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Tensor Network ansatz states:Tensor Network ansatz states:
Classes of tailored variational 
quantum many-body wavefunctions 

What are
they?

Pietro Silvi

1) S. Romer, S. Ostlund; Phys. Rev. B 55, 2164 (1997)
2) U. Schollwoeck, Annals of Physics 326, 96 (2011)
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Example1,2: Matrix Product States

1



  

Tensor Network ansatz states:Tensor Network ansatz states:
● Simulating ground states of 1D, 2D 

quantum lattices with OBC 
(DMRG3)

● … with PBC
● … in infinite systems
● Simulating out-of equilibrium 

dynamics

What are
They good for?

Pietro Silvi

3) S. White; Phys. Rev. Lett. 69, 2863 (1992)
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Why are
They good?

3 Physical quantum many-body states 
obey precise entanglement scaling 
laws

Tensor networks encode these states 
faithfully and efficiently



  

Zoology ofZoology of
Tensor Networks:Tensor Networks:
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Matrix Product States (MPS)
Tree Tensor Networks

Multiscale Entanglement 
Renormalization Ansatz (MERA)5

Projected Entangled Pair 
States (PEPS)4

...and many more. 4) Verstaete, Wolf, Perez-Garcia, Cirac; PRL 96, 220601 (2006)
5) G. Vidal; PRL 99, 220405 (2007)



  

Motivation:Motivation:
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We want to extend the known quantum many-body (QMB) 
dynamics algorithms to encompass Open Systems.
 The focus is:

● Disregard reservoir dynamics
● Capture both transient and steady behavior
● Stay numerically efficient and control precision/errors

Pathways

1) Stochastic unravelling of pure TN-state dynamics
(quantum jumps, quantum trajectories)

2) Extend TN-states to describe density matrices



  

Pathway A: Quantum JumpsPathway A: Quantum Jumps
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Sample several pure states  and simulate stochastic 
trajectories according to (at first order)6:

6) A. J. Daley; Adv. Phys. 63, 77 (2014)

Where                                           and Lindbladians

Perform dynamics simulations with Tensor Networks. 
Reconstruct full dynamics by averaging over the samples.



  

A viable way: the MPDOA viable way: the MPDO

writing                as a tensor network.
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A possible path to do so is with Matrix Product (Density) 
Operators: MPDO7

7) Verstraete, Cirac; PRL 93, 207204 (2004). Zwolak, Vidal;  PRL 93, 207205 (2004) 

Pathway B: QMB Density MatricesPathway B: QMB Density Matrices
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The MPDO wayThe MPDO way

Features:

Drawback:

● Finite Temperature states of short-range Hamiltonian

● Can simulate open-system dynamics

● Direct targeting of steady states8

Positivity is not guaranteed (positivity check is NP-hard).

8) J. Cui, I. Cirac, M. C. Banuls; Phys. Rev. Lett. 114, 220601 (2015)
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How can we impose positivity in a natural way?

Simple trick: write the density matrix as

where        is a many-body operator, which we can write as 
a matrix product operator



  

Pietro Silvi24 November 2015 10   

Locally Purified Tensor Network (LPTN)Locally Purified Tensor Network (LPTN)
Why this name9?

Assume to extend the L system sites with L ancillary sites

If we now disregard (trace away) the ancillas, we get

We have a purification representation where every site has 
a dedicated bath (of dimension    ).

9) G. De las Cuevas, N. Schuch, D. Perez-Garcia, I.J. Cirac; NJP 15, 123021 (2013)
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The LPTN wayThe LPTN way

Features:

Issues:

● Finite Temperature states

● Can simulate open-system transient dynamics
(steady states are reached dynamically)

● Positivity always guaranteed

Variational constraint: algorithms must preserve the 
symmetry                  at all times.
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Markovian dynamics with LPTNMarkovian dynamics with LPTN

And now something familiar…

with the following conditions:

● Hamiltonian is short-range (nearest-neighbour 
interactions):

● Lindbladians are local (single site)

Extensible to n-n two-site Lindbladians (not in this talk).
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Liouville rep.
in a nutshell

Liouville representation will help us

where

Because now we discretize the time in finite small 
intervals      , and solve the real-time dynamics:

The Algorithm now focuses on how to implement
on the LPTN state efficiently and controlling errors.
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Suzuki-Trotter decompositionSuzuki-Trotter decomposition

At second order, with three operators:

which follows from Baker-Hausdorff formulas.

Let us decompose     in 3 pieces:

1) Odd-even Hamiltonian

2) Even-odd Hamiltonian

3) All dissipators
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Advantage: each piece is made of commuting terms, 
therefore

Notice: This operation fulfills automatically the top-bottom symmetry requirement.
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We need to perform the following linear algebra operation

After this operation, the “correlation” bond (dimension of 
the tensors) is enlarged:

We “compress” it by discarding the smallest values in the 
singular value decomposition (second source of error).

SVDMatrix 
Multiplication
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        is performed analogously to     .

       requires a bit of care:
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We numerically obtain the Kraus decomposition of the local 
dissipation quantum channel          , which is CPT.

Choi
Transform

EVD

Notice: The Kraus-decomposed map satisfies the top-bottom symmetry requirement.
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The only operation left to perform is:

Matrix 
Multiplication

Link Fusion

This time, the “bath” bond is enlarged. We can compress it 
again via SVD and truncation of the smallest singular 
values.

Algorithm Complete !
Apologies for being so technical, but that's my job.
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BenchmarksBenchmarks

It is high time to prove that 
our algorithm works well.

B.1) “Photonic Josephson 
Junction”:

System: two spins-1/2, 
each within an optical 
cavity.

Dissipation: spontaneous loss

Study transient dynamics and compare to exact results
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B.2) Fermionic quantum 
wire:

Spin-1/2 XXZ model 
(equivalent to Hubbard 
with density-density int.)

Dissipation: particle-source 
at left edge, particle-drain 
at right edge

We study steady dynamics and measure population and 
particle current                         . We compare results with 
analytical predictions8.

8) T. Prozen; Phys. Rev. Lett. 107, 137201 (2011)
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We designed an algorithm based on Locally Purified 
Tensor Network states, which:

● Simulates open-system Markovian dynamics, which can 
capture both transient and steady behavior.

● Also simulates finite temperature states

● Guarantees positivity of the variational ansatz at all times, 
overcoming previous limitations.

ConclusionsConclusions
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Excellent transient dynamics

Methods ComparisonMethods Comparison

Quantum JumpsQuantum Jumps

MPDOMPDO

LPTNLPTN

Challenging for highly mixed 
states

Excellent for steady states

Can not determine positivity

Positive, efficient, and accurate 
in both regimes.

Slightly more expensive


