

Positive Tensor Network approach for simulating open quantum many-body systems

19/9/2016

A. Werner, D. Jaschke, <u>P. Silvi</u>, M. Kliesch, T. Calarco, J. Eisert and S. Montangero

PRL 116, 237201 (2016)

Pietro Silvi

Tensor Network ansatz states:

Example^{1,2}: Matrix Product States

$$\mathcal{T}_{s_1...s_N} = \sum_{\alpha_2...\alpha_N=1}^{\chi} A_{\alpha_2}^{[1]s_1} A_{\alpha_2,\alpha_3}^{[2]s_2} A_{\alpha_3,\alpha_4}^{[3]s_3} \cdots A_{\alpha_N}^{[N]s_N} =$$

S. Romer, S. Ostlund; Phys. Rev. B 55, 2164 (1997)
U. Schollwoeck, Annals of Physics 326, 96 (2011)

Tensor Network ansatz states:

- Simulating ground states of 1D, 2D quantum lattices with OBC (DMRG³)
- ... with PBC
- ... in infinite systems
- Simulating out-of equilibrium dynamics

Physical quantum many-body states obey precise entanglement scaling laws

Tensor networks encode these states <u>faithfully</u> and <u>efficiently</u>

3) S. White; Phys. Rev. Lett. 69, 2863 (1992)

Tree Tensor Networks

Multiscale Entanglement Renormalization Ansatz (MERA)⁵

4) Verstaete, Wolf, Perez-Garcia, Cirac; PRL **96**, 220601 (2006) 5) G. Vidal; PRL **99**, 220405 (2007)

Matrix Product States (MPS)

Projected Entangled Pair States (PEPS)⁴

...and many more.

24 November 2015

Pietro Silvi

Motivation:

We want to extend the known quantum many-body (QMB) dynamics algorithms to encompass Open Systems. The focus is:

- Disregard reservoir dynamics
- Capture both transient and steady behavior
- Stay numerically efficient and control precision/errors

Pathway A: Quantum Jumps

Sample several pure states and simulate stochastic trajectories according to (at first order)⁶:

$$|\psi(t+\delta t)\rangle = \begin{cases} \frac{e^{iH_{\text{eff}}\delta t}|\psi(t)\rangle}{\sqrt{P}} & \text{with } P = 1 - \sum_{j} p_{j} \\ \frac{L_{j}|\psi(t)\rangle}{\sqrt{p_{j}/\delta t}} & \text{with } p_{j} = \delta t \langle \psi(t)|L_{j}^{\dagger}L_{j}|\psi(t)\rangle \end{cases}$$

Where
$$H_{\text{eff}} = H - \frac{i}{2} \sum_{j} L_{j}^{\dagger} L_{j}$$
 and Lindbladians L_{j}

Perform dynamics simulations with Tensor Networks. *Reconstruct* full dynamics by averaging over the samples.

6) A. J. Daley; Adv. Phys. 63, 77 (2014)

Pathway B: OMB Density Matrices

$$\rho = \sum_{l=1}^{d} \sum_{s_1 \dots s_N}^{d} |s_1, \dots, s_N\rangle \langle r_1, \dots, r_N|$$

 $s_1...s_L r_1...r_N$

writing $\mathcal{T}_{s_1...s_N}^{r_1...r_N}$ as a tensor network.

A viable way: the MPDO

A possible path to do so is with Matrix Product (Density) Operators: MPDO⁷

7) Verstraete, Cirac; PRL 93, 207204 (2004). Zwolak, Vidal; PRL 93, 207205 (2004)

- Finite Temperature states of short-range Hamiltonian
- Can simulate open-system dynamics
- Direct targeting of steady states⁸

Positivity is not guaranteed (positivity check is NP-hard).

8) J. Cui, I. Cirac, M. C. Banuls; Phys. Rev. Lett. 114, 220601 (2015)

How can we impose positivity in a natural way?

Simple trick: write the density matrix as

$$\rho = XX^{\dagger}$$

where X is a many-body operator, which we can write as a matrix product operator

Locally Purified Tensor Network (LPTN)

Why this name⁹?

Assume to extend the L system sites with L ancillary sites

$$|X\rangle\rangle = \sum_{s_1...s_N}^d \sum_{q_1...q_N}^K X_{s_1...s_N}^{q_1...q_N} |s_1...s_N\rangle_{\text{system}} \otimes |q_1...q_N\rangle_{\text{ancilla}}$$

If we now disregard (trace away) the ancillas, we get

$$\rho = \operatorname{Tr}_{\operatorname{ancilla}} \left[|X\rangle\rangle \langle\langle X| \right] = XX^{\dagger}$$

We have a purification representation where every site has a dedicated bath (of dimension K).

9) G. De las Cuevas, N. Schuch, D. Perez-Garcia, I.J. Cirac; NJP 15, 123021 (2013)

The LPTN way

Features:

- Can simulate open-system transient dynamics (steady states are reached dynamically)
- Positivity always guaranteed

ssues:

Variational constraint: algorithms must preserve the symmetry $X \leftrightarrow X^{\dagger}$ at all times.

Markovian dynamics with LPTN

And now something familiar...

$$\frac{d\rho}{dt} = i[\rho, H] + \sum_{j} \left(L_{j}\rho L_{j}^{\dagger} - \frac{1}{2} \{\rho, L_{j}^{\dagger}L_{j}\} \right)$$

with the following conditions:

- Hamiltonian is short-range (nearest-neighbour interactions): $H = \sum_{j} h_{j,j+1}$
- Lindbladians are local (single site)

Extensible to n-n two-site Lindbladians (not in this talk).

Liouville representation will help us $\frac{d|\rho\rangle}{dt} = \left(-iH \otimes \mathbb{I} + i\mathbb{I} \otimes H^T + \mathcal{D}_j\right) |\rho\rangle = \mathcal{L}|\rho\rangle$ in a nutshell $\rho \to |\rho\rangle$ $A\rho B \to A \otimes B^T |\rho\rangle$

where
$$\mathcal{D}_j = L_j \otimes \bar{L}_j - rac{1}{2}L_j^\dagger L_j \otimes \mathbb{I} - rac{1}{2}\mathbb{I} \otimes L_j^T \bar{L}_j$$

Because now we <u>discretize the time</u> in finite small intervals δt , and solve the real-time dynamics:

$$|\rho(t+\delta t)\rangle\rangle = \exp(\delta t\mathcal{L})|\rho(t)\rangle\rangle$$

The Algorithm now focuses on how to implement $\exp(\delta t \mathcal{L})$ on the LPTN state efficiently and controlling errors.

Liouville rep.

Suzuki-Trotter decomposition

At second order, with three operators:

$$e^{\delta t(A+B+C)} = e^{\frac{\delta t}{2}A} e^{\frac{\delta t}{2}B} e^{\delta tC} e^{\frac{\delta t}{2}B} e^{\frac{\delta t}{2}A} + O(\delta t^3)$$

which follows from Baker-Hausdorff formulas.

Let us decompose \mathcal{L} in 3 pieces: $\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$ 1) Odd-even Hamiltonian $\mathcal{L}_1 = i \sum_j (h_{2j-1,2j} \otimes \mathbb{I} - \mathbb{I} \otimes h_{2j-1,2j}^T)$ 2) Even-odd Hamiltonian $\mathcal{L}_2 = i \sum_j (h_{2j,2j+1} \otimes \mathbb{I} - \mathbb{I} \otimes h_{2j,2j+1}^T)$

3) All dissipators
$$\mathcal{L}_3 = \sum_j \mathcal{D}_j$$

Advantage: each piece is made of commuting terms, therefore

Notice: This operation fulfills automatically the top-bottom symmetry requirement.

We need to perform the following linear algebra operation

After this operation, the "correlation" bond (dimension of the tensors) is enlarged:

We "compress" it by discarding the smallest values in the singular value decomposition (second source of error).

 \mathcal{L}_2 is performed analogously to \mathcal{L}_1 .

We numerically obtain the Kraus decomposition of the local dissipation quantum channel $e^{\delta t \mathcal{D}_j}$, which is CPT.

Notice: The Kraus-decomposed map satisfies the top-bottom symmetry requirement.

Pietro Silvi

The only operation left to perform is:

This time, the "bath" bond is enlarged. We can compress it again via SVD and truncation of the smallest singular values.

Apologies for being so technical, but that's my job.

Benchmarks

$$n_l, \sigma_l^z$$

It is high time to prove that our algorithm works well.

B.1) "Photonic Josephson Junction":

System: two spins-1/2, each within an optical cavity.

$$H = \sum_{l=1,2} (\alpha_l (\sigma_l^+ c_l + \sigma_l^- c_l^\dagger) + \omega_C n_l + \omega_S \sigma_l^z) + \eta (c_1^\dagger c_2 + c_2^\dagger c_1)$$

Dissipation: spontaneous loss $L_{S_l} = \sqrt{\gamma} \sigma_l^-$, $L_{C_l} = \sqrt{\gamma} c_l$

Study transient dynamics and compare to exact results

Pietro Silvi

B.2) Fermionic quantum wire:

Spin-1/2 XXZ model (equivalent to Hubbard with density-density int.)

$$H = \sum_{j} (\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z)$$

Dissipation: particle-source at left edge, particle-drain at right edge

$$L_s = \sqrt{\gamma} \, \sigma_1^+, \quad L_d = \sqrt{\gamma} \, \sigma_N^-$$

<u>We study steady dynamics</u> and measure population and particle current $J = 2 \operatorname{Im} \langle \sigma_j^+ \sigma_{j+1}^- \rangle$. We compare results with analytical predictions⁸.

8) T. Prozen; Phys. Rev. Lett. 107, 137201 (2011)

Conclusions

We designed an algorithm based on Locally Purified <u>Tensor Network</u> states, which:

- Simulates open-system Markovian dynamics, which can capture both transient and steady behavior.
- Also simulates finite temperature states
- Guarantees positivity of the variational ansatz at all times, overcoming previous limitations.

Methods Comparison

Quantum Jumps

Excellent transient dynamics

Challenging for highly mixed states

Can not determine positivity

Positive, efficient, and accurate in both regimes.

Slightly more expensive