathbf{r}_N, t)$$

 \Rightarrow Ideal laboratory for exploring the dynamics of correlations (beyond mean-field):

- Preparation of correlated initial states
- Spreading of localized/delocalized correlations ?
- Time-dependent 'management' and control of correlations ?
- Is there universality in correlation dynamics ?

Calls for a versatile tool to explore the (nonequilibrium) quantum dynamics of ultracold bosons: Wish list

- Take account of all correlations (numerically exact)
- Applies to different dimensionality
- Time-dependent Hamiltonian: Driving
- Weak to strong interactions (short and long-range)
- Few- to many-body systems
- Mixed systems: different species, mixed dimensionality
- Efficient and fast

Multi-Layer Multi-Configuration Time-Dependent Hartree for Bosons (ML-MCTDHB) is a significant step in this direction !

In the following: A brief account of the methodology and then some selected diverse applications to ultracold bosonic systems.

2. Methodology: The ML-MCTDHB Approach

The ML-MCTDHB Method

- aim: numerically exact solution of the time-dependent Schrödinger equation for a quite general class of interacting many-body systems
- history: [H-D Meyer. WIREs Comp. Mol. Sci. 2, 351 (2012).]
 MCTDH (1990): few distinguishable DOFs, quantum molecular dynamics
 ML-MCTDH (2003): more distinguishable DOFs, distinct subsystems
 MCTDHF (2003): indistinguishable fermions
 MCTDHB (2007): indistinguishable bosons

• idea:

use a time-dependent, optimally moving basis in the many-body Hilbert space

Hierarchy within ML-MCTDHB

We make an ansatz for the state of the total system $|\Psi_t\rangle$ with time-dependencies on different *layers*:

$$\begin{array}{l} \text{top layer } |\Psi_t\rangle = \sum_{i_1=1}^{M_1} \dots \sum_{i_S=1}^{M_S} A_{i_1,\dots,i_S}(t) \bigotimes_{\sigma=1}^{S} |\psi_{i_\sigma}^{(\sigma)}(t)\rangle \\ \text{species layer } |\psi_k^{(\sigma)}(t)\rangle = \sum_{\vec{n}|N_\sigma} C_{k;\vec{n}}^{\sigma}(t) |\vec{n}\rangle(t) \\ \text{particle layer } |\phi_k^{(\sigma)}(t)\rangle = \sum_{i=1}^{n_\sigma} B_{k;i}^{\sigma}(t) |u_i\rangle \\ \end{array}$$

- Mc Lachlan variational principle: Propagate the ansatz $|\Psi_t\rangle \equiv |\Psi(\{\lambda_t^i\})\rangle$, $\lambda_t^i \in \mathbb{C}$ according to $i\partial_t |\Psi_t\rangle = |\Theta_t\rangle$ with $|\Theta_t\rangle \in \text{span}\{\frac{\partial}{\partial\lambda_t^k}|\Psi(\{\lambda_t^i\})\rangle\}$ minimizing the error functional $|||\Theta_t\rangle \hat{H}|\Psi_t\rangle||^2$ [AD McLachlan. *Mol. Phys.* **8**, 39 (1963).]
- In this sense, we obtain a *variationally* optimally moving basis!
- Dynamical truncation of Hilbert space on all layers
- Single species, single orbital on particle layer → Gross-Pitaevskii equation ! (Nonlinear excitations: Solitons, vortices,...)

The ML-MCTDHB equations of motion

L top layer EOM:

$$\begin{split} i\partial_t A_{i_1,...,i_S} &= \sum_{j_1=1}^{M_1} \dots \sum_{j_S=1}^{M_S} \langle \psi_{i_1}^{(1)} \dots \psi_{i_S}^{(S)} | \ \hat{H} \ |\psi_{j_1}^{(1)} \dots \psi_{j_S}^{(S)} \rangle A_{j_1,...,j_S} \\ \text{with} \quad |\psi_{j_1}^{(1)} \dots \psi_{j_S}^{(S)} \rangle \equiv |\psi_{j_1}^{(1)} \rangle \otimes \dots \otimes |\psi_{j_S}^{(S)} \rangle \end{split}$$

 \Rightarrow system of coupled linear ODEs with time-dependent coefficients due to the time-dependence in $|\psi_{i}^{(\sigma)}(t)\rangle$ and $|\phi_{i}^{(\sigma)}(t)\rangle$

 \Rightarrow reminiscent of the Schrödinger equation in matrix representation

species layer EOM:

$$i\partial_t C^{\sigma}_{i;\vec{n}} = \langle \vec{n} | (\mathbb{1} - \hat{P}^{spec}_{\sigma}) \sum_{j,k=1}^{M_{\sigma}} \sum_{\vec{m} | N_{\sigma}} [(\rho^{spec}_{\sigma})^{-1}]_{ij} \langle \hat{H} \rangle^{\sigma,spec}_{jk} | \vec{m} \rangle C^{\sigma}_{k;\vec{m}}$$

 \Rightarrow system of coupled non-linear ODEs with time-dependent coefficients due to the time-dependence of the $|\phi_{i}^{(\sigma)}(t)\rangle$ and of the top layer coefficients

The ML-MCTDHB equations of motion

• particle layer EOM:

$$i\partial_t |\phi_i^{(\sigma)}\rangle = (\mathbb{1} - \hat{P}_{\sigma}^{part}) \sum_{j,k=1}^{m_{\sigma}} [(\rho_{\sigma}^{part})^{-1}]_{ij} \langle \hat{H} \rangle_{jk}^{\sigma,part} |\phi_k^{(\sigma)}\rangle$$

 \Rightarrow system of coupled non-linear partial integro-differential equations (ODEs, if projected on $|u_k^{(\sigma)}\rangle$, respectively) with time-dependent coefficients due to time-dependence of the $C_{i:\vec{n}}^{\sigma}$ and $A_{i_1,...,i_S}$

Lowest layer representations:

- Discrete Variable Representation (DVR): implemented DVRs: harmonic, sine (hardwall b.c.), exponential (periodic b.c.), radial harmonic, Laguerre
- Fast Fourier Transform

Stationary states via improved relaxation involving imaginary time propagation !

S Krönke, L Cao, O Vendrell, P S, New J. Phys. 15, 063018 (2013).

L Cao, S Krönke, O Vendrell, P S, J. Chem. Phys. 139, 134103 (2013).

3. Tunneling mechanisms in the double and triple well

- Extensive experimental control of few-boson systems possible: Loading, processing and detection
 [I. Bloch *et al*, Nature 448, 1029 (2007)]
- Bottom-up understanding of tunneling processes and mechanisms
- Atomtronics perspective providing us with controllable atom transport on individual atom level:
 - Diodes, transistors, capacitors, sources and drains
- Double well, triple well, waveguides, etc.

Few-boson systems: Double Well

- No interactions: Rabi oscillations.
- Weak interactions: Delayed tunneling.
- Intermediate interactions:
 - Tunneling comes almost to a hold in spite of repulsive interactions.
 - Pair tunneling takes over !
- Very strong interactions: Fragmented pair tunneling.

$\triangleright N = 2$ atoms

- K. Winkler et al., Nature 441, 853 (2006); S. Fölling et al., Nature 448, 1029 (2007)
- S. ZÖLLNER, H.D. MEYER AND P.S., PRL 100, 040401 (2008); PRA 78, 013621 (2008)

Here: Bottom-up approach of understanding the tunneling mechanisms !

- Triple well is minimal system analog of a source-gate-drain junction for atomtronics
- Triple well shows novel tunneling scenarios on transport
- Strong correlation effects beyond single band approximation !
- Beyond the well-known suppression of tunneling: Multiple windows of enhanced tunneling i.e. revivals of tunneling: Interband tunneling involving higher bands !

Interband Tunneling: Analysis Tool

- Methodology: Multi-Layer Multi-Configuration
 Time-Dependent Hartree for Bosons
- Novel number-state representation including interaction effects for analysis

Three bosons: Single, pair and triple modes.

Interband Tunneling: Single boson tunneling

Three bosons initially in the left well: $\Psi \approx |3,0,0\rangle_0$

Single boson tunneling to middle and right well via $|3,0,0\rangle_0 \Leftrightarrow |2,1,0\rangle_1 \Leftrightarrow |2,0,1\rangle_1$ i.e. via first-excited states !

Interband Tunneling: Single boson tunneling

Three bosons initially in the middle well: $\Psi \approx |0, 3, 0\rangle_0$

(a) g = 9.853-(a) Population ᡧᡬ᠕ᢣᢧ᠕᠕᠆ᢏᠻᡄᡐᠧᠺᡧᢊᠫ᠋ᠿᢧᠫᡒ᠋᠋᠕ᡔ᠋ᠫᠿᠿᠿᡧᠺᢑᡐᢑᡐᠱᢣᡞᠱᢧᡞᠰᠶᠧᡗᢑᡐ᠕ᢣᡪᠱᢢ 0 (b) 1.0 Probability 0.0 50 1<u>0</u>0 150 Ó time 0.6 t=0 (a) t=11 t=28 density $\rho(x)$ 0.4 0.2 0.0 0 X 2 2

Single boson tunneling to left and right well via $|0,3,0\rangle_0 \Leftrightarrow |1,2,0\rangle_3 \Leftrightarrow$ $|0,2,1\rangle_3$ i.e. via second-excited states

Interband Tunneling: Two boson tunneling

Three bosons initially in the middle well: $\Psi \approx |0, 3, 0\rangle_0$

(a) g = 5.8

Two boson tunneling to the left and right well via $|0,3,0\rangle_0 \Leftrightarrow |1,1,1\rangle_6$ i.e. two first-excited states !

Cao et al, NJP 13, 033032 (2011)

4. Multi-mode quench dynamics in optical lattices

Focus: Correlated non-equilibrium dynamics of in one-dimensional finite lattices following a sudden interaction quench from weak (SF) to strong interactions!

Phenomenology: Emergence of density-wave tunneling, breathing and cradle-like processes.

Mechanisms: Interplay of intrawell and interwell dynamics involving higher excited bands.

Resonance phenomena: Coupling of density-wave and cradle modes leads to a corresponding beating phenomenon !

 \Rightarrow Effective Hamiltonian description and tunability.

Incommensurate filling factor $\nu > 1(\nu < 1)$

Post quench dynamics....

- Density tunneling mode: Global 'envelope' breathing
 - Identification of relevant tunneling branches (number state analysis)
 - Fidelity analysis shows 3 relevant frequencies: pair and triple mode processes
 - Transport of correlations and dynamical bunching antibunching transitions
- On-site breathing and craddle mode: Similar analysis possible involving now higher excitations

Craddle and tunneling mode interaction

Fourier spectrum of the intrawell-asymmetry $\Delta \rho_L(\omega)$:

Avoided crossing of tunneling and craddle mode !

⇒ Beating of the craddle mode - resonant enhancement. S.I. Mistakidis, L. Cao and P. S., JPB 47, 225303 (2014), PRA 91, 033611 (2015)

5. Many-body processes in black and grey matter-wave solitons

- N weakly interacting bosons in a one-dimensional box
- Initial many-body state: Little depletion, density and phase as close as possible to dark soliton in the dominant natural orbital
- Preparation: Robust phase and density engineering scheme.

CARR ET AL, PRL 103, 140403 (2009); PRA 80, 053612 (2009); PRA 63, 051601 (2001); RUOSTEKOSKI ET AL, PRL 104, 194192 (2010)

Density dynamics

• Reduced one-body density $\rho_1(x,t)$

•
$$N=100$$
, $\gamma=0.04$

- Black (top) and grey (bottom) soliton
- M = 4 optimized orbitals
- Inset: Mean-field theory (GPE)
- Slower filling process of density dip for moving soliton

Evolution of contrast and depletion

• Relative contrast c(t)/c(0) of dark solitons for various $\beta = \frac{u}{s}$ $(c(t) = \frac{\max \rho_1(x,0) - \rho_1(x_t^s,t)}{\max \rho_1(x,0) + \rho_1(x_t^s,t)})$

• Dynamics of quantum depletion $d(t) = 1 - \max_i \lambda_i(t) \in [0, 1]$ and evolution of the natural populations $\lambda_i(t)$ for $\beta = 0.0$ (solid black lines) and $\beta = 0.5$ (dashed dotted red lines). $\hat{\rho}_1(t) = \sum_{i=1}^M \lambda_i(t) |\varphi_i(t)\rangle\langle\varphi_i(t)|$

Natural orbital dynamics

• Density and phase (inset) evolution of the dominant and second dominant natural orbital. (a,b) black soliton (c,d) grey soliton $\beta = 0.5$.

Localized two-body correlations

• Two-body correlation function $g_2(x_1, x_2; t)$ for a black soliton (first row) and a grey soliton $\beta = 0.5$ (second) at times t = 0.0 (first column), $t = 2.5\tau$ (second) and $t = 5\tau$ (third).

S. Krönke and P.S., PRA 91, 053614 (2015)

6. Correlated dynamics of a single atom coupling to an ensemble

Setup and preparation

- Bipartite system: impurity atom plus ensemble of e.g. bosons of different $m_F = \pm 1$ trapped in optical dipole trap
- Application of external magnetic field gradient separates species
- Initialization in a displaced ground ie. coherent state via RF pulse to $m_F = 0$ for impurity atom.
- Single atom collisionally coupled to an atomic reservoir: Energy and correlation transfer - entanglement evolution.

J. KNÖRZER, S. KRÖNKE AND P.S., NJP 17, 053001 (2015)

- Spatiotemporally localized inter-species coupling: Focus on long-time behaviour over many cycles.
- Energy transfer cycles with varying particle number
 of the ensemble

One-body densities

- Time-evolution of densities for the two species (ensemble-top, impurity-bottom) for first eight impurity oscillations.
- Impurity atom initiates oscillatory density modulations in ensemble atoms.
- Backaction on impurity atom.

Time-evolution of normalized excess energy Δ_t^B with Husimi distribution $Q_t^B(z, z^*) = \frac{1}{\pi} \langle z | \hat{\rho}_t^B | z \rangle$, $z \in \mathbb{C}$ of reduced density $\hat{\rho}_t^B$ at certain time instants.

Coherence measure

Distance (operator norm) to closest coherent state, as a function of time for different atom numbers in the ensemble.

Correlation analysis

- (a) Short-time evolution of the von Neumann entanglement entropy $S_{vN}(t)$ and inter-species interaction energy $E_{int}^{AB}(t) = \langle \hat{H}_{AB} \rangle_t$.
- (b) Long-time evolution of $\bar{S}_{vN}(t)$. for $N_A = 2$ (blue solid line), $N_A = 4$ (red, dashed) and $N_A = 10$ (black, dotted).

J. KNÖRZER, S. KRÖNKE AND P.S., NJP 17, 053001 (2015)

7. Concluding remarks

Conclusions

- ML-MCTDHB is a versatile efficient tool for the nonequilibrium dynamics of ultracold bosons.
- Few- to many-body systems can be covered: Shown here for the emergence of collective behaviour.
- Tunneling mechanisms
- Many-mode correlation dynamics: From quench to driving.
- Beyond mean-field effects in nonlinear excitations.
- Open systems dynamics, impurity and polaron dynamics, etc.
- Mixtures !

Thank you for your attention !