624 WE-Heraeus-Seminar "Simulating Quantum Processes and Devices"

Stochastic Description of Quantum Brownian Dynamics

Jiushu Shao Beijing Normal University September 21, 2016

Outline

Stochastic Formulation of Quantum Brownian Motion

Numerical and Analytical Results

Functional Integral Equation

Summary

Solving Multidimensional Quantum Dynamics: Difficulties

Schroedinger Eq.

$$i\hbar\partial|\Psi(t)\rangle/\partial t = H|\Psi(t)\rangle$$

> Wave Function Memory bottleneck

$$\left|\Psi(t)\right\rangle = e^{-iHt/\hbar} \left|\Psi(0)\right\rangle$$

Path Integral Sign problem

$$\left|\Psi(t)\right\rangle = \int d\mathbf{X}' e^{-iHt/\hbar} \left|\mathbf{X}'\right\rangle \left\langle \mathbf{X}' \right| \Psi(0) \right\rangle$$

Curse of Dimensionality

Molecular Chirality: Why is it a problem?

$$P_L = \frac{1}{2} + \frac{1}{2} \cos\left(\frac{2\Delta_0 t}{\hbar}\right)$$

Why are the chiral configurations stable?

Hund

Microscopic Description

Hamiltonian
$$H = H_s + H_b + H_{int} = H_s + H_b + f(\hat{s})g(\hat{b})$$

Liouville Equation

$$i\hbar \frac{\partial \rho}{\partial t} = [H, \rho]$$

Initial Condition

$$\rho(0) = \rho_s(0)\rho_b(0)$$

> Decoupling: Put stochastic fields such that

$$\rho(t) = M_{s.f.} \{ \rho_s(t) \rho_b(t) \}$$

Heuristic Way to Decoupling JS, JCP 120, 5053 (2004); Castin, Dalibard, Chomaz **Propagator of Whole System** $U(t) = e^{-i \left[H_s + H_b + f(\hat{s})g(\hat{b})\right]t/\hbar} = \prod^N U(\Delta t), \ \Delta t = t/N$ $U(\Delta t) = e^{-iH_s\Delta t/\hbar} e^{-iH_b\Delta t/\hbar} e^{-if(\hat{s})g(\hat{b})\Delta t/\hbar} + o(\Delta t^2)$ $e^{-if(\hat{s})g(\hat{b})\Delta t/\hbar} \stackrel{?}{=} \hat{F}(\hat{s},\Delta t)\hat{G}(\hat{b},\Delta t)$ Hubbard-Stratonovich Transformation $e^{\hat{o}^2} = \int_{-\infty}^{\infty} d\mu e^{-\mu^2/2 \pm \sqrt{2}\mu \hat{o}} / \sqrt{2\pi} = M \left\{ e^{\pm \sqrt{2}\mu \hat{o}} \right\}$

 $-if(\hat{s})g(\hat{b})\Delta t/\hbar = \left\{ \left[-if(\hat{s}) + g(\hat{b}) \right]^2 - \left[-if(\hat{s}) - g(\hat{b}) \right]^2 \right\} \left(\sqrt{\Delta t/\hbar}/2 \right)^2$

Decoupled Propagator

$$U(t) = M\left\{U_{s}\left[\mu_{1}(t), \mu_{2}(t)\right]U_{b}\left[\mu_{1}(t), \mu_{2}(t)\right]\right\}$$

Gaussian Fields

Statistical Properties for $dB_j = \mu_j(t)dt$

$$M\left\{dB_{j}(t)\right\} = 0$$
$$M\left\{dB_{j}(t)dB_{k}(t')\right\} = \delta_{jk}dt$$

Separated Hamiltonians

$$\tilde{H}_{s}(t) = H_{s} + \sqrt{\hbar/2} \left[\mu_{1}(t) + i\mu_{2}(t) \right] f(\hat{s})$$

$$\tilde{H}_{b}(t) = H_{b} + \sqrt{\hbar/2} \left[\mu_{2}(t) + i\mu_{1}(t) \right] g(\hat{b})$$

Ito Calculus Helps JS, CP <u>322</u>, 187 (2006); <u>370</u>, 29 (2010); Li,JS&Wang, PRE <u>84</u>, 051112 (2011)

EOM for System

$$i\hbar d\rho_{s} = [H_{s}, \rho_{s}]dt + \frac{\sqrt{\hbar}}{2} [f(\hat{s}), \rho_{s}]dW_{1} + i\frac{\sqrt{\hbar}}{2} \{f(\hat{s}), \rho_{s}\}dW_{2}^{*}$$

EOM for Bath

$$i\hbar d\rho_b = \left[H_b, \rho_b\right] dt + \frac{\sqrt{\hbar}}{2} \left[g(\hat{b}), \rho_b\right] dW_2 + i\frac{\sqrt{\hbar}}{2} \left\{g(\hat{b}), \rho_s\right\} dW_1^*$$

Complex Wiener Processes

$$W_1(t) = \int_0^t dt' \Big[\mu_1(t') + i\mu_4(t') \Big], \ W_2(t) = \int_0^t dt' \Big[\mu_2(t') + i\mu_3(t') \Big]$$

One Can Prove

$$i\hbar dM\{\rho_s(t)\rho_b(t)\} = \left[H_s + H_b + f(\hat{s})g(\hat{b}), M\{\rho_s(t)\rho_b(t)\}\right]dt$$

$$M\{\rho_s(t)\rho_b(t)\} = \rho(t)$$

Initial Condition ρ(0) = ρ_s(0)ρ_b(0)
 Decoupled Equations of Motion

$$\rho(t) = U(t)\rho(0)U^{\dagger}(t) \equiv M\{\rho_{s}(t)\rho_{b}(t)\}, \text{ where}$$

$$\begin{cases} i\hbar d\rho_{s} = [H_{s}, \rho_{s}]dt + \sqrt{\hbar/2}[f(\hat{s})\rho_{s}dz_{1} - \rho_{s}f(\hat{s})dz_{2}^{*}] \\ i\hbar d\rho_{b} = [H_{b}, \rho_{b}]dt + \sqrt{\hbar/2}i[g(\hat{b})\rho_{b}dz_{1}^{*} + \rho_{b}g(\hat{b})dz_{2}] \\ (z_{1} = B_{1} + iB_{2}, z_{2} = B_{3} + iB_{4}) \end{cases}$$

which, by a simple change of variables can be recast as what we obtained by virtue of Ito calculus Reduced Density Matrix
Reduced Density Matrix (RDM)

$$\tilde{\rho}_{s}(t) \equiv \operatorname{Tr}_{b}\rho(t) = \operatorname{Tr}_{b}M\left\{\rho_{s}(t)\rho_{b}(t)\right\}$$
$$= M\left\{\rho_{s}(t)\operatorname{Tr}_{b}\rho_{b}(t)\right\}$$

Trace of Density Matrix for Bath: Influence on System

$$\operatorname{Tr}_{b}\rho_{b}(t) = \exp\left\{\frac{1}{\sqrt{\hbar}}\int_{0}^{t} dt'\overline{g}(t')\left[\mu_{1}(t') - i\mu_{4}(t')\right]\right\}$$
$$\overline{g}(t) = \operatorname{Tr}_{b}\left\{g(\hat{b})\rho_{b}(t)\right\}/\operatorname{Tr}_{b}\left\{\rho_{b}(t)\right\}$$

Girsanov Transformation

> RDM
$$\tilde{\rho}_s(t) = M \left\{ \rho_s(t) \operatorname{Tr}_b \rho_b(t) \right\}$$

Change of Variables

$$\mu_{1} \rightarrow \mu_{1} + \frac{1}{\sqrt{\hbar}} \int_{0}^{t} dt' \overline{g}(t'), \quad \mu_{4} \rightarrow \mu_{4} - \frac{i}{\sqrt{\hbar}} \int_{0}^{t} dt' \overline{g}(t')$$
$$\overline{g}(t) = \operatorname{Tr}_{b} \left\{ g(\hat{b}) \rho_{b}(t) \right\} / \operatorname{Tr}_{b} \left\{ \rho_{b}(t) \right\}$$

EOM

$$i\hbar d\rho_s = \left[H_s + \overline{g}(t)f(\hat{s}), \rho_s\right]dt + \sqrt{\hbar}/2\left\{\left[f(\hat{s}), \rho_s\right]dW_1 + i\left\{f(\hat{s}), \rho_s\right\}dW_2^*\right\}$$
$$\tilde{\rho}_s(t) = M\left\{\rho_s(t)\right\}$$

$$H = \sigma_x + 0.15\sigma_z g \ \left(H_b = 0, f(\hat{s}) = 0.15\sigma_z, g(\hat{b}) = 5\right)$$

$$i\hbar d\rho_{s} = [\sigma_{x} + 0.75\sigma_{z}, \rho_{s}]dt + 0.075\{[\sigma_{z}, \rho_{s}]dW_{1} + i\{\sigma_{z}, \rho_{s}\}dW_{2}^{*}\}$$

Spontaneous Decay of Two-State Atoms

Hamiltonian

$$H_{s} = \frac{\omega_{0}}{2}\sigma_{z}, H_{b} = \sum_{k}\omega_{k}b_{k}^{\dagger}b_{k},$$
$$H_{sb} = \sigma^{-}\hat{g}_{1} + \sigma^{+}\hat{g}_{2} \equiv \sigma^{-}\otimes\sum_{k}c_{k}b_{k}^{\dagger} + \sigma^{+}\otimes\sum_{k}c_{k}^{*}b_{k}$$

Bath-Induced Field

$$\overline{g}_{1}(t) = \int_{0}^{t} dt' \alpha(t-t') \Big[-i\mu_{12}(t') + \mu_{22}(t') + i\mu_{32}(t') - \mu_{42}(t') \Big],$$

$$\overline{g}_{2}(t) = \int_{0}^{t} dt' \alpha^{*}(t-t') \Big[i\mu_{11}(t') + \mu_{21}(t') + i\mu_{31}(t') + \mu_{41}(t') \Big]$$

$$\alpha(t) = i / \Big(2\sqrt{\hbar} \Big) \sum_{k} |c_{k}|^{2} e^{i\omega_{k}t}$$

$$\alpha(t) = \alpha_R(t) = \frac{\gamma}{2} e^{-\gamma|t|} \quad (\gamma = 0.1)$$

Available online at www.sciencedirect.com

SCIENCE

Chemical Physics Letters 395 (2004) 216-221

CHEMICAL PHYSICS LETTERS

www.elsevier.com/locate/cplett

Hierarchical approach based on stochastic decoupling to dissipative systems

Yun-an Yan, Fan Yang, Yu Liu, Jiushu Shao *

Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, PR China

Received 3 June 2004; in final form 1 July 2004 Available online 20 August 2004

Abstract

Based on the novel stochastic methodology for describing quantum dynamics of dissipative systems [J. Shao, J. Chem. Phys. 120 (2004) 5053], a hierarchical approach is suggested and applied to the spin-boson model with Debye spectral density function. The algorithm to implement this deterministic technique is expounded and the numerical results for the spin-boson system are explained. © 2004 Elsevier B.V. All rights reserved.

Working Formula

$$i\hbar d\rho_s = \left[H_s + \overline{g}(t)f(\hat{s}), \rho_s\right]dt + \sqrt{\hbar}/2\left\{\left[f(\hat{s}), \rho_s\right]dW_1 + i\left\{f(\hat{s}), \rho_s\right\}dW_2^*\right\}$$
$$\tilde{\rho}_s(t) = M\left\{\rho_s(t)\right\}$$

Hierarchy Approach

Yan, Yang, Liu, & JS, CPL <u>395</u>, 216 (2004), Cao, Tanimura, Yan; Shapiro-Loginov

> Memory Kernel

$$\alpha(t) = \alpha_R(t) = \kappa e^{-\gamma t}$$

> Auxiliary Quantities (due to correlation)

$$\rho_{s,m}(t) = \overline{g}^m(t)\rho_s(t), \quad \tilde{\rho}_{s,m}(t) = M\{\rho_{s,m}(t)\}$$

$$i\hbar d\tilde{\rho}_{s,m}(t)/dt = [H_s, \tilde{\rho}_{s,m}(t)] + [f(\hat{s}), \tilde{\rho}_{s,m+1}(t)] + n\hbar\kappa[f(\hat{s}), \tilde{\rho}_{s,m-1}(t)] - in\hbar\gamma\tilde{\rho}_{s,m}(t)$$

$$\tilde{\rho}_{s,m}(t) = 0 \ (m \ge N_{\min})$$

$$\alpha(t) = \kappa e^{-(\gamma_R + i\gamma_I)t}$$

$$\begin{split} \overline{g}(t) &= \overline{g}_1(t) + \overline{g}_2(t) \\ \overline{g}_1(t) &= \int_0^t dt' \alpha(t - t') \Big[\mu_1(t') - i\mu_4(t') - i\mu_2(t') + \mu_3(t') \Big], \\ \overline{g}_2(t) &= \int_0^t dt' \alpha^* (t - t') \Big[\mu_1(t') - i\mu_4(t') + i\mu_2(t') - \mu_3(t') \Big] \end{split}$$

> Auxiliary Quantities

$$\tilde{\rho}_{mn}(t) = M\{\overline{g}_1^m(t)\overline{g}_2^n(t)\rho_s(t)\}$$

Hierarchical Structure

Truncation vs Dissipation Strength Zhou, Yan & JS, *EPL 72*, 305 (2005), YiJing Yan

$$\alpha(t) = \alpha_R(t) = \kappa e^{-\gamma t} \quad (\gamma = 20)$$

Truncation vs Memory Length

$$\alpha(t) = \alpha_R(t) = \kappa e^{-\gamma t} (\kappa = 100, 400)$$

Electron Transfer Yan, Yang, Liu, & JS, *CPL* <u>395</u>, 216 (2004)

Model:
$$H_s = \Omega \sigma_x + \varepsilon \sigma_z, f(\hat{s}) = \sigma_z$$

Spectral Density Function

$$J(\omega) = \frac{\pi}{2} \sum \frac{c_j^2}{m_j \omega_j} \delta(\omega - \omega_j) = \eta \omega \frac{\omega_c^2}{\omega_c^2 + \omega^2}$$
$$\alpha(t) = \frac{\eta \omega_c^2}{2} \cot\left(\frac{\beta \omega_c}{2}\right) e^{-\omega_c t} + \frac{2\eta \omega_c^2}{\beta} \sum_{n=1}^{\infty} \frac{v_n e^{-v_n t}}{v_n^2 - \omega_c^2} - i \frac{\eta \omega_c^2}{2} e^{-\omega_c t}$$
$$v_n = \frac{2\pi n}{\hbar \beta}$$

A finite number N_e of exponentials will be used in numerical calculations.

Transient Dynamics

$$\begin{split} & \varepsilon/\Omega = 1, \ \beta\Omega = 0.5 \\ & (a) \ \Omega/\omega_c = 4, \ \eta/\Omega = 4, \ N_e = 4, \ N_{\min} = 7 \\ & (b) \ \Omega/\omega_c = 0.2, \ \eta/\Omega = 0.2, \ N_e = 5, \ N_{\min} = 7 \end{split}$$

Rate Constants

$$\beta \Omega = 0.5$$

(a) $\omega_c / \Omega = 5$, $\eta / \Omega = 2$; (b) $\omega_c / \Omega = 0.25$, $\eta / \Omega = 40$

Bath-induced Random Field

Caldeira-Leggett Model

$$H_{b} + H_{int} = \sum_{j} \left\{ \frac{\hat{p}_{j}^{2}}{2m_{j}} + \frac{1}{2}m_{j}\omega_{j}^{2} \left[\hat{x}_{j} - \frac{c_{j}f(\hat{s})}{m_{j}\omega_{j}^{2}} \right]^{2} \right\}$$

$$\overline{g}(t) = \sqrt{\hbar} \int_0^t dt' \left\{ \alpha_R(t-t') \left[\mu_1(t') - i\mu_4(t') \right] + \alpha_I(t-t') \left[\mu_2(t') + i\mu_3(t') \right] \right\}$$

Response and Spectral Density Functions

$$\alpha(t) = \sum_{j} \frac{c_j^2}{2m_j \omega_j} \left[\coth(\hbar \beta \omega_j/2) \cos(\omega_j t) - i \sin(\omega_j t) \right]$$
$$J(\omega) = \frac{\pi}{2} \sum_{j} \frac{c_j^2}{2m_j \omega_j} \delta(\omega - \omega_j)$$

A Way to Master Equation

Furutsu-Novikov Theorem

$$M\left\{\mu(t')F\left[\mu\right]\right\} = M\left\{\delta F\left[\mu\right]/\delta\mu(t')\right\}$$

> Exact "Master Equation"

$$i\hbar d\rho_s = \left[H_s + \overline{g}(t)f(\hat{s}), \rho_s\right]dt + \sqrt{\hbar}/2\left\{\left[f(\hat{s}), \rho_s\right]dz_1 + i\left\{f(\hat{s}), \rho_s\right\}dz_2^*\right\}$$

$$i\hbar d\tilde{\rho}_{s}(t)/dt = \left[H_{s}, \tilde{\rho}_{s}(t)\right] + \left[f(\hat{s}), \underline{O(t)}\right], \quad \tilde{O}_{s,R(I)}(t,t') : \text{Disspation Operators}$$

$$O(t) = \sqrt{\hbar} \int_{0}^{t} dt' \left[\alpha_{R}(t-t') \underbrace{\tilde{O}_{s,R}(t,t')}_{s,R}(t,t') + \alpha_{I}(t-t') \underbrace{\tilde{O}_{s,I}(t,t')}_{s,I}\right]$$

$$\boxed{O_{s,R}(t,t')} = \frac{\delta \rho_{s}(t)}{\delta \mu_{1}(t')} - i \frac{\delta \rho_{s}(t)}{\delta \mu_{4}(t')}, \quad \boxed{O_{s,I}(t,t')}_{s,I} = \frac{\delta \rho_{s}(t)}{\delta \mu_{2}(t')} + i \frac{\delta \rho_{s}(t)}{\delta \mu_{3}(t')}$$

$$\widetilde{O}_{s,R(I)}(t,t') = M \left\{O_{s,R(I)}(t,t')\right\}$$

Formal Solution and Unravelling JS, *Chem. Phys.* <u>322</u>, 187 (2006), <u>370</u>, 29 (2010)

$$\rho_s(t) = U_1(t,0)\rho_s(0)U_2(0,t)$$

$$H_{1,2}(t) = H_s + \left\{ \overline{g}(t) + \sqrt{\hbar} \left[\mu_1(t) \pm i\mu_2(t) \pm \mu_3(t) + i\mu_4(t) \right] / 2 \right\} f(\hat{s})$$

= $H_s + W_{f,b}(t) f(\hat{s})$

Natural unravelling for $\rho_s(0) = |\psi\rangle\langle\psi|$

$$\tilde{\rho}_{s}(t) = M\left\{U_{1}(t,0)|\psi\rangle\langle\psi|U_{2}(0,t)\right\} \equiv M\left\{|\psi_{1}(t)\rangle\langle\psi_{2}(t)|\right\}$$

Dissipative Operators

> Time-Local Form

$$\begin{aligned} \overline{O_{s,R}(t,t')} &= -\frac{i}{\sqrt{\hbar}} \Big[\hat{f}_1(t,t') \rho_s(t) - \rho_s(t) \hat{f}_2(t,t') \Big] \\ \overline{O_{s,I}(t,t')} &= \frac{1}{\sqrt{\hbar}} \Big[\hat{f}_1(t,t') \rho_s(t) + \rho_s(t) \hat{f}_2(t,t') \Big] \\ \hat{f}_{1,2}(t,t') &= U_{1,2}(t,t') f(\hat{s}) U_{1,2}(t',t) \end{aligned}$$

> Time-Nonlocal Form

$$\underbrace{O_{s,R}(t,t')}_{s,R} = -\frac{i}{\sqrt{\hbar}} \Big[U_1(t,t') f(\hat{s}) \rho_s(t') U_2(t',t) - U_1(t,t') \rho_s(t') f(\hat{s}) U_2(t',t) \Big] \\
 \underbrace{O_{s,I}(t,t')}_{s,I} = \frac{1}{\sqrt{\hbar}} \Big[U_1(t,t') f(\hat{s}) \rho_s(t') U_2(t',t) + U_1(t,t') \rho_s(t') f(\hat{s}) U_2(t',t) \Big]$$

Markovian Limit

Exact Relation

$$\begin{cases} \delta \rho_s(t) / \delta \mu_1(t) = -i [f(\hat{s}), \rho_s(t)] / (2\sqrt{\hbar}) \\ \delta \rho_s(t) / \delta \mu_2(t) = \{f(\hat{s}), \rho_s(t)\} / (2\sqrt{\hbar}) \end{cases}$$

> Approximation

$$\delta \rho_s(t) / \delta \mu_j(t') = \delta \rho_s(t) / \delta \mu_j(t)$$

Master Equation

$$i\hbar d\tilde{\rho}_{s} = \left[H_{s} + A_{I}(t)f^{2}(\hat{s}), \tilde{\rho}_{s}\right]dt - iA_{R}(t)\left[f(\hat{s}), \left[f(\hat{s}), \tilde{\rho}_{s}\right]\right]dt$$
$$A_{R,I}(t) = \int_{0}^{t} dt' \alpha_{R,I}(t')$$

Harmonic Oscillator $f(\hat{s}) = \hat{x}$ H. Li, JS, & S. Wang, *Phys. Rev.* E <u>84</u>, 051112 (2011)

Hamiltonian

$$H_{s} = \frac{1}{2M}\hat{p}^{2} + \frac{1}{2}M\omega_{0}^{2}\hat{x}^{2}, H_{s,\text{eff}} = \frac{1}{2M}\hat{p}^{2} + \frac{1}{2}M\tilde{\omega}^{2}\hat{x}^{2}$$
$$\tilde{\omega}^{2} = \omega_{0}^{2} + \frac{1}{M}\frac{2}{\pi}\int_{0}^{\infty}d\omega\frac{J(\omega)}{\omega}$$

Heisenberg Operators

$$\hat{f}_{1,2}(t,t') = \cos\tilde{\omega}(t-t')\hat{x} - \frac{\sin\tilde{\omega}(t-t')}{M\tilde{\omega}}\hat{p} - \frac{1}{M\tilde{\omega}}\int_{t'}^{t} dt_1 \sin\tilde{\omega}(t_1-t')W_{1,2}(t_1)$$

Dissipation Operators

$$\tilde{O}_{s,R}(t,t') = -i\cos\tilde{\omega}(t-t')\left[\hat{x},\tilde{\rho}_{s}(t)\right] + \frac{i}{M\omega}\sin\tilde{\omega}(t-t')\left[\hat{p},\tilde{\rho}_{s}(t)\right] \\ + \frac{2}{M\tilde{\omega}}\int_{t'}^{t}dt_{1}\int_{t_{1}}^{t}dt_{2}\sin\tilde{\omega}(t_{1}-t')\alpha_{I}(t_{1}-t_{2})\tilde{O}_{s,R}(t,t_{2}) \\ - \frac{-}{M\tilde{\omega}}\int_{t'}dt_{1}\int_{0}^{t}dt_{2}\sin\tilde{\omega}(t_{1}-t')\alpha_{I}(t_{1}-t_{2})O_{s,I}(t,t_{2})$$

Determining Dissipation Operators Li, JS, & Wang, *PRE* <u>84</u>, 051112 (2011)

Operator Forms

$$\begin{split} \tilde{O}_{s,R}(t,t') &= c_{11}(t,t') \big[\hat{x}, \tilde{\rho}_s(t) \big] + c_{12}(t,t') \big[\hat{p}, \tilde{\rho}_s(t) \big] \\ \tilde{O}_{s,I}(t,t') &= c_{21}(t,t') \big\{ \hat{x}, \tilde{\rho}_s(t) \big\} + c_{22}(t,t') \big\{ \hat{p}, \tilde{\rho}_s(t) \big\} + c_{23}(t,t') \big[\hat{x}, \tilde{\rho}_s(t) \big] + c_{24}(t,t') \big[\hat{p}, \tilde{\rho}_s(t) \big] \end{split}$$

Equations of Coefficients

$$c_{i,i}(t,t') = -i\cos\tilde{\omega}(t-t') + \frac{2}{2} \left[{}^{t'}dt, \sin\tilde{\omega}(t,-t')\alpha_{i}(t,-t_{i})c_{i,i}(t,t_{i}) \right]$$

$$i\hbar d\tilde{\rho}_{s}(t)/dt = \left[H_{s}, \tilde{\rho}_{s}(t) \right] + \left[f(\hat{s}), \boxed{O(t)} \right], \quad \tilde{O}_{s,R(I)}(t,t') : \text{Disspation Operators}$$

$$O(t) = \sqrt{\hbar} \int_{0}^{t} dt' \left[\alpha_{R}(t-t') \underbrace{\tilde{O}_{s,R}(t,t')}_{s,R}(t,t') + \alpha_{I}(t-t') \underbrace{\tilde{O}_{s,I}(t,t')}_{s,I} \right]$$

$$\underbrace{O_{s,R}(t,t')}_{\delta\mu_{1}(t')} = \frac{\delta\rho_{s}(t)}{\delta\mu_{1}(t')} - i \frac{\delta\rho_{s}(t)}{\delta\mu_{4}(t')}, \quad \underbrace{O_{s,I}(t,t')}_{\delta\mu_{2}(t')} = \frac{\delta\rho_{s}(t)}{\delta\mu_{2}(t')} + i \frac{\delta\rho_{s}(t)}{\delta\mu_{3}(t')}$$

$$\widetilde{O}_{s,R(I)}(t,t') = M \left\{ O_{s,R(I)}(t,t') \right\}$$

Master Equation of Harmonic Oscillator Hu, Paz, & Zhang, PRD <u>45</u>, 2843 (1992), Halliwell & Yu

Operator Form

$$i\hbar \frac{\partial \tilde{\rho}_{s}(t)}{\partial t} = \left[H_{s,\text{eff}}, \tilde{\rho}_{s}(t) \right] + A_{1}(t) \left[\hat{x}, \left\{ \hat{x}, \tilde{\rho}_{s}(t) \right\} \right] + A_{2}(t) \left[\hat{x}, \left\{ \hat{p}, \tilde{\rho}_{s}(t) \right\} \right] \\ + A_{3}(t) \left[\hat{x}, \left[\hat{x}, \tilde{\rho}_{s}(t) \right] \right] + A_{4}(t) \left[\hat{x}, \left[\hat{p}, \tilde{\rho}_{s}(t) \right] \right]$$

Equations of Coefficients

$$\begin{aligned} A_{1}(t) &= \int_{0}^{t} dt' \alpha_{I}(t-t') c_{21}(t,t') \\ A_{2}(t) &= \int_{0}^{t} dt' \alpha_{I}(t-t') c_{22}(t,t') \\ A_{3}(t) &= \int_{0}^{t} dt' \Big[\alpha_{R}(t-t') c_{11}(t,t') + \alpha_{I}(t-t') c_{23}(t,t') \Big] \\ A_{4}(t) &= \int_{0}^{t} dt' \Big[\alpha_{R}(t-t') c_{12}(t,t') + \alpha_{I}(t-t') c_{24}(t,t') \Big] \end{aligned}$$

Deriving Master Equation

JS, *JCP* <u>120</u>, 5053 (2004), Garraway, Breuer, Petruccione Exact Equation of Motion

$$\begin{split} \rho_{s}(t) &= U_{1}(t,0)\rho_{s}(t)U_{2}(0,t), H_{j}(t) = H_{s} + W_{1j}(t)\sigma^{-} + W_{2j}(t)\sigma^{+} (j=1,2) \\ i\frac{\partial\tilde{\rho}_{s}}{\partial t} &= \left[H_{s},\tilde{\rho}_{s}(t)\right] + \left[\sigma^{-},\int_{0}^{t}dt'\alpha(t-t')O_{1}(t,t')\right] + \left[\sigma^{+},\int_{0}^{t}dt'\alpha^{*}(t-t')O_{2}(t,t')\right] \\ O_{1}(t,t') &= M\left\{-i\frac{\delta\rho_{s}}{\delta\mu_{12}(t')} + \frac{\delta\rho_{s}}{\delta\mu_{22}(t')} + i\frac{\delta\rho_{s}}{\delta\mu_{32}(t')} - \frac{\delta\rho_{s}}{\delta\mu_{42}(t')}\right\} = 2M\left\{\rho_{s}(t)U_{2}(t,t')\sigma^{+}U_{2}(t',t)\right\} \\ O_{2}(t,t') &= M\left\{i\frac{\delta\rho_{s}}{\delta\mu_{11}(t')} + \frac{\delta\rho_{s}}{\delta\mu_{21}(t')} + i\frac{\delta\rho_{s}}{\delta\mu_{31}(t')} + \frac{\delta\rho_{s}}{\delta\mu_{41}(t')}\right\} = 2M\left\{U_{1}(t,t')\sigma^{-}U_{1}(t',t)\rho_{s}(t)\right\} \end{split}$$

> Dissipation Operators

 $U_{2}(t,t')\sigma^{+}U_{2}(t',t) = \sigma^{+} + i\int_{t'}^{t} dt_{1} \Big[W_{12}(t_{1})U_{2}(t,t_{1})\sigma_{z}U_{2}(t_{1},t) - \omega_{0}U_{2}(t,t_{1})\sigma^{+}U_{2}(t_{1},t) \Big]$

$$\begin{split} \rho_{s}(t) &= U_{1}(t,0)\rho_{s}(t)U_{2}(0,t), H_{j}(t) = H_{s} + W_{1j}(t)\sigma^{-} + W_{2j}(t)\sigma^{+}(j=1,2) \\ i\frac{\partial\tilde{\rho}_{s}}{\partial t} &= \left[H_{s},\tilde{\rho}_{s}(t)\right] + \left[\sigma^{-},\int_{0}^{t}dt'\alpha(t-t')O_{1}(t,t')\right] + \left[\sigma^{+},\int_{0}^{t}dt'\alpha^{*}(t-t')O_{2}(t,t')\right] \\ O_{1}(t,t') &= M\left\{-i\frac{\delta\rho_{s}}{\delta\mu_{12}(t')} + \frac{\delta\rho_{s}}{\delta\mu_{22}(t')} + i\frac{\delta\rho_{s}}{\delta\mu_{32}(t')} - \frac{\delta\rho_{s}}{\delta\mu_{42}(t')}\right\} = 2M\left\{\rho_{s}(t)U_{2}(t,t')\sigma^{+}U_{2}(t',t)\right\} \\ O_{2}(t,t') &= M\left\{i\frac{\delta\rho_{s}}{\delta\mu_{11}(t')} + \frac{\delta\rho_{s}}{\delta\mu_{21}(t')} + i\frac{\delta\rho_{s}}{\delta\mu_{31}(t')} + \frac{\delta\rho_{s}}{\delta\mu_{41}(t')}\right\} = 2M\left\{U_{1}(t,t')\sigma^{-}U_{1}(t',t)\rho_{s}(t)\right\} \end{split}$$

Implementation of Stochastic Processes Stockburger, JS

Total stochastic fields

$$W_{f,b}(t) = \overline{g}(t) + \frac{\sqrt{\hbar}}{2} \left[\mu_1(t) \pm i\mu_2(t) \pm \mu_3(t) + i\mu_4(t) \right]$$

$$\overline{g}(t) = \sqrt{\hbar} \int_0^t dt' \left\{ \alpha_R(t-t') \left[\mu_1(t') - i\mu_4(t') \right] + \alpha_I(t-t') \left[\mu_2(t') + i\mu_3(t') \right] \right\}$$

Regrouping

$$\begin{split} W_{f,b}(t) &= \xi(t) + v_{1,2}(t) \\ \xi(t) &= \sqrt{\hbar} \int_0^t dt' \alpha_R(t-t') \big[\mu_1(t') - i\mu_4(t') \big] + \sqrt{\hbar} \big[\mu_1(t) + i\mu_4(t) \big] / 2 \\ v_{1,2}(t) &= \sqrt{\hbar} \int_0^t dt' \alpha_I(t-t') \big[\mu_2(t') + i\mu_3(t') \big] + \sqrt{\hbar} \big[\pm i\mu_2(t) \pm \mu_3(t) \big] / 2 \\ \xi(t) \text{ is independent of } v_{1,2}(t), \text{ and } v_{1,2}(t) \text{ are dependent on each other.} \end{split}$$

TABLE I. Summary of results for $P(t) \equiv \langle \sigma_z(t) \rangle$ for bias $\varepsilon = 0$.	
$H = -\frac{1}{2}\hbar\Delta\sigma_x + \frac{1}{2}q_0\sigma_z\sum_{\alpha}C_{\alpha}x_{\alpha} + H_b(\{m_{\alpha}\},\{\omega_{\alpha}\}),$	
V. Ohmic Dissipation: Unbiased Case	37
A. General formulas	38
B. The line $\alpha = \frac{1}{2}$	40
C. The limit of high temperatures and/or strong dissi-	. •
pation	42
D. $T=0, 0 \le \alpha < \frac{1}{2}$	43
E. $T=0, \frac{1}{2}<\alpha<1$	48
$\alpha = \frac{1}{2}$, all T Exponential decay with a rate $\pi \Delta^2 / 2\omega_c$ (Toulouse limit) (Sec. V.B)	
elevant time scale. In view of these difficulties we mu	ust
regard the true behavior of $P(t)$ in the regime $T =$	=0,
$\frac{1}{2} < \alpha \leq 1$ as a currently unresolved problem.	

s > 2

Weakly damped oscillations (Sec. VI.B)

For results for $\epsilon \neq 0$, see Sec. VII.

Rev. Mod. Phys. <u>59</u>, 1 (1987)

18.1. TRUNCATION OF THE DOUBLE-WELL TO THE TWO-STATE SYSTEM

243

already in Section 3.2. The relevant Hamiltonian is given in Eq. (3.75) or Eq. (3.76). Despite its apparent simplicity, the spin-boson model cannot be solved exactly by any known method (apart from some limited regimes of the parameter space). Not only is the spin-boson model nontrivial mathematically, it is also nontrivial physically. The environment acts on the TSS by a fluctuating force $\xi(t) = \sum_{\alpha} c_{\alpha} x_{\alpha}(t)$. For a bath with linear response, the modes $x_{\alpha}(t)$ obey Gaussian statistics. Therefore the dynamics of the bath is fully characterized by the force autocorrelation function in thermal equilibrium $\langle \xi(t)\xi(0) \rangle_{\beta}$, which is simply a superposition of harmonic oscillator correlation functions [cf. Eq. (5.33)]. In the formal path integral expression for the reduced density matrix, the environment reveals itself through an influence functional \mathcal{F} . In Chapters 4 and 5 we have given several useful forms for \mathcal{F} applicable to

thermodynamics and dynamics, respectively.

World Scientific

Statistics of New Gaussian Processes

> The Real

$$M\left\{\xi(t)\right\} = 0, \ M\left\{\xi(t)\xi(t')\right\} = \hbar\alpha_R(t-t')$$

> The "Imaginary"

$$M\left\{v_{1,2}(t)\right\} = 0, \ M\left\{v_{1}(t)v_{2}(t')\right\} = i\hbar\alpha_{I}(t-t')$$
$$M\left\{v_{1}(t)v_{1}(t')\right\} = -M\left\{v_{2}(t)v_{2}(t')\right\} = i\hbar\left[\theta(t-t') - \theta(t'-t)\right]\alpha_{I}(t-t')$$

Example: Spin-Boson (Ohmic case at zero temperature)

$$J(\omega) = 2\pi\alpha\omega \left[1 + \left(\omega/\omega_c\right)^2\right]^{-2}, \ \alpha(t) = \pi^{-1} \int_0^\infty d\omega J(\omega) e^{-i\omega t}$$
$$\alpha_I(t) = -\frac{1}{2}\pi\alpha\omega_c^3 t e^{-\omega_c t}$$

Problem and Solution

P: The real stochastic field is long-ranged in time and numerical convergence of averaging is very slow.

S: Combining the hierarchical equations of motion method and stochastic simulation is very useful.

Other better solutions?

Mixed Random-Hierarchy Approach Zhou, Yan & JS, EPL <u>72</u>, 334 (2005)

Special Case (α= 0.5, Toulouse Limit)

 $\Delta_r = \Delta(\Delta / \omega_c)$

Decay Dynamics (α> 0.5) Zhou & JS, *JCP* <u>128</u>, 034106 (2008)

 $\sigma_z(t) = \exp(-kt/\omega_c)$

Phase Diagram

SBM: From Operator Eq to Scalar One

Define:
$$I(t) = \operatorname{Tr} \{ \rho_s(t) \}, x(t) = \operatorname{Tr} \{ \rho_s(t) \sigma_x \},$$

 $y(t) = \operatorname{Tr} \{ \rho_s(t) \sigma_y \}, z(t) = \operatorname{Tr} \{ \rho_s(t) \sigma_z \}$

$$\begin{aligned} \frac{dI}{dt} &= -\frac{i}{\hbar} \Gamma_2(t) z(t) \\ \frac{dx}{dt} &= -\frac{1}{\hbar} \Gamma_2(t) y(t) \\ \frac{dy}{dt} &= \Delta z(t) + \frac{1}{\hbar} \Gamma_1(t) x(t) \\ \frac{dz}{dt} &= -\Delta y(t) - \frac{i}{\hbar} \Gamma_2(t) I(t) \end{aligned}$$

$$\begin{split} &\Gamma_{1}(t) = 2\overline{g}(t) + \sqrt{\hbar} \left[\mu_{1}(t) + i\mu_{2}(t) \right], \Gamma_{2}(t) = \sqrt{\hbar} \left[\mu_{4}(t) + i\mu_{3}(t) \right] \\ &\left\langle \Gamma_{1}(t)\Gamma_{1}(t') \right\rangle = 4\hbar\alpha_{R} \left(|t-t'| \right), \left\langle \Gamma_{2}(t)\Gamma_{2}(t') \right\rangle = 0, \\ &\left\langle \Gamma_{1}(t)\Gamma_{2}(t') \right\rangle = \theta(t-t')\alpha_{I} \left(t-t' \right). \end{split}$$

Integral Equation for *z*(*t*)

$$z(t) = e^{-\frac{i}{\hbar} \int_{0}^{t} ds \Gamma_{2}(s)} - \Delta^{2} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \cos\left[\frac{1}{\hbar} \int_{t_{1}}^{t} ds \Gamma_{2}(s)\right] \cos\left[\frac{1}{\hbar} \int_{t_{2}}^{t_{1}} ds \Gamma_{1}(s)\right] z(t_{2})$$

$$z(t) = e^{-\frac{i}{\hbar} \int_{0}^{t} ds \Gamma_{2}(s)} z_{1}(t)$$
$$= e^{\frac{1}{\sqrt{\hbar}} \int_{0}^{t} ds [\mu_{3}(s) - i\mu_{4}(s)]} z_{1}(t)$$

$$z_{1}(t) = 1 - \Delta^{2} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \cos\left[\frac{1}{\hbar} \int_{t_{1}}^{t} ds \Gamma_{2}(s)\right] \cos\left[\frac{1}{\hbar} \int_{t_{2}}^{t_{1}} ds \Gamma_{1}(s)\right] e^{\frac{i}{\hbar} \int_{t_{2}}^{t} ds \Gamma_{2}(s)} z_{1}(t_{2})$$

Girsanov Transformation

$$\mu_3(t) \rightarrow \mu_3(t) + 1/\sqrt{\hbar}, \ \mu_4(t) \rightarrow \mu_4(t) - i/\sqrt{\hbar}$$

Stochastic average of z(t) is equal to that of the transformed $z_1(t)$, $\tilde{z}(t)$

$$\tilde{z}(t) = 1 - \Delta^2 \int_0^t dt_1 \int_0^{t_1} dt_2 \cos\left[\frac{1}{\hbar} \int_{t_1}^t ds \Gamma_2(s)\right] \cos\left[\frac{1}{\hbar} \int_{t_2}^{t_1} ds \tilde{\Gamma}_1(s)\right] e^{\frac{i}{\hbar} \int_{t_2}^t ds \Gamma_2(s)} \tilde{z}(t_2)$$
$$\tilde{\Gamma}_1(s) = \Gamma_1(s) + 4 \int_s^s ds' \alpha_I(s-s') \equiv \Gamma_1(s) + A(s)$$

As $\langle \tilde{z}(t) \rangle = \langle z(t) \rangle$, no confusion will arise if $\tilde{z}(t)$ is simply denoted as z(t). Introduce two deterministic functions A_1 and A_2 and define $\Theta_1 = \tilde{\Gamma}_1(t) + A_1$ and $\Theta_2 = \Gamma_2(t) + A_2$.

From IE to Functional Equation JS, Klyatskin

$$\begin{split} \left\langle z \left(\left[\Theta_{1},\Theta_{2}\right],t \right) \right\rangle &= 1 - \frac{\Delta^{2}}{2} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \left\langle \cos\left[\frac{1}{\hbar} \int_{t_{1}}^{t} ds\Theta_{2}(s)\right] e^{\frac{i}{\hbar} \int_{0}^{t} ds\Theta_{2}(s)} \right\rangle \\ &\left[F_{1}(t_{1},t_{2})Z_{1}(t_{1},t_{2}) + F_{2}(t_{1},t_{2})Z_{2}(t_{1},t_{2})\right] \\ F_{1,2}(t_{1},t_{2}) &= \left\langle e^{\pm \frac{i}{\hbar} \int_{t_{2}}^{t} ds \left\{ 2 \int_{t_{2}}^{s} ds_{1}Y(s,s_{1}) + \sqrt{\hbar} [\mu_{1}(s) + i\mu_{2}(s)] + A(s) + A_{1}(s) \right\} e^{\frac{i}{\hbar} \int_{t_{2}}^{t} ds\Theta_{2}(s)} \right\rangle \\ Y(t,t') &= \sqrt{\hbar} \left\{ \alpha_{R}(t-t') \left[\mu_{1}(t') - i\mu_{2}(t') \right] + \alpha_{I}(t-t') \left[\mu_{3}(t') + i\mu_{4}(t') \right] \right\} \\ F_{1,2}(t_{1},t_{2}) &= e^{-\frac{4}{\hbar} \int_{t_{2}}^{t} ds \int_{t_{2}}^{s} ds \left[\alpha_{R}(s-s') \pm i\alpha_{I}(s-s') \right] \frac{i}{\hbar} \int_{t_{2}}^{t} ds [\pm A(s) \pm A_{1}(s) + A_{2}(s)]} \\ &= C_{\pm}(t_{1},t_{2}) e^{\frac{i}{\hbar} \int_{t_{2}}^{t} ds [\pm A_{1}(s) + A_{2}(s)]} \end{split}$$

Girsanov Transformation Again

$$Z_{1,2}(t_1, t_2) = \left\langle e^{\pm 2\frac{i}{\sqrt{\hbar}} \int_{-\infty}^{t_2} ds \int_{t_2}^{s} ds_1 Y(s, s_1)} z\left(\left[\Theta_1, \Theta_2\right], t_2\right) \right\rangle$$
$$= \left\langle z\left(\left[\Theta_1 \pm 4iA_{R, t_1, t_2}, \Theta_2 \pm 4A_{I, t_1, t_2}\right], t_2\right) \right\rangle$$

The self-induced field during the evolution:

$$A_{t_1,t_2}(t) = \int_{t_2}^{t_1} dt' \alpha(t'-t)$$

$$Z([A_1, A_2], t) \equiv \langle z([\Theta_1, \Theta_2], t) \rangle$$

Functional Integral Equation

$$Z_{1,2}(t_1, t_2) = \left\langle e^{\pm 2\frac{i}{\sqrt{\hbar}} \int_{-\infty}^{t_2} ds \int_{t_2}^{s} ds_1 Y(s, s_1)} z\left(\left[\Theta_1, \Theta_2\right], t_2\right) \right\rangle$$
$$= \left\langle z\left(\left[\Theta_1 \pm 4iA_{R, t_1, t_2}, \Theta_2 \pm 4A_{I, t_1, t_2}\right], t_2\right) \right\rangle$$

$$Z\left(\left[A_{1},A_{2}\right],t\right)=1-\frac{\Delta^{2}}{4}\int_{0}^{t}dt_{1}\int_{0}^{t_{1}}dt_{1}\left[1+e^{2\frac{i}{\hbar}\int_{t_{1}}^{t}dsA_{2}(s)}\right]\left\{C_{+}(t_{1},t_{2})e^{\frac{i}{\hbar}\int_{t_{2}}^{t}ds[A_{1}(s)+A_{2}(s)]}\\Z\left(\left[A_{1}+4iA_{R,t_{1},t_{2}},A_{2}+4A_{I,t_{1},t_{2}}\right],t_{2}\right)\\+C_{+}(t_{1},t_{2})e^{-\frac{i}{\hbar}\int_{t_{2}}^{t}ds[A_{1}(s)-A_{2}(s)]}Z\left(\left[A_{1}-4iA_{R,t_{1},t_{2}},A_{2}-4A_{I,t_{1},t_{2}}\right],t_{2}\right)\right\}$$

Formal Equation of Motion

$$\langle z(t) \rangle = Z\left(\begin{bmatrix} 0, 0 \end{bmatrix}, t \right)$$

$$= 1 - \frac{\Delta^2}{4} \int_0^t dt_1 \int_0^{t_1} dt_1 \left\{ C_+(t_1, t_2) Z\left(\begin{bmatrix} 4iA_{R, t_1, t_2}, 4A_{I, t_1, t_2} \end{bmatrix}, t_2 \right) \right\}$$

$$+ C_+(t_1, t_2) Z\left(\begin{bmatrix} -4iA_{R, t_1, t_2}, -4A_{I, t_1, t_2} \end{bmatrix}, t_2 \right)$$

Non-interacting Blip Approximation

Neglecting the self-induced field:

$$\langle z(t) \rangle = 1 - \frac{\Delta^2}{4} \int_0^t dt_1 \int_0^{t_1} dt_1 \Big[C_+(t_1, t_2) + C_+(t_1, t_2) \Big] \langle z(t_2) \rangle$$

Stochastic Formulation

> Alleviating or transforming the curse of dimensionality

Designing numerical techniques
 Studying spin-boson model

Obtaining the functional integral equation for the spin-boson model

Acknowledgements

- Drs. Yun-an Yan, Yun Zhou, Yu Liu, Fan Yang, and Wenkai Zhang, Haifeng Li
- **Profs. Tiejun Li and J. T. Stockburger**
- National Natural Science Foundation of China
- Ministry of Science and Technology
- Chinese Academy of Sciences

