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Quantum thermalization – 2008 (numerics) 

H	=	-Σ<ij>	Jij(ai+aj	+	aj+ai),	hard	core	bosons	



Quantum Thermalization – 2016 (experimental) 
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H	=	-Σ<ij>	Jij(ai+aj	+	aj+ai)		+	U	Σini(ni-1)	



Thermalization in closed systems 



Outline 

•  Focus	on	transverse	Ising	model	
•  1d	:	integrable:	Generalized	Gibbs	ensemble	(GGE)	
•  2d:	non-integrable:		
											numerical	studies	of	thermalizaIon	aJer	quantum	quenches		



The transverse Ising model 

σx,	σz	Pauli	matrices,	n.n.	=	nearest	neighbors	in	d-dimensions,	p.b.c.	

Order	parameter:	Magne&za&on	(not	conserved!)	
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Non-equilibrium relaxation with heat bath 

Quench	from	T=0,	h=0	to	T>0,	h>0;					heat	bath	dynamics,	thermalizaIon	è	ρ~e-H/T	
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Non-equilibrium dynamics in closed system 

Quench	from	h=0	to	h>0;			Schrödinger	dynamics	(conserved	energy	E)		è Thermaliza&on	??	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 					Temperature	T(E)	?	
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Quantum Quench in the 1d TIM (at T=0) 
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L=∞	

Quench:		
|ψ(t=0>	GS	of	H	with	e.g.	h=0,		
dynamics	for	H	with	h>0		(exactly	calculable)	
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ηp	Fermion	operators	
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Does	the	exponenIal	relaxaIon	mean	that	the	system	is	thermalized?	
	 	 	 	 	 	 	(no,	because	fp	≠	e-βε(p))							

and	
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0→0.5 

~const 

• Exponential relaxation 

•  Quasi-stationary regime 

• Exponential recovery 

Look at finite system – what‘s going on? 

ml(t)	=	<σl(t)>	
magne&za&on	
at	site	l	



Kinks = non-interacting fermions 
are created in pairs (+p,-p) 
move with velocity ±vp 

E.g. C(r1t1;r2t2) = <σr1(t1) σr2(t2)>: 

Reflection at the  
boundaries at i=0 and i=L! 

Finite system: 

… and will flip spins upon arrival! 

Quasi-particles = kinks (in FM phase: h<J) 



log m
l(t) 

exact semi classical 

0→0.2 

0→0.1, L=256 

log m
l(t) 

Period:		
Tperiod	=	L/vmax	~	L/h	

1d TIM does not thermalize  

QP occupation probability:  

thermal 

True fp 
QPs	non-interacIng,	
è fp	conserved	
è no	thermalizaIon	
						towards	fp~e-βε(p)	



The 2d transverse Ising model: equil. & quenches 

2

The ETH is a su�cient but not a necessary condition
for thermalization and has been applied to a wide vari-
ety of systems. For the 2D-TFIM it predicts quantum
chaos and eigenstate thermalization whenever the fields
are non-vanishing and not too large [61, 62].
In contrast to the widespread usage of the ETH there
are only few studies on thermalization relying on the
computation of the time evolution of non-integrable sys-
tems for system sizes larger than those accessible with
exact diagonalization. These include studies of the one-
dimensional Bose Hubbard model with time-dependent
density matrix renormalization group theory (t-DMRG)
[6] and studies of the antiferromagnetic anisotropic
Heisenberg chain using a Chebyshev polynomial expan-
sion [63, 64]. In higher dimensions there are results for a
D-dimensional e↵ective O(N)-Hamiltonian close to dy-
namical critical points based on a renormalization-group
method [65–67].
Here we present for the first time a systematic investi-
gation of the relaxation dynamics of a two-dimensional,
non-integrable model going beyond system sizes accessi-
ble with exact diagonalization and valid for large areas of
the phase diagram. We study the transverse-field Ising
model in two dimensions (2D-TFIM) after global inter-
action quenches in the paramagnetic phase and global
field quenches in the ferromagnetic phase. In contrast
to the Ising chain in one dimension the 2D model is
non-integrable and cannot be solved analytically. Our
studies rely on real-time variational Monte Carlo (rt-
VMC), which allows us to compute the time evolution of
observables like the magnetization and correlation func-
tions with high accuracy for long time scales and large
system sizes. To answer the question whether the 2D-
TFIM thermalizes or not we compare the time-averaged
distributions of the observables to their thermal distri-
butions for the system in equilibrium at temperatures
determined by the excess energy after the quench. For
a system that thermalizes one would expect the asymp-
totic time-averaged distributions and the thermal distri-
butions to be identical. We discuss our results with re-
spect to the theorem on generalized thermalization from
Ref. [52]. For the interaction quenches in the paramag-
netic phase, for which the conditions of the theorem are
fulfilled, we indeed observe thermalization in agreement
with the exact theorem. For the field quenches in the
ferromagnetic phase on the other hand we show that the
conditions of the exact theorem are not fulfilled and find
a continuously increasing degree of non-thermalization
with increasing quench strength.
The paper is organized as follows: In Sec. II we intro-
duce the 2D-TFIM. The quench protocol and the defini-
tion of the e↵ective temperature of the system after the
quench are described in Sec. III. In Sec. IV we give a gen-
eral discussion of the time evolution of the system after
the quench, followed by the description of our rt-VMC
algorithm in Sec.V. In Sec.VI we introduce the observ-
ables. The results are presented in Sec.VII and discussed
with respect to the theorem on generalized thermaliza-

tion from Ref. [52] in Sec.VIII. In Sec. IX we summarize
our results and present our conclusions.

II. THE MODEL

We study the 2D-TFIM with nearest neighbour inter-
actions on a square lattice of size L ⇥ L with periodic
boundary conditions (PBC). The model is described by
the Hamiltonian
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which the operator �̂x

R

measures the orientation of the
spin at site R, while �̂z

R

inverts it.
The model is highly symmetric. Its Hamiltonian is
invariant under the global

2

spin flip transformation
�̂x
R

! ��̂x
R

and �̂z
R

! �̂z
R

generated by the unitary oper-
ator ⌃̂z = ⇧

R

�̂z
R

with (⌃̂z)2 = ˆ and [Ĥ, ⌃̂z] = 0. Due to
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For h = 0 the equilibrium phase transition occurs at
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(Refs. [69–71]). For finite system sizes there is no sponta-
neous symmetry breaking, so that the expectation value
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(bottom) of the 2D-TFIM with PBC on a square lattice of
size 16⇥ 16 computed with a cluster Monte Carlo algorithm
in continuous imaginary time [71]. Each data point is an
average over 105 samples.

for a 16 ⇥ 16 system. Already for this system size one
observes only small deviations from the results for the
system in the thermodynamic limit, whose critical tem-
perature T

c

/J and critical transverse field h
c

/J can be
extrapolated computing the Binder cumulant and apply-
ing finite size scaling.
The Hamiltonian of the 2D-TFIM is non-local expressed
in terms of Fermi operators after the 2D-Jordan-Wigner
transformation [72–79], so that it cannot be diagonalized
by a transformation to a system of free fermions like the
Hamiltonian of the 1D-TFIM [80, 81]. For this reason
its relaxation process after a quench cannot be described
with the semiclassical theory of non-interacting quasipar-
ticles introduced for the 1D-TFIM in Ref. [20] either.

III. QUENCH PROTOCOL AND EFFECTIVE
TEMPERATURE

We drive the system out of equilibrium by a global
quench, i.e. we prepare it in its ground state | 

i,0i for
given parameters J

i

and h
i

of the Hamiltonian and at
t = 0 we instantaneously change the coupling strength
and the external transverse field to new values J

f

and h
f

respectively at each site of the lattice. To characterize
the quenches we use the notation

(J
i

;h
i

) ! (J
f

;h
f

) . (7)

T
/J

h/J

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10

• L = 4
• L = 8
• L = 16
• L = 32

T
/J

h/J

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5

ferromagnetic

paramagnetic

FIG. 2: (Colour online). E↵ective temperature attributed to
interaction quenches (h/J = 1 ! h/J , main plot) and field
quenches (h/J = 0 ! h/J , inset) for di↵erent system sizes.
The shaded area represents the ferromagnetic phase for the
system in the thermodynamic limit.

The energy change in the system due to the quench is

�E = E
f

� E
i,0 (8)

with E
f

=
P

� Ef,�| h i,0| f,�i |2 the expectation value of
the energy in the system after the quench. The E

f,� are

the eigenvalues of the final Hamiltonian Ĥ
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(bottom) of the 2D-TFIM with PBC on a square lattice of
size 16⇥ 16 computed with a cluster Monte Carlo algorithm
in continuous imaginary time [71]. Each data point is an
average over 105 samples.

for a 16 ⇥ 16 system. Already for this system size one
observes only small deviations from the results for the
system in the thermodynamic limit, whose critical tem-
perature T

c

/J and critical transverse field h
c

/J can be
extrapolated computing the Binder cumulant and apply-
ing finite size scaling.
The Hamiltonian of the 2D-TFIM is non-local expressed
in terms of Fermi operators after the 2D-Jordan-Wigner
transformation [72–79], so that it cannot be diagonalized
by a transformation to a system of free fermions like the
Hamiltonian of the 1D-TFIM [80, 81]. For this reason
its relaxation process after a quench cannot be described
with the semiclassical theory of non-interacting quasipar-
ticles introduced for the 1D-TFIM in Ref. [20] either.

III. QUENCH PROTOCOL AND EFFECTIVE
TEMPERATURE

We drive the system out of equilibrium by a global
quench, i.e. we prepare it in its ground state | 

i,0i for
given parameters J

i

and h
i

of the Hamiltonian and at
t = 0 we instantaneously change the coupling strength
and the external transverse field to new values J

f

and h
f

respectively at each site of the lattice. To characterize
the quenches we use the notation

(J
i

;h
i

) ! (J
f

;h
f

) . (7)

T
/J

h/J

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10

• L = 4
• L = 8
• L = 16
• L = 32

T
/J

h/J

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5

ferromagnetic

paramagnetic

FIG. 2: (Colour online). E↵ective temperature attributed to
interaction quenches (h/J = 1 ! h/J , main plot) and field
quenches (h/J = 0 ! h/J , inset) for di↵erent system sizes.
The shaded area represents the ferromagnetic phase for the
system in the thermodynamic limit.

The energy change in the system due to the quench is

�E = E
f

� E
i,0 (8)

with E
f

=
P

� Ef,�| h i,0| f,�i |2 the expectation value of
the energy in the system after the quench. The E

f,� are

the eigenvalues of the final Hamiltonian Ĥ
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Time evolution 

4

with Ẽ
i,0 = �J . Both initial states respect the global

2

spin flip symmetry.
For the determination of the e↵ective temperature after
the interaction quenches and after the field quenches the
thermal energy (lower panel of FIG. 1) of the final Hamil-
tonian has to be equal to the ground state energy of the
system before the quench. Results for T

e↵

for interac-
tion and field quenches are shown in FIG. 2 for di↵er-
ent system sizes. The energy argument predicts that the
end points of the interaction quenches always lie in the
paramagnetic phase, i.e. starting from the completely
uncorrelated state the system cannot be driven into the
ferromagnetic phase switching on a coupling between the
spins. There is a minimum of T

e↵

for h/J ⇡ h
c

/J . A
dependency of the e↵ective temperature on the system
size can only be observed for interaction quenches end-
ing close to the phase transition. Field quenches are pre-
dicted to drive the system out of the ferromagnetic phase
when the external field is quenched to values larger than
h/J ⇡ h

c

/2J . At the phase transition the energy iso-
line Ẽ(h/J ;T/J) = �J , which defines the end points of
the field quenches, shows a turning point, which becomes
more pronounced with increasing system size. In the fer-
romagnetic phase the system size has almost no e↵ect on
the e↵ective temperature attributed to the quench. Only
in the vicinity of the phase transition larger deviations
between the e↵ective temperature can be observed for
di↵erent system sizes.

IV. TIME EVOLUTION

We prepare the system in the ground state of the initial
Hamiltonian Ĥ

i

before the quench, i.e.

| (t = 0)i = | 
i,0i (13)

with | i

0

i according to (11) and (12) respectively.
In general the initial state of the system is not an eigen-
state of the final Hamiltonian, so that the system evolves
unitarily in time according to the Schrödinger equation

| (t)i = e�ı ˆHft | (t = 0)i . (14)

In terms of the eigenbasis of Ĥ
f

the time evolution of the
expectation value of an arbitrary operator Ô reads

hÔit =
X

�

|c
f,�|2O�� +

X

� 6=�0

c⇤
f,�cf,�0eı(Ef,��Ef,�0 )tO��0

(15)

with c
f,� = h 

f,�| (t = 0)i and O��0 = h 
f,�|Ô| 

f,�0i.
The diagonal part is time-independent, while the non-
diagonal contributions consist of harmonic oscillations.
Averaging over time the oscillatory part vanishes in the
long time limit, so that the stationary state is determined
only by the diagonal part:

lim
T!1

1

T

Z T

0

dt hÔit =
X

�

|c
f,�|2O�� . (16)

The stationary state of the system can thus be described
by the so-called diagonal ensemble:

hÔi
diag

= Tr[Ô ⇢̂
diag

] (17)

with ⇢̂
diag

=
P

� pf,� | f,�ih f,�| and p
f,� = |c

f,�|2.
For the distributions of the (possibly degenerate) eigen-
values Oj of Ô it is then

p
diag

(Oj) = Tr[�(Oj � Ô) ⇢̂
diag

] . (18)

As the dimension of the Hilbert space H grows exponen-
tially with the system size, the above computations in the
eigenbasis of Ĥ

f

are only possible for small systems with
exact diagonalization. For this reason we use real-time
variational Monte Carlo (rt-VMC) to give an accurate
description of the time evolution of the 2D-TFIM.

V. REAL-TIME VARIATIONAL MONTE
CARLO

Rt-VMC was introduced by Carleo et al. for the Bose-
Hubbard model [82, 83] and has also been successfully ap-
plied to lattice bosons and spin systems with long range
interactions [84] as well as to strongly correlated electron
systems [85]. Its idea is the existence of a set of vari-
ational parameters which are su�cient to describe the
physical properties of the system while their number is
much smaller than the dimension of the Hilbert space.
The equations of motion of the variational parameters
are determined minimizing the Euclidian distance D(t)
between the exact time evolution | ̇

exact

(t)i of the vari-
ational state and its variational time evolution | ̇

var

(t)i,
which reads in the x-basis

D(t) =
X

x

�

� ̇
exact

(x, t)�  ̇
var

(x, t)
�

�

2

. (19)

A common choice for the variational state is the Jastrow
ansatz [82–84], which is well suited to describe the time
evolution of the 2D-TFIM after interaction quenches in
the paramagnetic phase. For the field quenches in the
ferromagnetic phase we introduce a new ansatz, which
makes use of the symmetries of the model and the high
degree of order in this phase. Both ansatz functions re-
duce the number of parameters from a number growing
exponentially with the number of sites to a number grow-
ing algebraically with N .

A. Paramagnetic phase

In the paramagnetic phase we use the Jastrow ansatz
for the variational function. This ansatz is constructed
from the completely uncorrelated state. Correlations are
taken into account by the so-called Jastrow factor. For
the 2D-TFIM the Jastrow ansatz reads [84]

| (t)i = exp
⇣

X

r

↵
r

(t)Ĉxx
r

⌘

|"" . . . ""iz . (20)
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ergy and compare the thermal distributions and the time
averages of the distributions after the quench. The tem-
perature attributed to a quench is called e↵ective tem-

perature T
e↵

. Its conditional equation reads

hĤ
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iTeff

CGE

= E
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In the following we will focus on interaction quenches

(0;h) ! (J ;h) and field quenches (J ; 0) ! (J ;h). These
quenches just lower the ground state energy of the sys-
tem, so that �E = 0 and E

f

= E
i,0. For the interaction

quenches the initial state reads
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i,0/N = �h/2. For the
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FIG. 1: (Colour online). Expectation values of the rescaled
modulus of the magnetization in x-direction per site h ˆ̃µxiCGE

according to (5) (top) and the energy per site hĤiCGE /N
(bottom) of the 2D-TFIM with PBC on a square lattice of
size 16⇥ 16 computed with a cluster Monte Carlo algorithm
in continuous imaginary time [71]. Each data point is an
average over 105 samples.

for a 16 ⇥ 16 system. Already for this system size one
observes only small deviations from the results for the
system in the thermodynamic limit, whose critical tem-
perature T

c

/J and critical transverse field h
c

/J can be
extrapolated computing the Binder cumulant and apply-
ing finite size scaling.
The Hamiltonian of the 2D-TFIM is non-local expressed
in terms of Fermi operators after the 2D-Jordan-Wigner
transformation [72–79], so that it cannot be diagonalized
by a transformation to a system of free fermions like the
Hamiltonian of the 1D-TFIM [80, 81]. For this reason
its relaxation process after a quench cannot be described
with the semiclassical theory of non-interacting quasipar-
ticles introduced for the 1D-TFIM in Ref. [20] either.

III. QUENCH PROTOCOL AND EFFECTIVE
TEMPERATURE
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i,0i for
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and h
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) ! (J
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FIG. 2: (Colour online). E↵ective temperature attributed to
interaction quenches (h/J = 1 ! h/J , main plot) and field
quenches (h/J = 0 ! h/J , inset) for di↵erent system sizes.
The shaded area represents the ferromagnetic phase for the
system in the thermodynamic limit.

The energy change in the system due to the quench is

�E = E
f

� E
i,0 (8)
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� Ef,�| h i,0| f,�i |2 the expectation value of
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f

and | 
f,�i the

corresponding eigenstates.
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due to the quench is the excess energy

E
exc

= E
f

� E
f,0 , (9)

i.e. the energy in the system above its ground state
energy after the quench. One observes that always
E

exc

> 0, while �E can be positive or negative depend-
ing on the quench parameters.
We determine the (positive) temperature of a system in
equilibrium for which the excess energy due to the quench
is equal to the thermal energy above the ground state en-
ergy and compare the thermal distributions and the time
averages of the distributions after the quench. The tem-
perature attributed to a quench is called e↵ective tem-

perature T
e↵

. Its conditional equation reads

hĤ
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iTeff

CGE

= E
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. (10)

In the following we will focus on interaction quenches

(0;h) ! (J ;h) and field quenches (J ; 0) ! (J ;h). These
quenches just lower the ground state energy of the sys-
tem, so that �E = 0 and E
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= E
i,0. For the interaction

quenches the initial state reads
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|xi (11)

with the energy per site Ẽ
i,0 = E

i,0/N = �h/2. For the
field quenches with h
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= 0 it is
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with Ẽ
i,0 = �J . Both initial states respect the global

2

spin flip symmetry.
For the determination of the e↵ective temperature after
the interaction quenches and after the field quenches the
thermal energy (lower panel of FIG. 1) of the final Hamil-
tonian has to be equal to the ground state energy of the
system before the quench. Results for T

e↵

for interac-
tion and field quenches are shown in FIG. 2 for di↵er-
ent system sizes. The energy argument predicts that the
end points of the interaction quenches always lie in the
paramagnetic phase, i.e. starting from the completely
uncorrelated state the system cannot be driven into the
ferromagnetic phase switching on a coupling between the
spins. There is a minimum of T

e↵

for h/J ⇡ h
c

/J . A
dependency of the e↵ective temperature on the system
size can only be observed for interaction quenches end-
ing close to the phase transition. Field quenches are pre-
dicted to drive the system out of the ferromagnetic phase
when the external field is quenched to values larger than
h/J ⇡ h

c

/2J . At the phase transition the energy iso-
line Ẽ(h/J ;T/J) = �J , which defines the end points of
the field quenches, shows a turning point, which becomes
more pronounced with increasing system size. In the fer-
romagnetic phase the system size has almost no e↵ect on
the e↵ective temperature attributed to the quench. Only
in the vicinity of the phase transition larger deviations
between the e↵ective temperature can be observed for
di↵erent system sizes.

IV. TIME EVOLUTION

We prepare the system in the ground state of the initial
Hamiltonian Ĥ

i

before the quench, i.e.

| (t = 0)i = | 
i,0i (13)

with | i

0

i according to (11) and (12) respectively.
In general the initial state of the system is not an eigen-
state of the final Hamiltonian, so that the system evolves
unitarily in time according to the Schrödinger equation

| (t)i = e�ı ˆHft | (t = 0)i . (14)

In terms of the eigenbasis of Ĥ
f

the time evolution of the
expectation value of an arbitrary operator Ô reads

hÔit =
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f,�cf,�0eı(Ef,��Ef,�0 )tO��0

(15)

with c
f,� = h 

f,�| (t = 0)i and O��0 = h 
f,�|Ô| 

f,�0i.
The diagonal part is time-independent, while the non-
diagonal contributions consist of harmonic oscillations.
Averaging over time the oscillatory part vanishes in the
long time limit, so that the stationary state is determined
only by the diagonal part:

lim
T!1

1

T

Z T

0

dt hÔit =
X

�

|c
f,�|2O�� . (16)

The stationary state of the system can thus be described
by the so-called diagonal ensemble:

hÔi
diag

= Tr[Ô ⇢̂
diag

] (17)

with ⇢̂
diag

=
P

� pf,� | f,�ih f,�| and p
f,� = |c

f,�|2.
For the distributions of the (possibly degenerate) eigen-
values Oj of Ô it is then

p
diag

(Oj) = Tr[�(Oj � Ô) ⇢̂
diag

] . (18)

As the dimension of the Hilbert space H grows exponen-
tially with the system size, the above computations in the
eigenbasis of Ĥ

f

are only possible for small systems with
exact diagonalization. For this reason we use real-time
variational Monte Carlo (rt-VMC) to give an accurate
description of the time evolution of the 2D-TFIM.

V. REAL-TIME VARIATIONAL MONTE
CARLO

Rt-VMC was introduced by Carleo et al. for the Bose-
Hubbard model [82, 83] and has also been successfully ap-
plied to lattice bosons and spin systems with long range
interactions [84] as well as to strongly correlated electron
systems [85]. Its idea is the existence of a set of vari-
ational parameters which are su�cient to describe the
physical properties of the system while their number is
much smaller than the dimension of the Hilbert space.
The equations of motion of the variational parameters
are determined minimizing the Euclidian distance D(t)
between the exact time evolution | ̇

exact

(t)i of the vari-
ational state and its variational time evolution | ̇

var

(t)i,
which reads in the x-basis

D(t) =
X

x

�

� ̇
exact

(x, t)�  ̇
var

(x, t)
�

�

2

. (19)

A common choice for the variational state is the Jastrow
ansatz [82–84], which is well suited to describe the time
evolution of the 2D-TFIM after interaction quenches in
the paramagnetic phase. For the field quenches in the
ferromagnetic phase we introduce a new ansatz, which
makes use of the symmetries of the model and the high
degree of order in this phase. Both ansatz functions re-
duce the number of parameters from a number growing
exponentially with the number of sites to a number grow-
ing algebraically with N .

A. Paramagnetic phase

In the paramagnetic phase we use the Jastrow ansatz
for the variational function. This ansatz is constructed
from the completely uncorrelated state. Correlations are
taken into account by the so-called Jastrow factor. For
the 2D-TFIM the Jastrow ansatz reads [84]

| (t)i = exp
⇣

X

r

↵
r

(t)Ĉxx
r

⌘

|"" . . . ""iz . (20)
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spin flip symmetry.
For the determination of the e↵ective temperature after
the interaction quenches and after the field quenches the
thermal energy (lower panel of FIG. 1) of the final Hamil-
tonian has to be equal to the ground state energy of the
system before the quench. Results for T

e↵

for interac-
tion and field quenches are shown in FIG. 2 for di↵er-
ent system sizes. The energy argument predicts that the
end points of the interaction quenches always lie in the
paramagnetic phase, i.e. starting from the completely
uncorrelated state the system cannot be driven into the
ferromagnetic phase switching on a coupling between the
spins. There is a minimum of T

e↵

for h/J ⇡ h
c

/J . A
dependency of the e↵ective temperature on the system
size can only be observed for interaction quenches end-
ing close to the phase transition. Field quenches are pre-
dicted to drive the system out of the ferromagnetic phase
when the external field is quenched to values larger than
h/J ⇡ h

c

/2J . At the phase transition the energy iso-
line Ẽ(h/J ;T/J) = �J , which defines the end points of
the field quenches, shows a turning point, which becomes
more pronounced with increasing system size. In the fer-
romagnetic phase the system size has almost no e↵ect on
the e↵ective temperature attributed to the quench. Only
in the vicinity of the phase transition larger deviations
between the e↵ective temperature can be observed for
di↵erent system sizes.

IV. TIME EVOLUTION

We prepare the system in the ground state of the initial
Hamiltonian Ĥ

i

before the quench, i.e.

| (t = 0)i = | 
i,0i (13)

with | i

0

i according to (11) and (12) respectively.
In general the initial state of the system is not an eigen-
state of the final Hamiltonian, so that the system evolves
unitarily in time according to the Schrödinger equation

| (t)i = e�ı ˆHft | (t = 0)i . (14)

In terms of the eigenbasis of Ĥ
f

the time evolution of the
expectation value of an arbitrary operator Ô reads

hÔit =
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with c
f,� = h 

f,�| (t = 0)i and O��0 = h 
f,�|Ô| 

f,�0i.
The diagonal part is time-independent, while the non-
diagonal contributions consist of harmonic oscillations.
Averaging over time the oscillatory part vanishes in the
long time limit, so that the stationary state is determined
only by the diagonal part:

lim
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0

dt hÔit =
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f,�|2O�� . (16)

The stationary state of the system can thus be described
by the so-called diagonal ensemble:

hÔi
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= Tr[Ô ⇢̂
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] (17)

with ⇢̂
diag

=
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� pf,� | f,�ih f,�| and p
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f,�|2.
For the distributions of the (possibly degenerate) eigen-
values Oj of Ô it is then

p
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(Oj) = Tr[�(Oj � Ô) ⇢̂
diag

] . (18)

As the dimension of the Hilbert space H grows exponen-
tially with the system size, the above computations in the
eigenbasis of Ĥ

f

are only possible for small systems with
exact diagonalization. For this reason we use real-time
variational Monte Carlo (rt-VMC) to give an accurate
description of the time evolution of the 2D-TFIM.

V. REAL-TIME VARIATIONAL MONTE
CARLO

Rt-VMC was introduced by Carleo et al. for the Bose-
Hubbard model [82, 83] and has also been successfully ap-
plied to lattice bosons and spin systems with long range
interactions [84] as well as to strongly correlated electron
systems [85]. Its idea is the existence of a set of vari-
ational parameters which are su�cient to describe the
physical properties of the system while their number is
much smaller than the dimension of the Hilbert space.
The equations of motion of the variational parameters
are determined minimizing the Euclidian distance D(t)
between the exact time evolution | ̇

exact

(t)i of the vari-
ational state and its variational time evolution | ̇

var

(t)i,
which reads in the x-basis
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A common choice for the variational state is the Jastrow
ansatz [82–84], which is well suited to describe the time
evolution of the 2D-TFIM after interaction quenches in
the paramagnetic phase. For the field quenches in the
ferromagnetic phase we introduce a new ansatz, which
makes use of the symmetries of the model and the high
degree of order in this phase. Both ansatz functions re-
duce the number of parameters from a number growing
exponentially with the number of sites to a number grow-
ing algebraically with N .

A. Paramagnetic phase

In the paramagnetic phase we use the Jastrow ansatz
for the variational function. This ansatz is constructed
from the completely uncorrelated state. Correlations are
taken into account by the so-called Jastrow factor. For
the 2D-TFIM the Jastrow ansatz reads [84]
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with Ẽ
i,0 = �J . Both initial states respect the global
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spin flip symmetry.
For the determination of the e↵ective temperature after
the interaction quenches and after the field quenches the
thermal energy (lower panel of FIG. 1) of the final Hamil-
tonian has to be equal to the ground state energy of the
system before the quench. Results for T

e↵

for interac-
tion and field quenches are shown in FIG. 2 for di↵er-
ent system sizes. The energy argument predicts that the
end points of the interaction quenches always lie in the
paramagnetic phase, i.e. starting from the completely
uncorrelated state the system cannot be driven into the
ferromagnetic phase switching on a coupling between the
spins. There is a minimum of T

e↵

for h/J ⇡ h
c

/J . A
dependency of the e↵ective temperature on the system
size can only be observed for interaction quenches end-
ing close to the phase transition. Field quenches are pre-
dicted to drive the system out of the ferromagnetic phase
when the external field is quenched to values larger than
h/J ⇡ h

c

/2J . At the phase transition the energy iso-
line Ẽ(h/J ;T/J) = �J , which defines the end points of
the field quenches, shows a turning point, which becomes
more pronounced with increasing system size. In the fer-
romagnetic phase the system size has almost no e↵ect on
the e↵ective temperature attributed to the quench. Only
in the vicinity of the phase transition larger deviations
between the e↵ective temperature can be observed for
di↵erent system sizes.

IV. TIME EVOLUTION

We prepare the system in the ground state of the initial
Hamiltonian Ĥ

i

before the quench, i.e.

| (t = 0)i = | 
i,0i (13)

with | i

0

i according to (11) and (12) respectively.
In general the initial state of the system is not an eigen-
state of the final Hamiltonian, so that the system evolves
unitarily in time according to the Schrödinger equation

| (t)i = e�ı ˆHft | (t = 0)i . (14)

In terms of the eigenbasis of Ĥ
f

the time evolution of the
expectation value of an arbitrary operator Ô reads

hÔit =
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(15)

with c
f,� = h 

f,�| (t = 0)i and O��0 = h 
f,�|Ô| 

f,�0i.
The diagonal part is time-independent, while the non-
diagonal contributions consist of harmonic oscillations.
Averaging over time the oscillatory part vanishes in the
long time limit, so that the stationary state is determined
only by the diagonal part:

lim
T!1
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dt hÔit =
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f,�|2O�� . (16)

The stationary state of the system can thus be described
by the so-called diagonal ensemble:

hÔi
diag

= Tr[Ô ⇢̂
diag

] (17)

with ⇢̂
diag

=
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� pf,� | f,�ih f,�| and p
f,� = |c
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For the distributions of the (possibly degenerate) eigen-
values Oj of Ô it is then

p
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(Oj) = Tr[�(Oj � Ô) ⇢̂
diag

] . (18)

As the dimension of the Hilbert space H grows exponen-
tially with the system size, the above computations in the
eigenbasis of Ĥ

f

are only possible for small systems with
exact diagonalization. For this reason we use real-time
variational Monte Carlo (rt-VMC) to give an accurate
description of the time evolution of the 2D-TFIM.

V. REAL-TIME VARIATIONAL MONTE
CARLO

Rt-VMC was introduced by Carleo et al. for the Bose-
Hubbard model [82, 83] and has also been successfully ap-
plied to lattice bosons and spin systems with long range
interactions [84] as well as to strongly correlated electron
systems [85]. Its idea is the existence of a set of vari-
ational parameters which are su�cient to describe the
physical properties of the system while their number is
much smaller than the dimension of the Hilbert space.
The equations of motion of the variational parameters
are determined minimizing the Euclidian distance D(t)
between the exact time evolution | ̇

exact

(t)i of the vari-
ational state and its variational time evolution | ̇

var

(t)i,
which reads in the x-basis
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A common choice for the variational state is the Jastrow
ansatz [82–84], which is well suited to describe the time
evolution of the 2D-TFIM after interaction quenches in
the paramagnetic phase. For the field quenches in the
ferromagnetic phase we introduce a new ansatz, which
makes use of the symmetries of the model and the high
degree of order in this phase. Both ansatz functions re-
duce the number of parameters from a number growing
exponentially with the number of sites to a number grow-
ing algebraically with N .

A. Paramagnetic phase

In the paramagnetic phase we use the Jastrow ansatz
for the variational function. This ansatz is constructed
from the completely uncorrelated state. Correlations are
taken into account by the so-called Jastrow factor. For
the 2D-TFIM the Jastrow ansatz reads [84]
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spin flip symmetry.
For the determination of the e↵ective temperature after
the interaction quenches and after the field quenches the
thermal energy (lower panel of FIG. 1) of the final Hamil-
tonian has to be equal to the ground state energy of the
system before the quench. Results for T

e↵

for interac-
tion and field quenches are shown in FIG. 2 for di↵er-
ent system sizes. The energy argument predicts that the
end points of the interaction quenches always lie in the
paramagnetic phase, i.e. starting from the completely
uncorrelated state the system cannot be driven into the
ferromagnetic phase switching on a coupling between the
spins. There is a minimum of T

e↵

for h/J ⇡ h
c

/J . A
dependency of the e↵ective temperature on the system
size can only be observed for interaction quenches end-
ing close to the phase transition. Field quenches are pre-
dicted to drive the system out of the ferromagnetic phase
when the external field is quenched to values larger than
h/J ⇡ h
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/2J . At the phase transition the energy iso-
line Ẽ(h/J ;T/J) = �J , which defines the end points of
the field quenches, shows a turning point, which becomes
more pronounced with increasing system size. In the fer-
romagnetic phase the system size has almost no e↵ect on
the e↵ective temperature attributed to the quench. Only
in the vicinity of the phase transition larger deviations
between the e↵ective temperature can be observed for
di↵erent system sizes.

IV. TIME EVOLUTION

We prepare the system in the ground state of the initial
Hamiltonian Ĥ

i

before the quench, i.e.

| (t = 0)i = | 
i,0i (13)

with | i

0

i according to (11) and (12) respectively.
In general the initial state of the system is not an eigen-
state of the final Hamiltonian, so that the system evolves
unitarily in time according to the Schrödinger equation

| (t)i = e�ı ˆHft | (t = 0)i . (14)

In terms of the eigenbasis of Ĥ
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the time evolution of the
expectation value of an arbitrary operator Ô reads
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with c
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f,�| (t = 0)i and O��0 = h 
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f,�0i.
The diagonal part is time-independent, while the non-
diagonal contributions consist of harmonic oscillations.
Averaging over time the oscillatory part vanishes in the
long time limit, so that the stationary state is determined
only by the diagonal part:

lim
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The stationary state of the system can thus be described
by the so-called diagonal ensemble:
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] (17)

with ⇢̂
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=
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For the distributions of the (possibly degenerate) eigen-
values Oj of Ô it is then
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As the dimension of the Hilbert space H grows exponen-
tially with the system size, the above computations in the
eigenbasis of Ĥ

f

are only possible for small systems with
exact diagonalization. For this reason we use real-time
variational Monte Carlo (rt-VMC) to give an accurate
description of the time evolution of the 2D-TFIM.

V. REAL-TIME VARIATIONAL MONTE
CARLO

Rt-VMC was introduced by Carleo et al. for the Bose-
Hubbard model [82, 83] and has also been successfully ap-
plied to lattice bosons and spin systems with long range
interactions [84] as well as to strongly correlated electron
systems [85]. Its idea is the existence of a set of vari-
ational parameters which are su�cient to describe the
physical properties of the system while their number is
much smaller than the dimension of the Hilbert space.
The equations of motion of the variational parameters
are determined minimizing the Euclidian distance D(t)
between the exact time evolution | ̇

exact

(t)i of the vari-
ational state and its variational time evolution | ̇

var

(t)i,
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A common choice for the variational state is the Jastrow
ansatz [82–84], which is well suited to describe the time
evolution of the 2D-TFIM after interaction quenches in
the paramagnetic phase. For the field quenches in the
ferromagnetic phase we introduce a new ansatz, which
makes use of the symmetries of the model and the high
degree of order in this phase. Both ansatz functions re-
duce the number of parameters from a number growing
exponentially with the number of sites to a number grow-
ing algebraically with N .

A. Paramagnetic phase

In the paramagnetic phase we use the Jastrow ansatz
for the variational function. This ansatz is constructed
from the completely uncorrelated state. Correlations are
taken into account by the so-called Jastrow factor. For
the 2D-TFIM the Jastrow ansatz reads [84]
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with Ẽ
i,0 = �J . Both initial states respect the global

2

spin flip symmetry.
For the determination of the e↵ective temperature after
the interaction quenches and after the field quenches the
thermal energy (lower panel of FIG. 1) of the final Hamil-
tonian has to be equal to the ground state energy of the
system before the quench. Results for T

e↵

for interac-
tion and field quenches are shown in FIG. 2 for di↵er-
ent system sizes. The energy argument predicts that the
end points of the interaction quenches always lie in the
paramagnetic phase, i.e. starting from the completely
uncorrelated state the system cannot be driven into the
ferromagnetic phase switching on a coupling between the
spins. There is a minimum of T

e↵

for h/J ⇡ h
c

/J . A
dependency of the e↵ective temperature on the system
size can only be observed for interaction quenches end-
ing close to the phase transition. Field quenches are pre-
dicted to drive the system out of the ferromagnetic phase
when the external field is quenched to values larger than
h/J ⇡ h

c

/2J . At the phase transition the energy iso-
line Ẽ(h/J ;T/J) = �J , which defines the end points of
the field quenches, shows a turning point, which becomes
more pronounced with increasing system size. In the fer-
romagnetic phase the system size has almost no e↵ect on
the e↵ective temperature attributed to the quench. Only
in the vicinity of the phase transition larger deviations
between the e↵ective temperature can be observed for
di↵erent system sizes.

IV. TIME EVOLUTION

We prepare the system in the ground state of the initial
Hamiltonian Ĥ

i

before the quench, i.e.

| (t = 0)i = | 
i,0i (13)

with | i

0

i according to (11) and (12) respectively.
In general the initial state of the system is not an eigen-
state of the final Hamiltonian, so that the system evolves
unitarily in time according to the Schrödinger equation

| (t)i = e�ı ˆHft | (t = 0)i . (14)

In terms of the eigenbasis of Ĥ
f

the time evolution of the
expectation value of an arbitrary operator Ô reads
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with c
f,� = h 

f,�| (t = 0)i and O��0 = h 
f,�|Ô| 

f,�0i.
The diagonal part is time-independent, while the non-
diagonal contributions consist of harmonic oscillations.
Averaging over time the oscillatory part vanishes in the
long time limit, so that the stationary state is determined
only by the diagonal part:

lim
T!1

1

T

Z T

0

dt hÔit =
X

�

|c
f,�|2O�� . (16)

The stationary state of the system can thus be described
by the so-called diagonal ensemble:

hÔi
diag

= Tr[Ô ⇢̂
diag

] (17)

with ⇢̂
diag

=
P

� pf,� | f,�ih f,�| and p
f,� = |c

f,�|2.
For the distributions of the (possibly degenerate) eigen-
values Oj of Ô it is then

p
diag

(Oj) = Tr[�(Oj � Ô) ⇢̂
diag

] . (18)

As the dimension of the Hilbert space H grows exponen-
tially with the system size, the above computations in the
eigenbasis of Ĥ

f

are only possible for small systems with
exact diagonalization. For this reason we use real-time
variational Monte Carlo (rt-VMC) to give an accurate
description of the time evolution of the 2D-TFIM.

V. REAL-TIME VARIATIONAL MONTE
CARLO

Rt-VMC was introduced by Carleo et al. for the Bose-
Hubbard model [82, 83] and has also been successfully ap-
plied to lattice bosons and spin systems with long range
interactions [84] as well as to strongly correlated electron
systems [85]. Its idea is the existence of a set of vari-
ational parameters which are su�cient to describe the
physical properties of the system while their number is
much smaller than the dimension of the Hilbert space.
The equations of motion of the variational parameters
are determined minimizing the Euclidian distance D(t)
between the exact time evolution | ̇

exact

(t)i of the vari-
ational state and its variational time evolution | ̇

var

(t)i,
which reads in the x-basis

D(t) =
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� ̇
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(x, t)�  ̇
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(x, t)
�

�

2

. (19)

A common choice for the variational state is the Jastrow
ansatz [82–84], which is well suited to describe the time
evolution of the 2D-TFIM after interaction quenches in
the paramagnetic phase. For the field quenches in the
ferromagnetic phase we introduce a new ansatz, which
makes use of the symmetries of the model and the high
degree of order in this phase. Both ansatz functions re-
duce the number of parameters from a number growing
exponentially with the number of sites to a number grow-
ing algebraically with N .

A. Paramagnetic phase

In the paramagnetic phase we use the Jastrow ansatz
for the variational function. This ansatz is constructed
from the completely uncorrelated state. Correlations are
taken into account by the so-called Jastrow factor. For
the 2D-TFIM the Jastrow ansatz reads [84]
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romagnetic phase the system size has almost no e↵ect on
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As the dimension of the Hilbert space H grows exponen-
tially with the system size, the above computations in the
eigenbasis of Ĥ
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are only possible for small systems with
exact diagonalization. For this reason we use real-time
variational Monte Carlo (rt-VMC) to give an accurate
description of the time evolution of the 2D-TFIM.
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Rt-VMC was introduced by Carleo et al. for the Bose-
Hubbard model [82, 83] and has also been successfully ap-
plied to lattice bosons and spin systems with long range
interactions [84] as well as to strongly correlated electron
systems [85]. Its idea is the existence of a set of vari-
ational parameters which are su�cient to describe the
physical properties of the system while their number is
much smaller than the dimension of the Hilbert space.
The equations of motion of the variational parameters
are determined minimizing the Euclidian distance D(t)
between the exact time evolution | ̇
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A common choice for the variational state is the Jastrow
ansatz [82–84], which is well suited to describe the time
evolution of the 2D-TFIM after interaction quenches in
the paramagnetic phase. For the field quenches in the
ferromagnetic phase we introduce a new ansatz, which
makes use of the symmetries of the model and the high
degree of order in this phase. Both ansatz functions re-
duce the number of parameters from a number growing
exponentially with the number of sites to a number grow-
ing algebraically with N .

A. Paramagnetic phase

In the paramagnetic phase we use the Jastrow ansatz
for the variational function. This ansatz is constructed
from the completely uncorrelated state. Correlations are
taken into account by the so-called Jastrow factor. For
the 2D-TFIM the Jastrow ansatz reads [84]
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Techniques for non-integrable systems 
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2d	TFIM	Non-integrable	(in	parIcular	not	a	free	fermion	model	as	in	1d)	!	

L	x	L	square	lance,	
p.b.c.	

What	can	one	do	to	study	the	(n.eq.)	dynamics	?	

1)  Mean	field	theory	(or	truncated	hierarchy	of	correlaIons)	
2)  Exact	diaginalizaIon	of	snall	systems	(up	L=4	or	5)	
3)  Time	series	expansion	
4)  PerturbaIon	theory	(e.g.	in	h)	
5)  Time	dependent	variaIonal	calculaIons	
6)  Real	Ime	Quantum	Monte	Carlo	
7)  Quantum	Boltzmann	equaIon	(?)	
8)  ...	

2

The ETH is a su�cient but not a necessary condition
for thermalization and has been applied to a wide vari-
ety of systems. For the 2D-TFIM it predicts quantum
chaos and eigenstate thermalization whenever the fields
are non-vanishing and not too large [61, 62].
In contrast to the widespread usage of the ETH there
are only few studies on thermalization relying on the
computation of the time evolution of non-integrable sys-
tems for system sizes larger than those accessible with
exact diagonalization. These include studies of the one-
dimensional Bose Hubbard model with time-dependent
density matrix renormalization group theory (t-DMRG)
[6] and studies of the antiferromagnetic anisotropic
Heisenberg chain using a Chebyshev polynomial expan-
sion [63, 64]. In higher dimensions there are results for a
D-dimensional e↵ective O(N)-Hamiltonian close to dy-
namical critical points based on a renormalization-group
method [65–67].
Here we present for the first time a systematic investi-
gation of the relaxation dynamics of a two-dimensional,
non-integrable model going beyond system sizes accessi-
ble with exact diagonalization and valid for large areas of
the phase diagram. We study the transverse-field Ising
model in two dimensions (2D-TFIM) after global inter-
action quenches in the paramagnetic phase and global
field quenches in the ferromagnetic phase. In contrast
to the Ising chain in one dimension the 2D model is
non-integrable and cannot be solved analytically. Our
studies rely on real-time variational Monte Carlo (rt-
VMC), which allows us to compute the time evolution of
observables like the magnetization and correlation func-
tions with high accuracy for long time scales and large
system sizes. To answer the question whether the 2D-
TFIM thermalizes or not we compare the time-averaged
distributions of the observables to their thermal distri-
butions for the system in equilibrium at temperatures
determined by the excess energy after the quench. For
a system that thermalizes one would expect the asymp-
totic time-averaged distributions and the thermal distri-
butions to be identical. We discuss our results with re-
spect to the theorem on generalized thermalization from
Ref. [52]. For the interaction quenches in the paramag-
netic phase, for which the conditions of the theorem are
fulfilled, we indeed observe thermalization in agreement
with the exact theorem. For the field quenches in the
ferromagnetic phase on the other hand we show that the
conditions of the exact theorem are not fulfilled and find
a continuously increasing degree of non-thermalization
with increasing quench strength.
The paper is organized as follows: In Sec. II we intro-
duce the 2D-TFIM. The quench protocol and the defini-
tion of the e↵ective temperature of the system after the
quench are described in Sec. III. In Sec. IV we give a gen-
eral discussion of the time evolution of the system after
the quench, followed by the description of our rt-VMC
algorithm in Sec.V. In Sec.VI we introduce the observ-
ables. The results are presented in Sec.VII and discussed
with respect to the theorem on generalized thermaliza-

tion from Ref. [52] in Sec.VIII. In Sec. IX we summarize
our results and present our conclusions.

II. THE MODEL

We study the 2D-TFIM with nearest neighbour inter-
actions on a square lattice of size L ⇥ L with periodic
boundary conditions (PBC). The model is described by
the Hamiltonian

Ĥ = �J

2

X

<R,R0>

�̂x
R

�̂x
R

0 � h

2

X

R

�̂z
R

(3)

with the coupling strength J and the external trans-
verse field h. The total number of spins in the system
is N = L2, thus the dimension of the Hilbert space is
dim(H) = 2N . As basis of H we choose the x-basis, in
which the operator �̂x

R

measures the orientation of the
spin at site R, while �̂z

R

inverts it.
The model is highly symmetric. Its Hamiltonian is
invariant under the global

2

spin flip transformation
�̂x
R

! ��̂x
R

and �̂z
R

! �̂z
R

generated by the unitary oper-
ator ⌃̂z = ⇧

R

�̂z
R

with (⌃̂z)2 = ˆ and [Ĥ, ⌃̂z] = 0. Due to
the square lattice with PBC the Hamiltonian also shows
translation, rotation and reflection symmetries. Their
generators can be constructed from the unitary transpo-
sition operators T̂

R,R0 = 1

2

(ˆ + ~̂�
R

· ~̂�
R

0), which inter-
change two sites �̂x

R

$ �̂x
R

0 and �̂z
R

$ �̂z
R

0 and for which
(T̂

R,R0)2 = ˆ. The symmetries of the Hamiltonian are
passed on to its eigenstates and are conserved under the
unitary time evolution.
Ferromagnetic long-range order exists in the thermody-
namic limit (L ! 1) at low temperatures and fields due
to spontaneous symmetry breaking and is indicated by a
non-vanishing magnetization in x-direction per site

µ̂x =
1

N

X

R

�̂x
R

. (4)

For h = 0 the equilibrium phase transition occurs at
T
c

/J ⇡ 1.135 (Ref. [68]) and for T = 0 at h
c

/J ⇡ 3.044
(Refs. [69–71]). For finite system sizes there is no sponta-
neous symmetry breaking, so that the expectation value
of µ̂x is always zero due to the global

2

spin flip sym-
metry. For this reason we consider the modulus of the
magnetization as order parameter, which we renormalize
according to

ˆ̃µx =
|µ̂x|� LB

1� LB
(5)

with

LB =
1

2N�1

N/2�1

X

m=0

✓

N
m

◆

N � 2m

N
⇠ 1

L
(6)

its lower bound known from combinatorics. In the upper
panel of FIG. 1 the phase diagram of h ˆ̃µxi

CGE

is shown
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spin flip symmetry.
For the determination of the e↵ective temperature after
the interaction quenches and after the field quenches the
thermal energy (lower panel of FIG. 1) of the final Hamil-
tonian has to be equal to the ground state energy of the
system before the quench. Results for T
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for interac-
tion and field quenches are shown in FIG. 2 for di↵er-
ent system sizes. The energy argument predicts that the
end points of the interaction quenches always lie in the
paramagnetic phase, i.e. starting from the completely
uncorrelated state the system cannot be driven into the
ferromagnetic phase switching on a coupling between the
spins. There is a minimum of T
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/J . A
dependency of the e↵ective temperature on the system
size can only be observed for interaction quenches end-
ing close to the phase transition. Field quenches are pre-
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when the external field is quenched to values larger than
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line Ẽ(h/J ;T/J) = �J , which defines the end points of
the field quenches, shows a turning point, which becomes
more pronounced with increasing system size. In the fer-
romagnetic phase the system size has almost no e↵ect on
the e↵ective temperature attributed to the quench. Only
in the vicinity of the phase transition larger deviations
between the e↵ective temperature can be observed for
di↵erent system sizes.
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state of the final Hamiltonian, so that the system evolves
unitarily in time according to the Schrödinger equation
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In terms of the eigenbasis of Ĥ
f

the time evolution of the
expectation value of an arbitrary operator Ô reads

hÔit =
X

�

|c
f,�|2O�� +

X

� 6=�0
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f,�cf,�0eı(Ef,��Ef,�0 )tO��0

(15)

with c
f,� = h 

f,�| (t = 0)i and O��0 = h 
f,�|Ô| 

f,�0i.
The diagonal part is time-independent, while the non-
diagonal contributions consist of harmonic oscillations.
Averaging over time the oscillatory part vanishes in the
long time limit, so that the stationary state is determined
only by the diagonal part:

lim
T!1
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T

Z T

0

dt hÔit =
X

�

|c
f,�|2O�� . (16)

The stationary state of the system can thus be described
by the so-called diagonal ensemble:

hÔi
diag

= Tr[Ô ⇢̂
diag

] (17)

with ⇢̂
diag

=
P

� pf,� | f,�ih f,�| and p
f,� = |c

f,�|2.
For the distributions of the (possibly degenerate) eigen-
values Oj of Ô it is then

p
diag

(Oj) = Tr[�(Oj � Ô) ⇢̂
diag

] . (18)

As the dimension of the Hilbert space H grows exponen-
tially with the system size, the above computations in the
eigenbasis of Ĥ

f

are only possible for small systems with
exact diagonalization. For this reason we use real-time
variational Monte Carlo (rt-VMC) to give an accurate
description of the time evolution of the 2D-TFIM.

V. REAL-TIME VARIATIONAL MONTE
CARLO

Rt-VMC was introduced by Carleo et al. for the Bose-
Hubbard model [82, 83] and has also been successfully ap-
plied to lattice bosons and spin systems with long range
interactions [84] as well as to strongly correlated electron
systems [85]. Its idea is the existence of a set of vari-
ational parameters which are su�cient to describe the
physical properties of the system while their number is
much smaller than the dimension of the Hilbert space.
The equations of motion of the variational parameters
are determined minimizing the Euclidian distance D(t)
between the exact time evolution | ̇

exact

(t)i of the vari-
ational state and its variational time evolution | ̇

var

(t)i,
which reads in the x-basis

D(t) =
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2

. (19)

A common choice for the variational state is the Jastrow
ansatz [82–84], which is well suited to describe the time
evolution of the 2D-TFIM after interaction quenches in
the paramagnetic phase. For the field quenches in the
ferromagnetic phase we introduce a new ansatz, which
makes use of the symmetries of the model and the high
degree of order in this phase. Both ansatz functions re-
duce the number of parameters from a number growing
exponentially with the number of sites to a number grow-
ing algebraically with N .

A. Paramagnetic phase

In the paramagnetic phase we use the Jastrow ansatz
for the variational function. This ansatz is constructed
from the completely uncorrelated state. Correlations are
taken into account by the so-called Jastrow factor. For
the 2D-TFIM the Jastrow ansatz reads [84]

| (t)i = exp
⇣

X

r

↵
r

(t)Ĉxx
r

⌘

|"" . . . ""iz . (20)
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In general the initial state of the system is not an eigen-
state of the final Hamiltonian, so that the system evolves
unitarily in time according to the Schrödinger equation

| (t)i = e�ı ˆHft | (t = 0)i . (14)

In terms of the eigenbasis of Ĥ
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with c
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f,�| (t = 0)i and O��0 = h 
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f,�0i.
The diagonal part is time-independent, while the non-
diagonal contributions consist of harmonic oscillations.
Averaging over time the oscillatory part vanishes in the
long time limit, so that the stationary state is determined
only by the diagonal part:

lim
T!1

1

T

Z T

0

dt hÔit =
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The stationary state of the system can thus be described
by the so-called diagonal ensemble:

hÔi
diag

= Tr[Ô ⇢̂
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] (17)

with ⇢̂
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=
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For the distributions of the (possibly degenerate) eigen-
values Oj of Ô it is then
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(Oj) = Tr[�(Oj � Ô) ⇢̂
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] . (18)

As the dimension of the Hilbert space H grows exponen-
tially with the system size, the above computations in the
eigenbasis of Ĥ

f

are only possible for small systems with
exact diagonalization. For this reason we use real-time
variational Monte Carlo (rt-VMC) to give an accurate
description of the time evolution of the 2D-TFIM.

V. REAL-TIME VARIATIONAL MONTE
CARLO

Rt-VMC was introduced by Carleo et al. for the Bose-
Hubbard model [82, 83] and has also been successfully ap-
plied to lattice bosons and spin systems with long range
interactions [84] as well as to strongly correlated electron
systems [85]. Its idea is the existence of a set of vari-
ational parameters which are su�cient to describe the
physical properties of the system while their number is
much smaller than the dimension of the Hilbert space.
The equations of motion of the variational parameters
are determined minimizing the Euclidian distance D(t)
between the exact time evolution | ̇

exact

(t)i of the vari-
ational state and its variational time evolution | ̇

var

(t)i,
which reads in the x-basis

D(t) =
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x
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exact

(x, t)�  ̇
var
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A common choice for the variational state is the Jastrow
ansatz [82–84], which is well suited to describe the time
evolution of the 2D-TFIM after interaction quenches in
the paramagnetic phase. For the field quenches in the
ferromagnetic phase we introduce a new ansatz, which
makes use of the symmetries of the model and the high
degree of order in this phase. Both ansatz functions re-
duce the number of parameters from a number growing
exponentially with the number of sites to a number grow-
ing algebraically with N .

A. Paramagnetic phase

In the paramagnetic phase we use the Jastrow ansatz
for the variational function. This ansatz is constructed
from the completely uncorrelated state. Correlations are
taken into account by the so-called Jastrow factor. For
the 2D-TFIM the Jastrow ansatz reads [84]
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The operators
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r

=
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N
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X

R

�̂x
R

�̂x
R+r

(21)

measure the correlations between all spin pairs of the
system with distance r normalized by their number N

r

.
The sum over r runs over all independent directions in
the lattice, whose number also determines the number of
variational parameters ↵

r

(t), which is N/8+3L/4 for the
square lattice with edge length L. The state |"" . . . ""iz
is the completely uncorrelated state of the system, which
is the exact ground state in the limit h/J ! 1, i.e.
which represents the completely paramagnetic state. In-
serting the Jastrow ansatz (20) into (19), one gets the
following equations of motion for the variational param-
eters [82, 83]:
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�Ĉxx
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0(t) = �ı hElocal

f

(t)�Ĉxx
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it (22)

with �Ô = Ô � hÔit and the local energy Elocal

f

(x, t) =

hx|Ĥ
f

| (t)i / hx| (t)i. The time-dependent expectation
values

hÔit =
P

x

| (x, t)|2O(x)
P

x

| (x, t)|2 . (23)

have to be determined at each time step. We apply a sin-
gle spin flip quantum Monte Carlo algorithm according
to Ref. [86] described in Appendix A.
For the interaction quenches with J

i

= 0 the initial values
of the variational parameters are

↵
r

(t = 0) = 0 . (24)

B. Ferromagnetic phase

Due to its construction from the completely param-
agnetic state, the Jastrow ansatz is well suited for the
paramagnetic phase, but fails to describe the time evo-
lution of the system after field quenches in the ferromag-
netic phase. For this reason we derive in Appendix B the
ansatz

| (t)i =
X

m,n

↵m,n(t) | m,ni (25)

for the field quenches in the ferromagnetic phase and dis-
cuss its applicability. | m,ni is the normalized symmetric
superposition of all basis states with m spin down and n
broken bonds, so-called kinks:

| m,ni =
1

p

Nm,n

Nm,n
X

k=1

| k
m,ni . (26)

The ansatz separates the Hilbert space of the system into
subspaces Hm,n of states with the same magnetization

L 4 8 12 16

number of ↵
m,n

45 848 4551 14834

TABLE I: Number of variational parameters for the ansatz
function (25) for the field quenches as function of the edge L of
the square lattice. In leading order the growth is proportional
to N2.

per site µx
m = (N � 2m)/N and the same energy con-

tribution of the diagonal part of the Hamiltonian per
site "xn = (N � n)/N . The dimension of the subspace
(m,n) is dim(Hm,n) = Nm,n. Transitions between sub-
spaces are induced by spinflips. A spinflip increases or
decreases m by one and keeps n untouched or changes
it by ±2 or ±4. Thus each subspace is linked to up to
10 other subspaces. We denote the total number of tran-
sitions between the subspaces (m,n) and (m0, n0) with
Tm,n;m0,n0 . The Tm,n;m0,n0 are symmetric with respect to
(m,n) $ (m0, n0).
The determination of the Nm,n and the Tm,n;m0,n0 is a
pure combinatorics problem. As for the 2D-TFIM there
are no closed-form expressions for their values and due
to the high dimensionality of the Hilbert space we de-
termine them with rare event sampling (RES) [87] de-
scribed in in Appendix C. As the Nm,n and Tm,n;m0,n0

are independent of the quench parameters, they have to
be determined only once for each system size.
The possible values of n depend on m in a non-trivial
way. In case of the 2D-TFIM not just the maximal num-
ber of kinks is a function of m like in one dimension, but
also their minimal number. The PBC have to be taken
into account, too. In leading order the number of pos-
sible values of n grows linearly with m. As the number
of possible values of m grows linearly with the system
size N , we thus find that the number of variational pa-
rameters grows in leading order with N2. Due to the
symmetry of the variational parameters with respect to
m $ N�m and the conservation of this symmetry under
time evolution, we can reduce the number of independent
variational parameters using ↵m,n(t) = ↵N�m,n(t). For
the system sizes that we studied the exact numbers of
variational parameters are listed in TABLE I.
We derive the equations of motion of the variational
parameters in Appendix D:

ı↵̇m,n(t) = �J (N � n)↵m,n(t)

� h

2

X

m0,n0

tm0,n0
;m,n ↵m0,n0(t) (27)

with tm0,n0
;m,n = Tm0,n0

;m,n/
p

Nm0,n0 Nm,n. The sum
over m0 and n0 runs over all subspaces that can be
reached from any basis state of the subspace (m,n) by
flipping one single spin. The equations of motion of
the variational parameters are thus a system of coupled
linear di↵erential equations of first order with constant
(time-independent) coe�cients, which are known from
the RES. As each subspace is linked to only up to 10
other subspaces, the system is sparse. We solve it with a
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measure the correlations between all spin pairs of the
system with distance r normalized by their number N

r

.
The sum over r runs over all independent directions in
the lattice, whose number also determines the number of
variational parameters ↵

r

(t), which is N/8+3L/4 for the
square lattice with edge length L. The state |"" . . . ""iz
is the completely uncorrelated state of the system, which
is the exact ground state in the limit h/J ! 1, i.e.
which represents the completely paramagnetic state. In-
serting the Jastrow ansatz (20) into (19), one gets the
following equations of motion for the variational param-
eters [82, 83]:
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h�Ĉxx
r

�Ĉxx
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with �Ô = Ô � hÔit and the local energy Elocal
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| (t)i / hx| (t)i. The time-dependent expectation
values
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have to be determined at each time step. We apply a sin-
gle spin flip quantum Monte Carlo algorithm according
to Ref. [86] described in Appendix A.
For the interaction quenches with J

i

= 0 the initial values
of the variational parameters are

↵
r

(t = 0) = 0 . (24)

B. Ferromagnetic phase

Due to its construction from the completely param-
agnetic state, the Jastrow ansatz is well suited for the
paramagnetic phase, but fails to describe the time evo-
lution of the system after field quenches in the ferromag-
netic phase. For this reason we derive in Appendix B the
ansatz

| (t)i =
X

m,n

↵m,n(t) | m,ni (25)

for the field quenches in the ferromagnetic phase and dis-
cuss its applicability. | m,ni is the normalized symmetric
superposition of all basis states with m spin down and n
broken bonds, so-called kinks:
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1
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The ansatz separates the Hilbert space of the system into
subspaces Hm,n of states with the same magnetization
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TABLE I: Number of variational parameters for the ansatz
function (25) for the field quenches as function of the edge L of
the square lattice. In leading order the growth is proportional
to N2.

per site µx
m = (N � 2m)/N and the same energy con-

tribution of the diagonal part of the Hamiltonian per
site "xn = (N � n)/N . The dimension of the subspace
(m,n) is dim(Hm,n) = Nm,n. Transitions between sub-
spaces are induced by spinflips. A spinflip increases or
decreases m by one and keeps n untouched or changes
it by ±2 or ±4. Thus each subspace is linked to up to
10 other subspaces. We denote the total number of tran-
sitions between the subspaces (m,n) and (m0, n0) with
Tm,n;m0,n0 . The Tm,n;m0,n0 are symmetric with respect to
(m,n) $ (m0, n0).
The determination of the Nm,n and the Tm,n;m0,n0 is a
pure combinatorics problem. As for the 2D-TFIM there
are no closed-form expressions for their values and due
to the high dimensionality of the Hilbert space we de-
termine them with rare event sampling (RES) [87] de-
scribed in in Appendix C. As the Nm,n and Tm,n;m0,n0

are independent of the quench parameters, they have to
be determined only once for each system size.
The possible values of n depend on m in a non-trivial
way. In case of the 2D-TFIM not just the maximal num-
ber of kinks is a function of m like in one dimension, but
also their minimal number. The PBC have to be taken
into account, too. In leading order the number of pos-
sible values of n grows linearly with m. As the number
of possible values of m grows linearly with the system
size N , we thus find that the number of variational pa-
rameters grows in leading order with N2. Due to the
symmetry of the variational parameters with respect to
m $ N�m and the conservation of this symmetry under
time evolution, we can reduce the number of independent
variational parameters using ↵m,n(t) = ↵N�m,n(t). For
the system sizes that we studied the exact numbers of
variational parameters are listed in TABLE I.
We derive the equations of motion of the variational
parameters in Appendix D:
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over m0 and n0 runs over all subspaces that can be
reached from any basis state of the subspace (m,n) by
flipping one single spin. The equations of motion of
the variational parameters are thus a system of coupled
linear di↵erential equations of first order with constant
(time-independent) coe�cients, which are known from
the RES. As each subspace is linked to only up to 10
other subspaces, the system is sparse. We solve it with a
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measure the correlations between all spin pairs of the
system with distance r normalized by their number N
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.
The sum over r runs over all independent directions in
the lattice, whose number also determines the number of
variational parameters ↵
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(t), which is N/8+3L/4 for the
square lattice with edge length L. The state |"" . . . ""iz
is the completely uncorrelated state of the system, which
is the exact ground state in the limit h/J ! 1, i.e.
which represents the completely paramagnetic state. In-
serting the Jastrow ansatz (20) into (19), one gets the
following equations of motion for the variational param-
eters [82, 83]:
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with �Ô = Ô � hÔit and the local energy Elocal
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| (t)i / hx| (t)i. The time-dependent expectation
values
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have to be determined at each time step. We apply a sin-
gle spin flip quantum Monte Carlo algorithm according
to Ref. [86] described in Appendix A.
For the interaction quenches with J

i

= 0 the initial values
of the variational parameters are

↵
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(t = 0) = 0 . (24)

B. Ferromagnetic phase

Due to its construction from the completely param-
agnetic state, the Jastrow ansatz is well suited for the
paramagnetic phase, but fails to describe the time evo-
lution of the system after field quenches in the ferromag-
netic phase. For this reason we derive in Appendix B the
ansatz

| (t)i =
X

m,n

↵m,n(t) | m,ni (25)

for the field quenches in the ferromagnetic phase and dis-
cuss its applicability. | m,ni is the normalized symmetric
superposition of all basis states with m spin down and n
broken bonds, so-called kinks:
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The ansatz separates the Hilbert space of the system into
subspaces Hm,n of states with the same magnetization
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TABLE I: Number of variational parameters for the ansatz
function (25) for the field quenches as function of the edge L of
the square lattice. In leading order the growth is proportional
to N2.
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Tm,n;m0,n0 . The Tm,n;m0,n0 are symmetric with respect to
(m,n) $ (m0, n0).
The determination of the Nm,n and the Tm,n;m0,n0 is a
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are no closed-form expressions for their values and due
to the high dimensionality of the Hilbert space we de-
termine them with rare event sampling (RES) [87] de-
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are independent of the quench parameters, they have to
be determined only once for each system size.
The possible values of n depend on m in a non-trivial
way. In case of the 2D-TFIM not just the maximal num-
ber of kinks is a function of m like in one dimension, but
also their minimal number. The PBC have to be taken
into account, too. In leading order the number of pos-
sible values of n grows linearly with m. As the number
of possible values of m grows linearly with the system
size N , we thus find that the number of variational pa-
rameters grows in leading order with N2. Due to the
symmetry of the variational parameters with respect to
m $ N�m and the conservation of this symmetry under
time evolution, we can reduce the number of independent
variational parameters using ↵m,n(t) = ↵N�m,n(t). For
the system sizes that we studied the exact numbers of
variational parameters are listed in TABLE I.
We derive the equations of motion of the variational
parameters in Appendix D:
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linear di↵erential equations of first order with constant
(time-independent) coe�cients, which are known from
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measure the correlations between all spin pairs of the
system with distance r normalized by their number N

r

.
The sum over r runs over all independent directions in
the lattice, whose number also determines the number of
variational parameters ↵
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(t), which is N/8+3L/4 for the
square lattice with edge length L. The state |"" . . . ""iz
is the completely uncorrelated state of the system, which
is the exact ground state in the limit h/J ! 1, i.e.
which represents the completely paramagnetic state. In-
serting the Jastrow ansatz (20) into (19), one gets the
following equations of motion for the variational param-
eters [82, 83]:
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�Ĉxx
r

0 it ↵̇r

0(t) = �ı hElocal

f

(t)�Ĉxx
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with �Ô = Ô � hÔit and the local energy Elocal
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| (t)i / hx| (t)i. The time-dependent expectation
values
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have to be determined at each time step. We apply a sin-
gle spin flip quantum Monte Carlo algorithm according
to Ref. [86] described in Appendix A.
For the interaction quenches with J
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= 0 the initial values
of the variational parameters are

↵
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(t = 0) = 0 . (24)

B. Ferromagnetic phase

Due to its construction from the completely param-
agnetic state, the Jastrow ansatz is well suited for the
paramagnetic phase, but fails to describe the time evo-
lution of the system after field quenches in the ferromag-
netic phase. For this reason we derive in Appendix B the
ansatz

| (t)i =
X

m,n

↵m,n(t) | m,ni (25)

for the field quenches in the ferromagnetic phase and dis-
cuss its applicability. | m,ni is the normalized symmetric
superposition of all basis states with m spin down and n
broken bonds, so-called kinks:
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The ansatz separates the Hilbert space of the system into
subspaces Hm,n of states with the same magnetization
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TABLE I: Number of variational parameters for the ansatz
function (25) for the field quenches as function of the edge L of
the square lattice. In leading order the growth is proportional
to N2.

per site µx
m = (N � 2m)/N and the same energy con-

tribution of the diagonal part of the Hamiltonian per
site "xn = (N � n)/N . The dimension of the subspace
(m,n) is dim(Hm,n) = Nm,n. Transitions between sub-
spaces are induced by spinflips. A spinflip increases or
decreases m by one and keeps n untouched or changes
it by ±2 or ±4. Thus each subspace is linked to up to
10 other subspaces. We denote the total number of tran-
sitions between the subspaces (m,n) and (m0, n0) with
Tm,n;m0,n0 . The Tm,n;m0,n0 are symmetric with respect to
(m,n) $ (m0, n0).
The determination of the Nm,n and the Tm,n;m0,n0 is a
pure combinatorics problem. As for the 2D-TFIM there
are no closed-form expressions for their values and due
to the high dimensionality of the Hilbert space we de-
termine them with rare event sampling (RES) [87] de-
scribed in in Appendix C. As the Nm,n and Tm,n;m0,n0

are independent of the quench parameters, they have to
be determined only once for each system size.
The possible values of n depend on m in a non-trivial
way. In case of the 2D-TFIM not just the maximal num-
ber of kinks is a function of m like in one dimension, but
also their minimal number. The PBC have to be taken
into account, too. In leading order the number of pos-
sible values of n grows linearly with m. As the number
of possible values of m grows linearly with the system
size N , we thus find that the number of variational pa-
rameters grows in leading order with N2. Due to the
symmetry of the variational parameters with respect to
m $ N�m and the conservation of this symmetry under
time evolution, we can reduce the number of independent
variational parameters using ↵m,n(t) = ↵N�m,n(t). For
the system sizes that we studied the exact numbers of
variational parameters are listed in TABLE I.
We derive the equations of motion of the variational
parameters in Appendix D:
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Nm0,n0 Nm,n. The sum
over m0 and n0 runs over all subspaces that can be
reached from any basis state of the subspace (m,n) by
flipping one single spin. The equations of motion of
the variational parameters are thus a system of coupled
linear di↵erential equations of first order with constant
(time-independent) coe�cients, which are known from
the RES. As each subspace is linked to only up to 10
other subspaces, the system is sparse. We solve it with a
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measure the correlations between all spin pairs of the
system with distance r normalized by their number N
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The sum over r runs over all independent directions in
the lattice, whose number also determines the number of
variational parameters ↵
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(t), which is N/8+3L/4 for the
square lattice with edge length L. The state |"" . . . ""iz
is the completely uncorrelated state of the system, which
is the exact ground state in the limit h/J ! 1, i.e.
which represents the completely paramagnetic state. In-
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have to be determined at each time step. We apply a sin-
gle spin flip quantum Monte Carlo algorithm according
to Ref. [86] described in Appendix A.
For the interaction quenches with J
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= 0 the initial values
of the variational parameters are
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B. Ferromagnetic phase

Due to its construction from the completely param-
agnetic state, the Jastrow ansatz is well suited for the
paramagnetic phase, but fails to describe the time evo-
lution of the system after field quenches in the ferromag-
netic phase. For this reason we derive in Appendix B the
ansatz

| (t)i =
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m,n

↵m,n(t) | m,ni (25)

for the field quenches in the ferromagnetic phase and dis-
cuss its applicability. | m,ni is the normalized symmetric
superposition of all basis states with m spin down and n
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The ansatz separates the Hilbert space of the system into
subspaces Hm,n of states with the same magnetization
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time evolution, we can reduce the number of independent
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We derive the equations of motion of the variational
parameters in Appendix D:

ı↵̇m,n(t) = �J (N � n)↵m,n(t)

� h

2

X

m0,n0

tm0,n0
;m,n ↵m0,n0(t) (27)

with tm0,n0
;m,n = Tm0,n0

;m,n/
p

Nm0,n0 Nm,n. The sum
over m0 and n0 runs over all subspaces that can be
reached from any basis state of the subspace (m,n) by
flipping one single spin. The equations of motion of
the variational parameters are thus a system of coupled
linear di↵erential equations of first order with constant
(time-independent) coe�cients, which are known from
the RES. As each subspace is linked to only up to 10
other subspaces, the system is sparse. We solve it with a

5

The operators
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hÔit =
P

x

| (x, t)|2O(x)
P

x

| (x, t)|2 . (23)
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gle spin flip quantum Monte Carlo algorithm according
to Ref. [86] described in Appendix A.
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B. Ferromagnetic phase

Due to its construction from the completely param-
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lution of the system after field quenches in the ferromag-
netic phase. For this reason we derive in Appendix B the
ansatz
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m,n

↵m,n(t) | m,ni (25)

for the field quenches in the ferromagnetic phase and dis-
cuss its applicability. | m,ni is the normalized symmetric
superposition of all basis states with m spin down and n
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The ansatz separates the Hilbert space of the system into
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the square lattice. In leading order the growth is proportional
to N2.

per site µx
m = (N � 2m)/N and the same energy con-

tribution of the diagonal part of the Hamiltonian per
site "xn = (N � n)/N . The dimension of the subspace
(m,n) is dim(Hm,n) = Nm,n. Transitions between sub-
spaces are induced by spinflips. A spinflip increases or
decreases m by one and keeps n untouched or changes
it by ±2 or ±4. Thus each subspace is linked to up to
10 other subspaces. We denote the total number of tran-
sitions between the subspaces (m,n) and (m0, n0) with
Tm,n;m0,n0 . The Tm,n;m0,n0 are symmetric with respect to
(m,n) $ (m0, n0).
The determination of the Nm,n and the Tm,n;m0,n0 is a
pure combinatorics problem. As for the 2D-TFIM there
are no closed-form expressions for their values and due
to the high dimensionality of the Hilbert space we de-
termine them with rare event sampling (RES) [87] de-
scribed in in Appendix C. As the Nm,n and Tm,n;m0,n0

are independent of the quench parameters, they have to
be determined only once for each system size.
The possible values of n depend on m in a non-trivial
way. In case of the 2D-TFIM not just the maximal num-
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size N , we thus find that the number of variational pa-
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m $ N�m and the conservation of this symmetry under
time evolution, we can reduce the number of independent
variational parameters using ↵m,n(t) = ↵N�m,n(t). For
the system sizes that we studied the exact numbers of
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parameters in Appendix D:

ı↵̇m,n(t) = �J (N � n)↵m,n(t)

� h

2

X

m0,n0

tm0,n0
;m,n ↵m0,n0(t) (27)

with tm0,n0
;m,n = Tm0,n0

;m,n/
p

Nm0,n0 Nm,n. The sum
over m0 and n0 runs over all subspaces that can be
reached from any basis state of the subspace (m,n) by
flipping one single spin. The equations of motion of
the variational parameters are thus a system of coupled
linear di↵erential equations of first order with constant
(time-independent) coe�cients, which are known from
the RES. As each subspace is linked to only up to 10
other subspaces, the system is sparse. We solve it with a

5

The operators
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time evolution, we can reduce the number of independent
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transition from configuration |xi to |x0i reads

A (x ! x

0, t) = min
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1, Q (x ! x

0, t)
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(A1)

with

Q (x ! x

0, t) =
P (x0, t)T (x0 ! x)

P (x, t)T (x ! x

0)
. (A2)

P (x, t) is the probability distribution of the states of the
x-basis, which is defined by the variational state at time
t according to

P (x, t) =
hx| (t)i

P

x

0 hx0| (t)i =
 (x, t)

P

x

0  (x0, t)
. (A3)

As the operators Ĉxx
r

are diagonal in the x-basis, the
scalar product  (x, t) can be easily computed:

 (x, t) =
1p
2N

exp
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X

r

↵
r

(t)Cxx
r

(x)
⌘

(A4)

with Cxx
r

(x) = hx|Ĉxx
r

|xi.
T (x ! x

0) is the sampling distribution function. For the
2D-TFIM it is time-independent and inverse proportional
to the number K(x) of basis states which can be reached
from the current configuration via the o↵-diagonal ele-
ment of the Hamiltonian. K(x) is for each state |xi equal
to the number of sites N .
Inserting the results for P (x, t) and T (x ! x

0) into (A2),
we find

Q (x ! x

0, t) = exp
n

2
X

r

↵R
r

(t)
�

Cxx
r

(x0)� Cxx
r

(x)
�
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(A5)

with ↵R
r

(t) the real part of ↵
r

(t). The acceptance prob-
ability A (x ! x

0) of a proposed Monte Carlo step thus
does not depend explicitly on the Hamiltonian of the sys-
tem, but the parameters of the Hamiltonian just enter via
the time-evolved state defining the probability distribu-
tion.
The algorithm starts in a randomly chosen spin configu-
ration. Before the first measurement we wait 10N Monte
Carlo steps so that the system can equilibrate. We do
2⇥ 104 measurements, which we split up in 20 indepen-
dent Monte Carlo runs with di↵erent seeds and 103 sam-
ples each. The approximation of the expectation value
is thus the average over the 20 Monte Carlo runs. We
wait sbm = 2N Monte Carlo steps between two mea-
surements to make sure that the generated samples are
independent of each other. The time propagation, i.e.
the solution of the equations of motion after the deter-
mination of their coe�cients, is done with a fourth order
Runge-Kutta scheme with a stepwidth of �t = 0.01.
We checked the convergence of the Monte Carlo algo-
rithm and the accuracy of the results in di↵erent ways.
First we used di↵erent seeds for the Monte Carlo runs, i.e.
di↵erent initial configurations and di↵erent sequences.

hˆ̃ µ
x
i t

t

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5 6 7 8 9 10

FIG. 8: (Colour online). Time evolution of the rescaled
modulus of the magnetization after the interaction quench
(0; 3.5) ! (1; 3.5) in the 16 ⇥ 16 system. The colour code is
as follows: � sbm = 2N, �t = 0.01 / � sbm = 4N, �t = 0.01
/ � sbm = 2N, �t = 0.001. We observe a perfect agreement
between the three curves.

Second we increased the number of Monte Carlo steps
between two measurements. Finally we reduced the step-
width of the Runge-Kutta scheme. We find that for the
above values of the parameters of the Monte Carlo al-
gorithm the results are robust with respect to the de-
scribed tests. This is illustrated in FIG. 8 for the rescaled
modulus of the magnetization of the 16 ⇥ 16 system
(the largest system size we consider) and the quench
(0; 3.5) ! (1; 3.5) (the strongest interaction quench we
consider).

Appendix B: Ansatz function in the ferromagnetic
phase

The unitary time evolution of the state of the system
after the quench reads in terms of the eigenbasis of Ĥ

f

| (t)i =
X

�

eıEf,�t h 
f,�| i,0i | f,�i (B1)

with | 
f,�i the eigenstate of Ĥ

f

to the eigenvalue E
f,�.

The | 
f,�i and E

f,� are a priori unknown. Due to the
structure of | 

i,0i for field quenches starting from h
i

= 0
according to (12), h 

f,�| i,0i is proportional to the sum
of the coe�cients of the two completely ordered basis
states in the representation of | 

f,�i in the x-basis. Thus
h 

f,�| i,0i decreases with increasing energy E
f,� and van-

ishes for antisymmetric eigenstates of Ĥ
f

.
We use (B1) to derive a variational ansatz for | (t)i for
the rt-VMC in the ferromagnetic phase. For vanishing
transverse field h the states of the x-basis are eigenstates
of the Hamiltonian. Their energies are determined just
by the number n of kinks. Turning on the transverse field,
the Hamiltonian is not diagonal in the x-basis any more.
The e↵ect of the non-diagonal part of the Hamiltonian is
to flip the orientation of spins. For small system sizes we
computed the eigenstates of the Hamiltonian with exact
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the solution of the equations of motion after the deter-
mination of their coe�cients, is done with a fourth order
Runge-Kutta scheme with a stepwidth of �t = 0.01.
We checked the convergence of the Monte Carlo algo-
rithm and the accuracy of the results in di↵erent ways.
First we used di↵erent seeds for the Monte Carlo runs, i.e.
di↵erent initial configurations and di↵erent sequences.
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FIG. 8: (Colour online). Time evolution of the rescaled
modulus of the magnetization after the interaction quench
(0; 3.5) ! (1; 3.5) in the 16 ⇥ 16 system. The colour code is
as follows: � sbm = 2N, �t = 0.01 / � sbm = 4N, �t = 0.01
/ � sbm = 2N, �t = 0.001. We observe a perfect agreement
between the three curves.

Second we increased the number of Monte Carlo steps
between two measurements. Finally we reduced the step-
width of the Runge-Kutta scheme. We find that for the
above values of the parameters of the Monte Carlo al-
gorithm the results are robust with respect to the de-
scribed tests. This is illustrated in FIG. 8 for the rescaled
modulus of the magnetization of the 16 ⇥ 16 system
(the largest system size we consider) and the quench
(0; 3.5) ! (1; 3.5) (the strongest interaction quench we
consider).

Appendix B: Ansatz function in the ferromagnetic
phase

The unitary time evolution of the state of the system
after the quench reads in terms of the eigenbasis of Ĥ

f

| (t)i =
X

�

eıEf,�t h 
f,�| i,0i | f,�i (B1)

with | 
f,�i the eigenstate of Ĥ

f

to the eigenvalue E
f,�.

The | 
f,�i and E

f,� are a priori unknown. Due to the
structure of | 

i,0i for field quenches starting from h
i

= 0
according to (12), h 

f,�| i,0i is proportional to the sum
of the coe�cients of the two completely ordered basis
states in the representation of | 

f,�i in the x-basis. Thus
h 

f,�| i,0i decreases with increasing energy E
f,� and van-

ishes for antisymmetric eigenstates of Ĥ
f

.
We use (B1) to derive a variational ansatz for | (t)i for
the rt-VMC in the ferromagnetic phase. For vanishing
transverse field h the states of the x-basis are eigenstates
of the Hamiltonian. Their energies are determined just
by the number n of kinks. Turning on the transverse field,
the Hamiltonian is not diagonal in the x-basis any more.
The e↵ect of the non-diagonal part of the Hamiltonian is
to flip the orientation of spins. For small system sizes we
computed the eigenstates of the Hamiltonian with exact
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The operators

Ĉxx
r

=
1

N
r

X

R

�̂x
R

�̂x
R+r

(21)

measure the correlations between all spin pairs of the
system with distance r normalized by their number N

r

.
The sum over r runs over all independent directions in
the lattice, whose number also determines the number of
variational parameters ↵

r

(t), which is N/8+3L/4 for the
square lattice with edge length L. The state |"" . . . ""iz
is the completely uncorrelated state of the system, which
is the exact ground state in the limit h/J ! 1, i.e.
which represents the completely paramagnetic state. In-
serting the Jastrow ansatz (20) into (19), one gets the
following equations of motion for the variational param-
eters [82, 83]:

X

r

0

h�Ĉxx
r

�Ĉxx
r

0 it ↵̇r

0(t) = �ı hElocal

f

(t)�Ĉxx
r

it (22)

with �Ô = Ô � hÔit and the local energy Elocal

f

(x, t) =

hx|Ĥ
f

| (t)i / hx| (t)i. The time-dependent expectation
values

hÔit =
P

x

| (x, t)|2O(x)
P

x

| (x, t)|2 . (23)

have to be determined at each time step. We apply a sin-
gle spin flip quantum Monte Carlo algorithm according
to Ref. [86] described in Appendix A.
For the interaction quenches with J

i

= 0 the initial values
of the variational parameters are

↵
r

(t = 0) = 0 . (24)

B. Ferromagnetic phase

Due to its construction from the completely param-
agnetic state, the Jastrow ansatz is well suited for the
paramagnetic phase, but fails to describe the time evo-
lution of the system after field quenches in the ferromag-
netic phase. For this reason we derive in Appendix B the
ansatz

| (t)i =
X

m,n

↵m,n(t) | m,ni (25)

for the field quenches in the ferromagnetic phase and dis-
cuss its applicability. | m,ni is the normalized symmetric
superposition of all basis states with m spin down and n
broken bonds, so-called kinks:

| m,ni =
1

p

Nm,n

Nm,n
X

k=1

| k
m,ni . (26)

The ansatz separates the Hilbert space of the system into
subspaces Hm,n of states with the same magnetization

L 4 8 12 16

number of ↵
m,n

45 848 4551 14834

TABLE I: Number of variational parameters for the ansatz
function (25) for the field quenches as function of the edge L of
the square lattice. In leading order the growth is proportional
to N2.

per site µx
m = (N � 2m)/N and the same energy con-

tribution of the diagonal part of the Hamiltonian per
site "xn = (N � n)/N . The dimension of the subspace
(m,n) is dim(Hm,n) = Nm,n. Transitions between sub-
spaces are induced by spinflips. A spinflip increases or
decreases m by one and keeps n untouched or changes
it by ±2 or ±4. Thus each subspace is linked to up to
10 other subspaces. We denote the total number of tran-
sitions between the subspaces (m,n) and (m0, n0) with
Tm,n;m0,n0 . The Tm,n;m0,n0 are symmetric with respect to
(m,n) $ (m0, n0).
The determination of the Nm,n and the Tm,n;m0,n0 is a
pure combinatorics problem. As for the 2D-TFIM there
are no closed-form expressions for their values and due
to the high dimensionality of the Hilbert space we de-
termine them with rare event sampling (RES) [87] de-
scribed in in Appendix C. As the Nm,n and Tm,n;m0,n0

are independent of the quench parameters, they have to
be determined only once for each system size.
The possible values of n depend on m in a non-trivial
way. In case of the 2D-TFIM not just the maximal num-
ber of kinks is a function of m like in one dimension, but
also their minimal number. The PBC have to be taken
into account, too. In leading order the number of pos-
sible values of n grows linearly with m. As the number
of possible values of m grows linearly with the system
size N , we thus find that the number of variational pa-
rameters grows in leading order with N2. Due to the
symmetry of the variational parameters with respect to
m $ N�m and the conservation of this symmetry under
time evolution, we can reduce the number of independent
variational parameters using ↵m,n(t) = ↵N�m,n(t). For
the system sizes that we studied the exact numbers of
variational parameters are listed in TABLE I.
We derive the equations of motion of the variational
parameters in Appendix D:

ı↵̇m,n(t) = �J (N � n)↵m,n(t)

� h

2

X

m0,n0

tm0,n0
;m,n ↵m0,n0(t) (27)

with tm0,n0
;m,n = Tm0,n0

;m,n/
p

Nm0,n0 Nm,n. The sum
over m0 and n0 runs over all subspaces that can be
reached from any basis state of the subspace (m,n) by
flipping one single spin. The equations of motion of
the variational parameters are thus a system of coupled
linear di↵erential equations of first order with constant
(time-independent) coe�cients, which are known from
the RES. As each subspace is linked to only up to 10
other subspaces, the system is sparse. We solve it with a

5

The operators

Ĉxx
r

=
1

N
r

X

R

�̂x
R

�̂x
R+r

(21)

measure the correlations between all spin pairs of the
system with distance r normalized by their number N

r

.
The sum over r runs over all independent directions in
the lattice, whose number also determines the number of
variational parameters ↵

r

(t), which is N/8+3L/4 for the
square lattice with edge length L. The state |"" . . . ""iz
is the completely uncorrelated state of the system, which
is the exact ground state in the limit h/J ! 1, i.e.
which represents the completely paramagnetic state. In-
serting the Jastrow ansatz (20) into (19), one gets the
following equations of motion for the variational param-
eters [82, 83]:

X

r

0

h�Ĉxx
r

�Ĉxx
r

0 it ↵̇r

0(t) = �ı hElocal

f

(t)�Ĉxx
r

it (22)

with �Ô = Ô � hÔit and the local energy Elocal

f

(x, t) =

hx|Ĥ
f

| (t)i / hx| (t)i. The time-dependent expectation
values

hÔit =
P

x

| (x, t)|2O(x)
P

x

| (x, t)|2 . (23)

have to be determined at each time step. We apply a sin-
gle spin flip quantum Monte Carlo algorithm according
to Ref. [86] described in Appendix A.
For the interaction quenches with J

i

= 0 the initial values
of the variational parameters are

↵
r

(t = 0) = 0 . (24)

B. Ferromagnetic phase

Due to its construction from the completely param-
agnetic state, the Jastrow ansatz is well suited for the
paramagnetic phase, but fails to describe the time evo-
lution of the system after field quenches in the ferromag-
netic phase. For this reason we derive in Appendix B the
ansatz

| (t)i =
X

m,n

↵m,n(t) | m,ni (25)

for the field quenches in the ferromagnetic phase and dis-
cuss its applicability. | m,ni is the normalized symmetric
superposition of all basis states with m spin down and n
broken bonds, so-called kinks:

| m,ni =
1

p

Nm,n

Nm,n
X

k=1

| k
m,ni . (26)

The ansatz separates the Hilbert space of the system into
subspaces Hm,n of states with the same magnetization

L 4 8 12 16

number of ↵
m,n

45 848 4551 14834

TABLE I: Number of variational parameters for the ansatz
function (25) for the field quenches as function of the edge L of
the square lattice. In leading order the growth is proportional
to N2.

per site µx
m = (N � 2m)/N and the same energy con-

tribution of the diagonal part of the Hamiltonian per
site "xn = (N � n)/N . The dimension of the subspace
(m,n) is dim(Hm,n) = Nm,n. Transitions between sub-
spaces are induced by spinflips. A spinflip increases or
decreases m by one and keeps n untouched or changes
it by ±2 or ±4. Thus each subspace is linked to up to
10 other subspaces. We denote the total number of tran-
sitions between the subspaces (m,n) and (m0, n0) with
Tm,n;m0,n0 . The Tm,n;m0,n0 are symmetric with respect to
(m,n) $ (m0, n0).
The determination of the Nm,n and the Tm,n;m0,n0 is a
pure combinatorics problem. As for the 2D-TFIM there
are no closed-form expressions for their values and due
to the high dimensionality of the Hilbert space we de-
termine them with rare event sampling (RES) [87] de-
scribed in in Appendix C. As the Nm,n and Tm,n;m0,n0

are independent of the quench parameters, they have to
be determined only once for each system size.
The possible values of n depend on m in a non-trivial
way. In case of the 2D-TFIM not just the maximal num-
ber of kinks is a function of m like in one dimension, but
also their minimal number. The PBC have to be taken
into account, too. In leading order the number of pos-
sible values of n grows linearly with m. As the number
of possible values of m grows linearly with the system
size N , we thus find that the number of variational pa-
rameters grows in leading order with N2. Due to the
symmetry of the variational parameters with respect to
m $ N�m and the conservation of this symmetry under
time evolution, we can reduce the number of independent
variational parameters using ↵m,n(t) = ↵N�m,n(t). For
the system sizes that we studied the exact numbers of
variational parameters are listed in TABLE I.
We derive the equations of motion of the variational
parameters in Appendix D:

ı↵̇m,n(t) = �J (N � n)↵m,n(t)

� h

2

X

m0,n0

tm0,n0
;m,n ↵m0,n0(t) (27)

with tm0,n0
;m,n = Tm0,n0

;m,n/
p

Nm0,n0 Nm,n. The sum
over m0 and n0 runs over all subspaces that can be
reached from any basis state of the subspace (m,n) by
flipping one single spin. The equations of motion of
the variational parameters are thus a system of coupled
linear di↵erential equations of first order with constant
(time-independent) coe�cients, which are known from
the RES. As each subspace is linked to only up to 10
other subspaces, the system is sparse. We solve it with a

Symmetric	superposiIon	of	all	states		
with	n	spins	up	and	m	kinks	

5

The operators

Ĉxx
r

=
1

N
r

X

R

�̂x
R

�̂x
R+r

(21)

measure the correlations between all spin pairs of the
system with distance r normalized by their number N

r

.
The sum over r runs over all independent directions in
the lattice, whose number also determines the number of
variational parameters ↵

r

(t), which is N/8+3L/4 for the
square lattice with edge length L. The state |"" . . . ""iz
is the completely uncorrelated state of the system, which
is the exact ground state in the limit h/J ! 1, i.e.
which represents the completely paramagnetic state. In-
serting the Jastrow ansatz (20) into (19), one gets the
following equations of motion for the variational param-
eters [82, 83]:

X

r

0

h�Ĉxx
r

�Ĉxx
r

0 it ↵̇r

0(t) = �ı hElocal

f

(t)�Ĉxx
r

it (22)

with �Ô = Ô � hÔit and the local energy Elocal

f

(x, t) =

hx|Ĥ
f

| (t)i / hx| (t)i. The time-dependent expectation
values

hÔit =
P

x

| (x, t)|2O(x)
P

x

| (x, t)|2 . (23)

have to be determined at each time step. We apply a sin-
gle spin flip quantum Monte Carlo algorithm according
to Ref. [86] described in Appendix A.
For the interaction quenches with J

i

= 0 the initial values
of the variational parameters are

↵
r

(t = 0) = 0 . (24)

B. Ferromagnetic phase

Due to its construction from the completely param-
agnetic state, the Jastrow ansatz is well suited for the
paramagnetic phase, but fails to describe the time evo-
lution of the system after field quenches in the ferromag-
netic phase. For this reason we derive in Appendix B the
ansatz

| (t)i =
X

m,n

↵m,n(t) | m,ni (25)

for the field quenches in the ferromagnetic phase and dis-
cuss its applicability. | m,ni is the normalized symmetric
superposition of all basis states with m spin down and n
broken bonds, so-called kinks:

| m,ni =
1

p

Nm,n

Nm,n
X

k=1

| k
m,ni . (26)

The ansatz separates the Hilbert space of the system into
subspaces Hm,n of states with the same magnetization

L 4 8 12 16

number of ↵
m,n

45 848 4551 14834

TABLE I: Number of variational parameters for the ansatz
function (25) for the field quenches as function of the edge L of
the square lattice. In leading order the growth is proportional
to N2.

per site µx
m = (N � 2m)/N and the same energy con-

tribution of the diagonal part of the Hamiltonian per
site "xn = (N � n)/N . The dimension of the subspace
(m,n) is dim(Hm,n) = Nm,n. Transitions between sub-
spaces are induced by spinflips. A spinflip increases or
decreases m by one and keeps n untouched or changes
it by ±2 or ±4. Thus each subspace is linked to up to
10 other subspaces. We denote the total number of tran-
sitions between the subspaces (m,n) and (m0, n0) with
Tm,n;m0,n0 . The Tm,n;m0,n0 are symmetric with respect to
(m,n) $ (m0, n0).
The determination of the Nm,n and the Tm,n;m0,n0 is a
pure combinatorics problem. As for the 2D-TFIM there
are no closed-form expressions for their values and due
to the high dimensionality of the Hilbert space we de-
termine them with rare event sampling (RES) [87] de-
scribed in in Appendix C. As the Nm,n and Tm,n;m0,n0

are independent of the quench parameters, they have to
be determined only once for each system size.
The possible values of n depend on m in a non-trivial
way. In case of the 2D-TFIM not just the maximal num-
ber of kinks is a function of m like in one dimension, but
also their minimal number. The PBC have to be taken
into account, too. In leading order the number of pos-
sible values of n grows linearly with m. As the number
of possible values of m grows linearly with the system
size N , we thus find that the number of variational pa-
rameters grows in leading order with N2. Due to the
symmetry of the variational parameters with respect to
m $ N�m and the conservation of this symmetry under
time evolution, we can reduce the number of independent
variational parameters using ↵m,n(t) = ↵N�m,n(t). For
the system sizes that we studied the exact numbers of
variational parameters are listed in TABLE I.
We derive the equations of motion of the variational
parameters in Appendix D:

ı↵̇m,n(t) = �J (N � n)↵m,n(t)

� h

2

X

m0,n0

tm0,n0
;m,n ↵m0,n0(t) (27)

with tm0,n0
;m,n = Tm0,n0

;m,n/
p

Nm0,n0 Nm,n. The sum
over m0 and n0 runs over all subspaces that can be
reached from any basis state of the subspace (m,n) by
flipping one single spin. The equations of motion of
the variational parameters are thus a system of coupled
linear di↵erential equations of first order with constant
(time-independent) coe�cients, which are known from
the RES. As each subspace is linked to only up to 10
other subspaces, the system is sparse. We solve it with a
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The operators

Ĉxx
r

=
1

N
r

X

R

�̂x
R

�̂x
R+r

(21)

measure the correlations between all spin pairs of the
system with distance r normalized by their number N

r

.
The sum over r runs over all independent directions in
the lattice, whose number also determines the number of
variational parameters ↵

r

(t), which is N/8+3L/4 for the
square lattice with edge length L. The state |"" . . . ""iz
is the completely uncorrelated state of the system, which
is the exact ground state in the limit h/J ! 1, i.e.
which represents the completely paramagnetic state. In-
serting the Jastrow ansatz (20) into (19), one gets the
following equations of motion for the variational param-
eters [82, 83]:

X
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h�Ĉxx
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�Ĉxx
r

0 it ↵̇r

0(t) = �ı hElocal

f

(t)�Ĉxx
r

it (22)

with �Ô = Ô � hÔit and the local energy Elocal

f

(x, t) =

hx|Ĥ
f

| (t)i / hx| (t)i. The time-dependent expectation
values

hÔit =
P

x

| (x, t)|2O(x)
P

x

| (x, t)|2 . (23)

have to be determined at each time step. We apply a sin-
gle spin flip quantum Monte Carlo algorithm according
to Ref. [86] described in Appendix A.
For the interaction quenches with J

i

= 0 the initial values
of the variational parameters are

↵
r

(t = 0) = 0 . (24)

B. Ferromagnetic phase

Due to its construction from the completely param-
agnetic state, the Jastrow ansatz is well suited for the
paramagnetic phase, but fails to describe the time evo-
lution of the system after field quenches in the ferromag-
netic phase. For this reason we derive in Appendix B the
ansatz

| (t)i =
X

m,n

↵m,n(t) | m,ni (25)

for the field quenches in the ferromagnetic phase and dis-
cuss its applicability. | m,ni is the normalized symmetric
superposition of all basis states with m spin down and n
broken bonds, so-called kinks:

| m,ni =
1

p

Nm,n

Nm,n
X

k=1

| k
m,ni . (26)

The ansatz separates the Hilbert space of the system into
subspaces Hm,n of states with the same magnetization

L 4 8 12 16

number of ↵
m,n

45 848 4551 14834

TABLE I: Number of variational parameters for the ansatz
function (25) for the field quenches as function of the edge L of
the square lattice. In leading order the growth is proportional
to N2.

per site µx
m = (N � 2m)/N and the same energy con-

tribution of the diagonal part of the Hamiltonian per
site "xn = (N � n)/N . The dimension of the subspace
(m,n) is dim(Hm,n) = Nm,n. Transitions between sub-
spaces are induced by spinflips. A spinflip increases or
decreases m by one and keeps n untouched or changes
it by ±2 or ±4. Thus each subspace is linked to up to
10 other subspaces. We denote the total number of tran-
sitions between the subspaces (m,n) and (m0, n0) with
Tm,n;m0,n0 . The Tm,n;m0,n0 are symmetric with respect to
(m,n) $ (m0, n0).
The determination of the Nm,n and the Tm,n;m0,n0 is a
pure combinatorics problem. As for the 2D-TFIM there
are no closed-form expressions for their values and due
to the high dimensionality of the Hilbert space we de-
termine them with rare event sampling (RES) [87] de-
scribed in in Appendix C. As the Nm,n and Tm,n;m0,n0

are independent of the quench parameters, they have to
be determined only once for each system size.
The possible values of n depend on m in a non-trivial
way. In case of the 2D-TFIM not just the maximal num-
ber of kinks is a function of m like in one dimension, but
also their minimal number. The PBC have to be taken
into account, too. In leading order the number of pos-
sible values of n grows linearly with m. As the number
of possible values of m grows linearly with the system
size N , we thus find that the number of variational pa-
rameters grows in leading order with N2. Due to the
symmetry of the variational parameters with respect to
m $ N�m and the conservation of this symmetry under
time evolution, we can reduce the number of independent
variational parameters using ↵m,n(t) = ↵N�m,n(t). For
the system sizes that we studied the exact numbers of
variational parameters are listed in TABLE I.
We derive the equations of motion of the variational
parameters in Appendix D:

ı↵̇m,n(t) = �J (N � n)↵m,n(t)

� h

2

X

m0,n0

tm0,n0
;m,n ↵m0,n0(t) (27)

with tm0,n0
;m,n = Tm0,n0

;m,n/
p

Nm0,n0 Nm,n. The sum
over m0 and n0 runs over all subspaces that can be
reached from any basis state of the subspace (m,n) by
flipping one single spin. The equations of motion of
the variational parameters are thus a system of coupled
linear di↵erential equations of first order with constant
(time-independent) coe�cients, which are known from
the RES. As each subspace is linked to only up to 10
other subspaces, the system is sparse. We solve it with a
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The operators
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=
1
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�̂x
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�̂x
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(21)

measure the correlations between all spin pairs of the
system with distance r normalized by their number N

r

.
The sum over r runs over all independent directions in
the lattice, whose number also determines the number of
variational parameters ↵

r

(t), which is N/8+3L/4 for the
square lattice with edge length L. The state |"" . . . ""iz
is the completely uncorrelated state of the system, which
is the exact ground state in the limit h/J ! 1, i.e.
which represents the completely paramagnetic state. In-
serting the Jastrow ansatz (20) into (19), one gets the
following equations of motion for the variational param-
eters [82, 83]:
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with �Ô = Ô � hÔit and the local energy Elocal

f

(x, t) =

hx|Ĥ
f

| (t)i / hx| (t)i. The time-dependent expectation
values

hÔit =
P

x

| (x, t)|2O(x)
P

x

| (x, t)|2 . (23)

have to be determined at each time step. We apply a sin-
gle spin flip quantum Monte Carlo algorithm according
to Ref. [86] described in Appendix A.
For the interaction quenches with J

i

= 0 the initial values
of the variational parameters are

↵
r

(t = 0) = 0 . (24)

B. Ferromagnetic phase

Due to its construction from the completely param-
agnetic state, the Jastrow ansatz is well suited for the
paramagnetic phase, but fails to describe the time evo-
lution of the system after field quenches in the ferromag-
netic phase. For this reason we derive in Appendix B the
ansatz

| (t)i =
X

m,n

↵m,n(t) | m,ni (25)

for the field quenches in the ferromagnetic phase and dis-
cuss its applicability. | m,ni is the normalized symmetric
superposition of all basis states with m spin down and n
broken bonds, so-called kinks:

| m,ni =
1

p

Nm,n

Nm,n
X

k=1

| k
m,ni . (26)

The ansatz separates the Hilbert space of the system into
subspaces Hm,n of states with the same magnetization
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number of ↵
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TABLE I: Number of variational parameters for the ansatz
function (25) for the field quenches as function of the edge L of
the square lattice. In leading order the growth is proportional
to N2.

per site µx
m = (N � 2m)/N and the same energy con-

tribution of the diagonal part of the Hamiltonian per
site "xn = (N � n)/N . The dimension of the subspace
(m,n) is dim(Hm,n) = Nm,n. Transitions between sub-
spaces are induced by spinflips. A spinflip increases or
decreases m by one and keeps n untouched or changes
it by ±2 or ±4. Thus each subspace is linked to up to
10 other subspaces. We denote the total number of tran-
sitions between the subspaces (m,n) and (m0, n0) with
Tm,n;m0,n0 . The Tm,n;m0,n0 are symmetric with respect to
(m,n) $ (m0, n0).
The determination of the Nm,n and the Tm,n;m0,n0 is a
pure combinatorics problem. As for the 2D-TFIM there
are no closed-form expressions for their values and due
to the high dimensionality of the Hilbert space we de-
termine them with rare event sampling (RES) [87] de-
scribed in in Appendix C. As the Nm,n and Tm,n;m0,n0

are independent of the quench parameters, they have to
be determined only once for each system size.
The possible values of n depend on m in a non-trivial
way. In case of the 2D-TFIM not just the maximal num-
ber of kinks is a function of m like in one dimension, but
also their minimal number. The PBC have to be taken
into account, too. In leading order the number of pos-
sible values of n grows linearly with m. As the number
of possible values of m grows linearly with the system
size N , we thus find that the number of variational pa-
rameters grows in leading order with N2. Due to the
symmetry of the variational parameters with respect to
m $ N�m and the conservation of this symmetry under
time evolution, we can reduce the number of independent
variational parameters using ↵m,n(t) = ↵N�m,n(t). For
the system sizes that we studied the exact numbers of
variational parameters are listed in TABLE I.
We derive the equations of motion of the variational
parameters in Appendix D:

ı↵̇m,n(t) = �J (N � n)↵m,n(t)
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;m,n/
p

Nm0,n0 Nm,n. The sum
over m0 and n0 runs over all subspaces that can be
reached from any basis state of the subspace (m,n) by
flipping one single spin. The equations of motion of
the variational parameters are thus a system of coupled
linear di↵erential equations of first order with constant
(time-independent) coe�cients, which are known from
the RES. As each subspace is linked to only up to 10
other subspaces, the system is sparse. We solve it with a

5

The operators
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measure the correlations between all spin pairs of the
system with distance r normalized by their number N

r

.
The sum over r runs over all independent directions in
the lattice, whose number also determines the number of
variational parameters ↵

r

(t), which is N/8+3L/4 for the
square lattice with edge length L. The state |"" . . . ""iz
is the completely uncorrelated state of the system, which
is the exact ground state in the limit h/J ! 1, i.e.
which represents the completely paramagnetic state. In-
serting the Jastrow ansatz (20) into (19), one gets the
following equations of motion for the variational param-
eters [82, 83]:
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have to be determined at each time step. We apply a sin-
gle spin flip quantum Monte Carlo algorithm according
to Ref. [86] described in Appendix A.
For the interaction quenches with J

i

= 0 the initial values
of the variational parameters are

↵
r

(t = 0) = 0 . (24)

B. Ferromagnetic phase

Due to its construction from the completely param-
agnetic state, the Jastrow ansatz is well suited for the
paramagnetic phase, but fails to describe the time evo-
lution of the system after field quenches in the ferromag-
netic phase. For this reason we derive in Appendix B the
ansatz

| (t)i =
X

m,n

↵m,n(t) | m,ni (25)

for the field quenches in the ferromagnetic phase and dis-
cuss its applicability. | m,ni is the normalized symmetric
superposition of all basis states with m spin down and n
broken bonds, so-called kinks:
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1
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k=1

| k
m,ni . (26)

The ansatz separates the Hilbert space of the system into
subspaces Hm,n of states with the same magnetization
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TABLE I: Number of variational parameters for the ansatz
function (25) for the field quenches as function of the edge L of
the square lattice. In leading order the growth is proportional
to N2.
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of possible values of m grows linearly with the system
size N , we thus find that the number of variational pa-
rameters grows in leading order with N2. Due to the
symmetry of the variational parameters with respect to
m $ N�m and the conservation of this symmetry under
time evolution, we can reduce the number of independent
variational parameters using ↵m,n(t) = ↵N�m,n(t). For
the system sizes that we studied the exact numbers of
variational parameters are listed in TABLE I.
We derive the equations of motion of the variational
parameters in Appendix D:
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is the exact ground state in the limit h/J ! 1, i.e.
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to Ref. [86] described in Appendix A.
For the interaction quenches with J
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= 0 the initial values
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Due to its construction from the completely param-
agnetic state, the Jastrow ansatz is well suited for the
paramagnetic phase, but fails to describe the time evo-
lution of the system after field quenches in the ferromag-
netic phase. For this reason we derive in Appendix B the
ansatz

| (t)i =
X

m,n

↵m,n(t) | m,ni (25)

for the field quenches in the ferromagnetic phase and dis-
cuss its applicability. | m,ni is the normalized symmetric
superposition of all basis states with m spin down and n
broken bonds, so-called kinks:
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subspaces Hm,n of states with the same magnetization
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TABLE I: Number of variational parameters for the ansatz
function (25) for the field quenches as function of the edge L of
the square lattice. In leading order the growth is proportional
to N2.
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tribution of the diagonal part of the Hamiltonian per
site "xn = (N � n)/N . The dimension of the subspace
(m,n) is dim(Hm,n) = Nm,n. Transitions between sub-
spaces are induced by spinflips. A spinflip increases or
decreases m by one and keeps n untouched or changes
it by ±2 or ±4. Thus each subspace is linked to up to
10 other subspaces. We denote the total number of tran-
sitions between the subspaces (m,n) and (m0, n0) with
Tm,n;m0,n0 . The Tm,n;m0,n0 are symmetric with respect to
(m,n) $ (m0, n0).
The determination of the Nm,n and the Tm,n;m0,n0 is a
pure combinatorics problem. As for the 2D-TFIM there
are no closed-form expressions for their values and due
to the high dimensionality of the Hilbert space we de-
termine them with rare event sampling (RES) [87] de-
scribed in in Appendix C. As the Nm,n and Tm,n;m0,n0

are independent of the quench parameters, they have to
be determined only once for each system size.
The possible values of n depend on m in a non-trivial
way. In case of the 2D-TFIM not just the maximal num-
ber of kinks is a function of m like in one dimension, but
also their minimal number. The PBC have to be taken
into account, too. In leading order the number of pos-
sible values of n grows linearly with m. As the number
of possible values of m grows linearly with the system
size N , we thus find that the number of variational pa-
rameters grows in leading order with N2. Due to the
symmetry of the variational parameters with respect to
m $ N�m and the conservation of this symmetry under
time evolution, we can reduce the number of independent
variational parameters using ↵m,n(t) = ↵N�m,n(t). For
the system sizes that we studied the exact numbers of
variational parameters are listed in TABLE I.
We derive the equations of motion of the variational
parameters in Appendix D:

ı↵̇m,n(t) = �J (N � n)↵m,n(t)
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tm0,n0
;m,n ↵m0,n0(t) (27)

with tm0,n0
;m,n = Tm0,n0

;m,n/
p

Nm0,n0 Nm,n. The sum
over m0 and n0 runs over all subspaces that can be
reached from any basis state of the subspace (m,n) by
flipping one single spin. The equations of motion of
the variational parameters are thus a system of coupled
linear di↵erential equations of first order with constant
(time-independent) coe�cients, which are known from
the RES. As each subspace is linked to only up to 10
other subspaces, the system is sparse. We solve it with a
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fourth order Runge-Kutta scheme.
The initial values of the variational parameters are

↵m,n(t = 0) =

(

1p
2

if (m,n) = (0, 0) or (N, 0)

0 else
. (28)

For t > 0 the ↵m,n(t) will in general be complex.

VI. OBSERVABLES

As observables we consider the rescaled modulus of the
magnetization according to (5)

ˆ̃µx =
|µ̂x|� LB

1� LB
(29)

and the correlation function between two spins at dis-
tance r according to (21)
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which reads for nearest neighbours
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Due to the conservation of the energy in the system under
the unitary time evolution, knowledge of the equal time
correlation function between nearest neighbours allows
the computation of the magnetization in z-direction. For
the interaction quenches it is

hµ̂zit = 1� 2J
f

h
f

hĈxx
nn

it (32)

and for the field quenches

hµ̂zit =
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. (33)

For the interaction quenches the expectation values of the
observables and their distributions are computed with
the single spin flip quantum Monte Carlo algorithm to
determine the coe�cients of the di↵erential equations at
each time step, while for the field quenches there is a di-
rect functional relationship to the variational parameters,
which reads for the modulus of the magnetization

h|µ̂x|it =
X

m,n

|↵m,n(t)|2 · |µx
m| (34)

with the eigenvalues µx
m = (N � 2m)/N of µ̂x. For the

correlation function between nearest neighbours it is

hĈxx
nn

it =
X

m,n

|↵m,n(t)|2 · "xn (35)

with the eigenvalues "xn = (N � n)/N of Ĉxx
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.
Their distributions at time t are given by
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n) =
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For the correlation function between spins that are not
nearest neighbours there is no direct functional relation-
ship to the variational parameters, but they can be com-
puted according to
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(39)

the sum of the correlation functions between two spins
with distance r in the subspace (m,n), which is deter-
mined during the RES.
To decide whether the system thermalizes or not the ex-
pectation values of the observables as well as their distri-
butions in the stationary state are needed. As the exact
computation in the diagonal ensemble would require the
knowledge of the full spectrum of the Hamiltonian after
the quench, we approximate them by the time averages

hÔit =
1

�t

Z t0+�t

t0

dtTr[Ô ⇢̂(t)] (40)

and

pt(Oj) =
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dtTr[�(Oj � Ô) ⇢̂(t)] (41)

with ⇢̂(t) = | (t)ih (t)| and Oj the (possibly degenerate)

eigenvalues of Ô. We computed the time averages for
di↵erent interval lengths �t and di↵erent t

0

in the range
of times that we can simulate (t

0

+�t < 50) and found
that as long as t

0

is chosen larger than the time of the
initial relaxation and �t larger than the periodic time of
the oscillations the results are independent of the chosen
time interval.
The time averages of the observables are compared to the
thermal expectation values of the system in equilibrium
at the e↵ective temperature T

e↵

attributed to the quench,
given by

hÔiTeff

CGE

=
1

ZTeff
CGE

Tr[Ôe� ˆH/Teff ] (42)

with ZTeff
CGE

= [e� ˆH/Teff ] the canonical distribution func-
tion at the temperature T

e↵

. The thermal distribution of
the eigenvalues Oj of Ô reads

IniIal	valuse:		



Observables 

6

fourth order Runge-Kutta scheme.
The initial values of the variational parameters are

↵m,n(t = 0) =

(

1p
2

if (m,n) = (0, 0) or (N, 0)

0 else
. (28)

For t > 0 the ↵m,n(t) will in general be complex.

VI. OBSERVABLES

As observables we consider the rescaled modulus of the
magnetization according to (5)

ˆ̃µx =
|µ̂x|� LB

1� LB
(29)

and the correlation function between two spins at dis-
tance r according to (21)
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nn

it
�

. (33)

For the interaction quenches the expectation values of the
observables and their distributions are computed with
the single spin flip quantum Monte Carlo algorithm to
determine the coe�cients of the di↵erential equations at
each time step, while for the field quenches there is a di-
rect functional relationship to the variational parameters,
which reads for the modulus of the magnetization

h|µ̂x|it =
X

m,n

|↵m,n(t)|2 · |µx
m| (34)

with the eigenvalues µx
m = (N � 2m)/N of µ̂x. For the

correlation function between nearest neighbours it is

hĈxx
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hĈxx
nn

it (32)

and for the field quenches

hµ̂zit =
2J

f

h
f

�

1� hĈxx
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For t > 0 the ↵m,n(t) will in general be complex.
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Due to the conservation of the energy in the system under
the unitary time evolution, knowledge of the equal time
correlation function between nearest neighbours allows
the computation of the magnetization in z-direction. For
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nn

it
�

. (33)

For the interaction quenches the expectation values of the
observables and their distributions are computed with
the single spin flip quantum Monte Carlo algorithm to
determine the coe�cients of the di↵erential equations at
each time step, while for the field quenches there is a di-
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the sum of the correlation functions between two spins
with distance r in the subspace (m,n), which is deter-
mined during the RES.
To decide whether the system thermalizes or not the ex-
pectation values of the observables as well as their distri-
butions in the stationary state are needed. As the exact
computation in the diagonal ensemble would require the
knowledge of the full spectrum of the Hamiltonian after
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in the range
of times that we can simulate (t
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+�t < 50) and found
that as long as t

0

is chosen larger than the time of the
initial relaxation and �t larger than the periodic time of
the oscillations the results are independent of the chosen
time interval.
The time averages of the observables are compared to the
thermal expectation values of the system in equilibrium
at the e↵ective temperature T
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hĈxx
nn

it =
X

m,n

|↵m,n(t)|2 · "xn (35)

with the eigenvalues "xn = (N � n)/N of Ĉxx
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thermal expectation values of the system in equilibrium
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FIG. 3: (Colour online). Comparison between thermal results (•), results of the rt-VMC algorithm (•) and results of exact
diagonalization (•) for the rescaled modulus of the magnetization after interaction quenches (left column) and field quenches
(right column) for the 4⇥4 system. The left subcolumns contain a comparison of the exact and the rt-VMC time evolution, the
right subcolumns a comparison of the thermal distribution and the time-averaged distributions of the rt-VMC and the exact
computations. The thermal values are for the system in equilibrium at the temperature Te↵ attributed to the quench.

pTeff
CGE

(Oj) =
1

Z
CGE

Tr[�(Oj � Ô)e� ˆH/Teff ] . (43)

For the computations for the system in thermal equilib-
rium we use the cluster Monte Carlo algorithm in con-
tinuous imaginary time described in Ref. [71].

VII. RESULTS

Before we use the rt-VMC algorithm to study large
system sizes, we consider a system of size 4 ⇥ 4, whose
time evolution can still be computed with exact diago-
nalization, and compare the rt-VMC results to the exact
results. In FIG. 3 we exemplarily consider the rescaled
modulus of the magnetization after interaction quenches
(left column) and after field quenches (right column).
The left subcolumns of both the interaction and the field
quenches show a comparison of the exact time evolution
(green) and the rt-VMC time evolution (red). Time av-

erages are represented by the dashed lines of the respec-
tive colours, while the black dashed line is the thermal
expectation value for the system in equilibrium at the
temperature attributed to the quench. In the right sub-
columns we compare the time-averaged distributions of
µx of the exact diagonalization and the rt-VMC to their
thermal distributions. The distance of the end point of
the quenches from the phase transition is reduced from
top to bottom.
After the interaction quenches the shape of the curves
of the time evolution is close to harmonic oscillations
with time dependent variations of the amplitude. We
observe that as long as h/J � 1, the rt-VMC algorithm
with the Jastrow ansatz gives a good description of the
time evolution after the interaction quenches. There are
di↵erences between the frequency as well as the ampli-
tude, which increase closer to the critical point, yet the
time averages as well as the time-averaged distributions
of the exact and the rt-VMC time evolution show a very

Calculated	with	conInuous	imaginary	Ime	cluster	Monte	Carlo	
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FIG. 3: (Colour online). Comparison between thermal results (•), results of the rt-VMC algorithm (•) and results of exact
diagonalization (•) for the rescaled modulus of the magnetization after interaction quenches (left column) and field quenches
(right column) for the 4⇥4 system. The left subcolumns contain a comparison of the exact and the rt-VMC time evolution, the
right subcolumns a comparison of the thermal distribution and the time-averaged distributions of the rt-VMC and the exact
computations. The thermal values are for the system in equilibrium at the temperature Te↵ attributed to the quench.
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For the computations for the system in thermal equilib-
rium we use the cluster Monte Carlo algorithm in con-
tinuous imaginary time described in Ref. [71].

VII. RESULTS

Before we use the rt-VMC algorithm to study large
system sizes, we consider a system of size 4 ⇥ 4, whose
time evolution can still be computed with exact diago-
nalization, and compare the rt-VMC results to the exact
results. In FIG. 3 we exemplarily consider the rescaled
modulus of the magnetization after interaction quenches
(left column) and after field quenches (right column).
The left subcolumns of both the interaction and the field
quenches show a comparison of the exact time evolution
(green) and the rt-VMC time evolution (red). Time av-

erages are represented by the dashed lines of the respec-
tive colours, while the black dashed line is the thermal
expectation value for the system in equilibrium at the
temperature attributed to the quench. In the right sub-
columns we compare the time-averaged distributions of
µx of the exact diagonalization and the rt-VMC to their
thermal distributions. The distance of the end point of
the quenches from the phase transition is reduced from
top to bottom.
After the interaction quenches the shape of the curves
of the time evolution is close to harmonic oscillations
with time dependent variations of the amplitude. We
observe that as long as h/J � 1, the rt-VMC algorithm
with the Jastrow ansatz gives a good description of the
time evolution after the interaction quenches. There are
di↵erences between the frequency as well as the ampli-
tude, which increase closer to the critical point, yet the
time averages as well as the time-averaged distributions
of the exact and the rt-VMC time evolution show a very
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FIG. 3: (Colour online). Comparison between thermal results (•), results of the rt-VMC algorithm (•) and results of exact
diagonalization (•) for the rescaled modulus of the magnetization after interaction quenches (left column) and field quenches
(right column) for the 4⇥4 system. The left subcolumns contain a comparison of the exact and the rt-VMC time evolution, the
right subcolumns a comparison of the thermal distribution and the time-averaged distributions of the rt-VMC and the exact
computations. The thermal values are for the system in equilibrium at the temperature Te↵ attributed to the quench.

pTeff
CGE

(Oj) =
1

Z
CGE

Tr[�(Oj � Ô)e� ˆH/Teff ] . (43)

For the computations for the system in thermal equilib-
rium we use the cluster Monte Carlo algorithm in con-
tinuous imaginary time described in Ref. [71].

VII. RESULTS

Before we use the rt-VMC algorithm to study large
system sizes, we consider a system of size 4 ⇥ 4, whose
time evolution can still be computed with exact diago-
nalization, and compare the rt-VMC results to the exact
results. In FIG. 3 we exemplarily consider the rescaled
modulus of the magnetization after interaction quenches
(left column) and after field quenches (right column).
The left subcolumns of both the interaction and the field
quenches show a comparison of the exact time evolution
(green) and the rt-VMC time evolution (red). Time av-

erages are represented by the dashed lines of the respec-
tive colours, while the black dashed line is the thermal
expectation value for the system in equilibrium at the
temperature attributed to the quench. In the right sub-
columns we compare the time-averaged distributions of
µx of the exact diagonalization and the rt-VMC to their
thermal distributions. The distance of the end point of
the quenches from the phase transition is reduced from
top to bottom.
After the interaction quenches the shape of the curves
of the time evolution is close to harmonic oscillations
with time dependent variations of the amplitude. We
observe that as long as h/J � 1, the rt-VMC algorithm
with the Jastrow ansatz gives a good description of the
time evolution after the interaction quenches. There are
di↵erences between the frequency as well as the ampli-
tude, which increase closer to the critical point, yet the
time averages as well as the time-averaged distributions
of the exact and the rt-VMC time evolution show a very

Field	quench	(FM)	

<μx>	 P(<μx>)	

[Blass,	Rieger:	arXiv	2016]	
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FIG. 4: (Colour online). First line: Comparison between
results of exact diagonalization (•) and rt-VMC (•) for the
rescaled absolute value of the magnetization after interaction
quenches (left column) and field quenches (right column) for
the 4⇥ 4 system to thermal values for the system in equilib-
rium at the temperature Te↵ (•). Second line: Relative error
of the rt-VMC time averages compared to the time averages
of the exact time evolution.

good agreement except for the quench (0; 3.5) ! (1; 3.5),
which drives the system close to the critical point. Devi-
ations from the thermal values can already be observed
beginning from the quench (0; 5) ! (1; 5).
For the field quenches the rt-VMC results for the time
evolution after the quench are even better. The fre-
quency of the oscillations is reproduced with a high ac-
curacy even for strong quenches. With increasing quench
strength small deviations of the amplitude of the oscil-
lations can be observed, yet the time averages and the
time-averaged distributions of the rt-VMC and the exact
time evolution coincide for all the quenches we studied.
Like for the interaction quenches there are increasing de-
viations between the time averages after the quench and
the results for the thermal system in equilibrium at T

e↵

with increasing quench strength.
We thus derive two main results from FIG. 3: First we
observe that for the 4⇥4 system there are significant de-
viations between time-averaged results and the thermal
results when the system is quenched close to its phase
transition. Second there is a very good agreement be-
tween the time-averaged values of the exact time evolu-
tion and the rt-VMC time evolution for a wide range of
ratios h/J . This agreement does not just concern the
time averages of the observables, but also the distribu-
tions. Only for strong quenches we observe deviations
between the time averages of the exact time evolution
and the rt-VMC time evolution, but these deviations are
much smaller than the deviations from the values of the
system in thermal equilibrium.
In the graphs in the first line of FIG. 4 we show a com-
parison between the thermal expectation values for the
system in equilibrium at the temperature T

e↵

attributed
to the quench (black), the time-averaged values of the
exact time evolution (green) and the rt-VMC time evo-

lution (red) for a wide range of ratios h/J to illustrate
our above statements. In order to quantify the degree of
agreement between the exact and the rt-VMC results we
show in the graphs in the second line the relative error.
We find that for the interaction quenches there is an ex-
cellent agreement between the time averages of the exact
and the rt-VMC results for h/J & 4 with a deviation of
less than 2%. For the field quenches we find that begin-
ning from h/J ⇡ 0.75 deviations increase, but even for
h/J = 1.5 they do not exceed 1.5%. In both cases the
rt-VMC thus allows us to compute the time averages of
the observables as well as their distributions with a high
accuracy for a large range of ratios h/J .
We now apply the rt-VMC algorithm to larger sys-

tem sizes to check whether the deviations between the
time averages of the observables after the quench and
their thermal expectation values observed for the 4 ⇥ 4
system are just caused by finite size e↵ects due to the
small system size. To make predictions on the system
in the thermodynamic limit, we compare results for the
rescaled modulus of the magnetization and the correla-
tion function between nearest neighbours after interac-
tion quenches and after field quenches for systems of size
L = 8, 12 and 16. In FIG. 5 we show results for the time
evolution of the observables for di↵erent quench protocols
as well as a comparison between their time averages and
the thermal expectation values for the system in equilib-
rium at T

e↵

as a function of h/J after the quench. For the
interaction quenches we confine us to values h/J > hc/J ,
as for smaller ratios h/J the accuracy of the rt-VMC
with the Jastrow ansatz drastically decreases, while for
the field quenches we avoid quenches across the phase
transition, i.e. h/J < hc/2J .
Comparing the results for the time evolution of the ob-
servables for the di↵erent system sizes we observe that
the amplitude of the oscillations around the time aver-
ages decreases with increasing system size. Considering
the time averages and the thermal expectation values as
function of h/J after the quench we observe that the rel-
ative shape of the curves is preserved when the system
size is increased. There is a good agreement between
the time averages and the thermal expectation values for
small quenches with continuously increasing deviations
the closer the system is quenched to its phase transition.
While for the interaction quenches these deviations are
within the numerical error, in case of the field quenches
they become significant when the system is quenched
closer to the phase transition and do not decrease with
the system size as they should if they were caused by fi-
nite size e↵ects.
To decide whether the CGE can really be applied to
describe the observables in the stationary state after
quenches not only the expectation values, but also the
distributions have to coincide. The studies of the distri-
butions are thus especially relevant in case of the interac-
tion quenches and for small field quenches. In FIG. 6 we
show the distributions for the 16 ⇥ 16 system after the
same interaction and field quenches as in FIG. 5. The
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FIG. 5: (Colour online). Results for the rescaled absolute value of the magnetization µ̃x and the correlation function between
nearest neighbours Cxx

nn after interaction quenches (columns 1 & 2 ) and after field quenches (columns 3 & 4 ) for the system sizes
L = 8, 12 and 16. The graphs in the first line for each system size show the time evolution of the observables after the quenches
for di↵erent quench parameters (continuous lines), their time averages (dashed lines) and the thermal expectation values for
the system in equilibrium at Te↵ according to the CGE (dotted lines). To characterize the quenches we use the notation
(Ji;hi) ! (Jf;hf). For the interaction quenches the colour code is as follows: � (0; 10) ! (1; 10) / � (0; 7.5) ! (1; 7.5) /
� (0; 5) ! (1; 5) / � (0; 4) ! (1; 4) / � (0; 3.5) ! (1; 3.5); and for the field quenches: � (1; 0) ! (1; 0.25) / � (1; 0) ! (1; 0.5)
/ � (1; 0) ! (1; 0.75) / � (1; 0) ! (1; 1) / � (1; 0) ! (1; 1.25). With increasing system size we observe a decreasing amplitude
of the oscillations around the time averages. In the graphs in the second line for each system size we compare the thermal
expectation values of the observables (•) and their time averages after the quenches (•) as a function of h/J after the quench.
For the interaction quenches the system does not leave the paramagnetic phase, while field quenches will drive the system from
the ferromagnetic into the paramagnetic phase for h/J & hc/2J . We observe continuously increasing deviations between the
thermal expectation values and the time averages after the quenches the closer the system is quenched to its phase transition.
While for the interaction quenches the deviations are within the numerical error, they are significant in case of the field quenches.
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FIG. 5: (Colour online). Results for the rescaled absolute value of the magnetization µ̃x and the correlation function between
nearest neighbours Cxx

nn after interaction quenches (columns 1 & 2 ) and after field quenches (columns 3 & 4 ) for the system sizes
L = 8, 12 and 16. The graphs in the first line for each system size show the time evolution of the observables after the quenches
for di↵erent quench parameters (continuous lines), their time averages (dashed lines) and the thermal expectation values for
the system in equilibrium at Te↵ according to the CGE (dotted lines). To characterize the quenches we use the notation
(Ji;hi) ! (Jf;hf). For the interaction quenches the colour code is as follows: � (0; 10) ! (1; 10) / � (0; 7.5) ! (1; 7.5) /
� (0; 5) ! (1; 5) / � (0; 4) ! (1; 4) / � (0; 3.5) ! (1; 3.5); and for the field quenches: � (1; 0) ! (1; 0.25) / � (1; 0) ! (1; 0.5)
/ � (1; 0) ! (1; 0.75) / � (1; 0) ! (1; 1) / � (1; 0) ! (1; 1.25). With increasing system size we observe a decreasing amplitude
of the oscillations around the time averages. In the graphs in the second line for each system size we compare the thermal
expectation values of the observables (•) and their time averages after the quenches (•) as a function of h/J after the quench.
For the interaction quenches the system does not leave the paramagnetic phase, while field quenches will drive the system from
the ferromagnetic into the paramagnetic phase for h/J & hc/2J . We observe continuously increasing deviations between the
thermal expectation values and the time averages after the quenches the closer the system is quenched to its phase transition.
While for the interaction quenches the deviations are within the numerical error, they are significant in case of the field quenches.
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Figure 7. Deviations between the thermal distributions and the time-averaged distributions for i. the rescaled modulus of the
magnetization and ii. the correlation function between nearest neighbours after (a) interaction quenches and (b) field quenches
as function of the inverse system size for the system sizes L = 4, 8, 12 and 16. The deviations D( ˆ̃µ) and D(Ĉxx

nn) respectively
between the distributions have been computed according to (38). For the interaction quenches the colour code reads:
• (0;10)! (1;10) / • (0;7.5)! (1;7.5) / • (0;5)! (1;5) / • (0;4)! (1;4) / • (0;3.5)! (1;3.5); and for the field
quenches: • (1;0)! (1;0.25) / • (1;0)! (1;0.5) / • (1;0)! (1;0.75) / • (1;0)! (1;1) / • (1;0)! (1;1.25). One observes
that for the interaction quenches the differences between the distributions decrease with increasing system size, while for the
field quenches they increase or remain almost constant.

agree with the thermal expectation values. These deviations could not be seen in the distributions of the 4⇥4 system in Figure
3 due to the lower resolution of the distributions caused by the small system size. In general we observe that the time-averaged
distributions after the field quenches are wider than the thermal distributions. The positions of their maxima are almost the
same as for the thermal distributions, but the maxima are less pronounced. In addition the time-averaged distributions after
the quenches show an increased probability to find the system in the fully ordered state (µx =±1 or ex =+1 respectively)
compared to the thermal system. As these states are the initial state of the system this means that the system does not lose the
memory of its initial state which contradicts to thermalization. We can thus state that for the system sizes and time scales that
we can simulate the system does not thermalize after field quenches.
Up to this point we have only given a qualitative discussion of the distributions of the observables. In order to compare the
deviations as a function of the system size and make predictions for the system in the thermodynamic limit we quantify the
deviations introducing the quantity

D(Ô) =
1

N +1

N

Â
j=0

|pt(O j)� pTeff
CGE(O j)|

pTeff
CGE,max

with pTeff
CGE,max = max

n

pTeff
CGE(O j)

o

, (38)

which is a measure for the deviations between the thermal and the time-averaged distributions. The normalization is with
respect to the maximum of the thermal distribution for the considered quench protocol and system size. We computed D( ˆ̃µx)
and D(Ĉxx

nn) for the system sizes L = 4, 8, 12 and 16 for the described quench protocols and did a finite size scaling to conclude
to the system in the thermodynamic limit. Figure 7 shows i. D( ˆ̃µx) and ii. D(Ĉxx

nn) after (a) the interaction and (b) the field
quenches for the different quench protocols. The results are plotted as a function of the inverse system size 1/N. We find that
for the interaction quenches the deviations between the thermal and the time-averaged distribution decrease with increasing
system size. We thus conclude that the observed deviations of the expectation values and the distributions between the thermal
and the time-averaged system will further decrease with increasing system size and that the system will thermalize in the
thermodynamic limit. Before we make a statement on the results of the finite size scaling for the field quenches we discuss the
effect of the spontaneous symmetry breaking in the ferromagnetic phase for the system in the thermodynamic limit. For the
finite system sizes considered in our numerical studies the initial state of the field quenches is the symmetric superposition of
the two fully magnetized states according to (10). In the thermodynamic limit on the other hand hYi,0|µ̂x|Yi,0i=±1 implies
|Yi,0i = |"" . . . ""ix and |Yi,0i = |## . . . ##ix respectively. We compute the time evolution of the expectation value of an
arbitrary operator Ô starting from the symmetric superposition and compare it to the time evolution starting from |"" . . . ""ix:

hÔit =
1
2

n

xh"" . . . "" |e
ıĤtÔe�ıĤt | "" . . . ""ix + xh## . . . ## |e

ıĤtÔe�ıĤt | ## . . . ##ix

+ xh"" . . . "" |e
ıĤtÔe�ıĤt | ## . . . ##ix + xh## . . . ## |e

ıĤtÔe�ıĤt | "" . . . ""ix

o

. (39)

For the rescaled modulus of the magnetization ˆ̃µx and the correlation function Ĉxx
r

the first and the second expectation value
in the sum give the same result. Their sum thus just corresponds to the time evolution starting from |"" . . . ""ix. Applying
a series expansion of the time evolution operator one can easily show that the two remaining matrix elements vanish in the
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nn) respectively
between the distributions have been computed according to (38). For the interaction quenches the colour code reads:
• (0;10)! (1;10) / • (0;7.5)! (1;7.5) / • (0;5)! (1;5) / • (0;4)! (1;4) / • (0;3.5)! (1;3.5); and for the field
quenches: • (1;0)! (1;0.25) / • (1;0)! (1;0.5) / • (1;0)! (1;0.75) / • (1;0)! (1;1) / • (1;0)! (1;1.25). One observes
that for the interaction quenches the differences between the distributions decrease with increasing system size, while for the
field quenches they increase or remain almost constant.

agree with the thermal expectation values. These deviations could not be seen in the distributions of the 4⇥4 system in Figure
3 due to the lower resolution of the distributions caused by the small system size. In general we observe that the time-averaged
distributions after the field quenches are wider than the thermal distributions. The positions of their maxima are almost the
same as for the thermal distributions, but the maxima are less pronounced. In addition the time-averaged distributions after
the quenches show an increased probability to find the system in the fully ordered state (µx =±1 or ex =+1 respectively)
compared to the thermal system. As these states are the initial state of the system this means that the system does not lose the
memory of its initial state which contradicts to thermalization. We can thus state that for the system sizes and time scales that
we can simulate the system does not thermalize after field quenches.
Up to this point we have only given a qualitative discussion of the distributions of the observables. In order to compare the
deviations as a function of the system size and make predictions for the system in the thermodynamic limit we quantify the
deviations introducing the quantity

D(Ô) =
1

N +1

N

Â
j=0

|pt(O j)� pTeff
CGE(O j)|

pTeff
CGE,max
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which is a measure for the deviations between the thermal and the time-averaged distributions. The normalization is with
respect to the maximum of the thermal distribution for the considered quench protocol and system size. We computed D( ˆ̃µx)
and D(Ĉxx

nn) for the system sizes L = 4, 8, 12 and 16 for the described quench protocols and did a finite size scaling to conclude
to the system in the thermodynamic limit. Figure 7 shows i. D( ˆ̃µx) and ii. D(Ĉxx

nn) after (a) the interaction and (b) the field
quenches for the different quench protocols. The results are plotted as a function of the inverse system size 1/N. We find that
for the interaction quenches the deviations between the thermal and the time-averaged distribution decrease with increasing
system size. We thus conclude that the observed deviations of the expectation values and the distributions between the thermal
and the time-averaged system will further decrease with increasing system size and that the system will thermalize in the
thermodynamic limit. Before we make a statement on the results of the finite size scaling for the field quenches we discuss the
effect of the spontaneous symmetry breaking in the ferromagnetic phase for the system in the thermodynamic limit. For the
finite system sizes considered in our numerical studies the initial state of the field quenches is the symmetric superposition of
the two fully magnetized states according to (10). In the thermodynamic limit on the other hand hYi,0|µ̂x|Yi,0i=±1 implies
|Yi,0i = |"" . . . ""ix and |Yi,0i = |## . . . ##ix respectively. We compute the time evolution of the expectation value of an
arbitrary operator Ô starting from the symmetric superposition and compare it to the time evolution starting from |"" . . . ""ix:

hÔit =
1
2
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For the rescaled modulus of the magnetization ˆ̃µx and the correlation function Ĉxx
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the first and the second expectation value
in the sum give the same result. Their sum thus just corresponds to the time evolution starting from |"" . . . ""ix. Applying
a series expansion of the time evolution operator one can easily show that the two remaining matrix elements vanish in the
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FIG. 6: (Colour online). Comparison between the thermal (•) and the time-averaged distributions (•) of µx and "x after
interaction quenches (columns 1 & 2 ) and after field quenches (columns 3 & 4 ) for a system of size L = 16. The quench
protocols are the same as in FIG. 5. The distance of the end point of the quench from the phase transition is reduced from
top to bottom. Especially in case of the field quenches we observe clear deviations between the thermal and the time-averaged
distributions already for small quenches, for which the thermal expectation values and the time-averages still agree.

distance from the phase transition is reduced from top
to bottom, i.e. for the interaction quenches h/J after
the quench is decreased, while for the field quenches it
is increased. For the interaction quenches we observe
deviations between the distributions when the system is
quenched close to the critical point, but the shape of the
thermal curves is well reproduced by the time averages
after the quenches and the deviations are within the nu-
merical error. Comparing them to the curves for the 4⇥4
system in FIG. 3 we observe that the agreement is bet-
ter than for the smaller system. In contrast to this we
find strong deviations between the thermal distributions
and the time-averaged distributions in case of the field
quenches. In the distributions deviations can already be
observed for quench strengths for which the time aver-
ages still agree with the thermal expectation values. The
time-averaged distributions are wider than the thermal

distributions and there is an increased probability to find
the system in the fully ordered state (µx = ±1 or "x = +1
respectively). The latter observation means that the sys-
tem has a memory of its initial state in contradiction
to thermalization. The strong variations in the distribu-
tions of the correlation function between nearest neigh-
bours for "x close to +1 occur as for small values of n
there are only few possible values of m.
The last point of our studies concerns the correlation

functions between spins which are not nearest neigh-
bours. In FIG. 7 we present results for the 4⇥ 4 system
and the 12 ⇥ 12 system after interaction quenches (left
column) and after field quenches (right column). Due to
the computational e↵ort to determine the C

r

(m,n) we
confine ourselves to the 12⇥ 12 system. We measure the
distance d between two sites in the Manhattan metric, i.e.
if r = R

0 �R defines the relative position of the sites we
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FIG. 6: (Colour online). Comparison between the thermal (•) and the time-averaged distributions (•) of µx and "x after
interaction quenches (columns 1 & 2 ) and after field quenches (columns 3 & 4 ) for a system of size L = 16. The quench
protocols are the same as in FIG. 5. The distance of the end point of the quench from the phase transition is reduced from
top to bottom. Especially in case of the field quenches we observe clear deviations between the thermal and the time-averaged
distributions already for small quenches, for which the thermal expectation values and the time-averages still agree.

distance from the phase transition is reduced from top
to bottom, i.e. for the interaction quenches h/J after
the quench is decreased, while for the field quenches it
is increased. For the interaction quenches we observe
deviations between the distributions when the system is
quenched close to the critical point, but the shape of the
thermal curves is well reproduced by the time averages
after the quenches and the deviations are within the nu-
merical error. Comparing them to the curves for the 4⇥4
system in FIG. 3 we observe that the agreement is bet-
ter than for the smaller system. In contrast to this we
find strong deviations between the thermal distributions
and the time-averaged distributions in case of the field
quenches. In the distributions deviations can already be
observed for quench strengths for which the time aver-
ages still agree with the thermal expectation values. The
time-averaged distributions are wider than the thermal

distributions and there is an increased probability to find
the system in the fully ordered state (µx = ±1 or "x = +1
respectively). The latter observation means that the sys-
tem has a memory of its initial state in contradiction
to thermalization. The strong variations in the distribu-
tions of the correlation function between nearest neigh-
bours for "x close to +1 occur as for small values of n
there are only few possible values of m.
The last point of our studies concerns the correlation

functions between spins which are not nearest neigh-
bours. In FIG. 7 we present results for the 4⇥ 4 system
and the 12 ⇥ 12 system after interaction quenches (left
column) and after field quenches (right column). Due to
the computational e↵ort to determine the C

r

(m,n) we
confine ourselves to the 12⇥ 12 system. We measure the
distance d between two sites in the Manhattan metric, i.e.
if r = R

0 �R defines the relative position of the sites we

Field	quench	(FM)	
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FIG. 7: (Colour online). Correlation function between spins at arbitrary distance for the 4 ⇥ 4 and the 12 ⇥ 12 system after
interaction quenches (left column) and after field quenches (right column). The distance d is measured in the Manhattan metric.
We compare the thermal expectation values for the system in equilibrium at temperature Te↵ (•) to the time-averaged values
after the quenches computed with rt-VMC (•). For the 4⇥ 4 system we additionally include the time-averaged values after the
quenches computed with exact diagonalization (•). The continuous curves are a guide to the eye.

have d =
PD

i=1

|Ri�R0
i| with D the dimensionality (here

D = 2). Thus for a given distance d there may be several
r. The strength of the correlation between two sites will
depend on the number of shortest paths between them,
which depends on r. We compare the time averaged rt-
VMC results after the quenches (red) to the correlation
functions for the system in equilibrium at the temper-
ature attributed to the quench (black). For the 4 ⇥ 4
system we additionally show results of exact diagonaliza-
tion (green). For the interaction quenches we find a good
agreement between the correlation functions both for the
4⇥4 and the 12⇥12 system. The curves show only small
deviations and have the same shape going to zero for large
distances d between the considered sites. The rt-VMC
results show a very good agreement to the exact results
apart from the interaction quench (0; 3.5) ! (1; 3.5). For
the field quenches the di↵erences between the time aver-
aged results after the quenches and the thermal results

are more significant. For small quenches the shapes of the
curves are very similar and the values coincide within the
numerical error. For larger quenches we still observe a
good agreement between the rt-VMC results and the ex-
act results, but here larger deviations from the thermal
curves arise. Although the absolute di↵erences between
the curves for a given value of d are not too large, the
shape of the correlation function as function of d di↵ers
for strong field quenches. After the quenches the decay
of the correlations stretches over a larger distance than
for the system in thermal equilibrium, i.e. the correla-
tion function between two sites in the system in thermal
equilibrium reaches its long range value already at shorter
distances d.
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Conclusion 

•  Quantum	relaxaIon	aJer	field	quench	in	1d	TIM:	
•  No	thermalizaIon,	quasi	parIcles	(kinks)	do	not	interact,		
•  fp	conserved,	reconstrucIon	of	magneIzaIon	in	finite	systems	

•  Quantum	relaxaIon	aJer	quenches	in	2d	TIM	
•  Time	dependent	variaIonal	calculaIon	(rt-VMC):	
•  Comparison	of	Ime	averages	with	thermal	expectaIon	values		
•  Good	agreement	for	interacIon	quenches	(in	the	PM	phase)	
•  Absence	of	thermalizaIon	for	field	quenches	(in	the	FM	phase)	
•  MagneIc	correlaIons	do	not	decay	in	the	FM	phase	
•  Note:	FM	phase	is	gapless	(->	lack	of	clustering	property?)	


