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Electron transfer in molecules, 

at surfaces, and in solution

Quantum transport in nanostructures

Energy transfer in molecular materials

e-
hν

Quantum dynamical processes



Quantum dynamics: Methods

• Quantum dynamical basis-set methods

• Trajectory-based semiclassical methods

• System-bath methods: Path integral, reduced density matrix, … 



Conventional quantum dynamical basis-set methods

• Expansion of the wave function in a fixed time-independent basis set

• Dirac-Frenkel variational principle

• Equations of motion 

• Scaling of numerical effort for 𝑓 degrees of freedom: ∼ 𝑁𝑓

for 𝑁 = 10 basis states:
3 atoms (𝑓 = 3):    103 equations
6 atoms (𝑓 = 12):  1012 equations



Multiconfiguration Time-Dependent Hartree (MCTDH) Method

• Multiconfiguration expansion of the wavefunction

with time-dependent configurations              and ‘single-particle’ functions

• Variations

• MCTDH equations of motion

Meyer, Manthe, Cederbaum, CPL 165, 73 (1990); Beck, Jäckle, Worth, Meyer, Phys. Rep. 324, 1 (2000)



Multiconfiguration Time-Dependent Hartree (MCTDH) Method

• Multiconfiguration expansion of the wavefunction

with time-dependent configurations              and ‘single-particle’ functions

• MCTDH equations of motion

 projector on single particle space

 reduced density matrix

 single-hole function

 mean-field operator

Meyer, et al. Phys. Rep. 324, 1 (2000); Meyer, Gatti, Worth, Multidimensional Quantum Dynamics (Wiley, 2009)



Multiconfiguration Time-Dependent Hartree (MCTDH) Method

• Multiconfiguration expansion of the wavefunction

• MCTDH equations of motion

• Accuracy:     depends on number of single particle functions 𝑛

𝑛 = 1: time-dependent Hartree
(poor approximation for

interacting systems)

𝑛 > 1: converges variationally towards solution 
of time-dependent Schrödinger equation



Consider a system with f degrees of freedom, each of which is

described by a basis of N states

MCTDH – Scaling of numerical effort

method wavefunction memory

standard ~ Nf

MCTDH ~ nf + f n N

typically 𝑛 ≪ 𝑁



Multiconfiguration Time-Dependent Hartree (MCTDH) Method

• MCTDH wavefunction

• Tensor decomposition: Tucker format

Applied Mathematics: Grasedyck, SIAM J. Matrix Anal. Appl. 31, 2029 (2010)



Multilayer Multiconfiguration Time-Dependent Hartree (ML-MCTDH) Method

• MCTDH

• Multilayer representation of wavefunction

……. …….

Wang, MT, J. Chem. Phys. 119, 1289 (2003); Manthe, J. Chem. Phys. 128, 164116 (2008)

• Multiconfiguration expansion of multidimensional single-particle functions 



Multi-Layer MCTDH Method

• Multilayer representation of wavefunction

• ML-MCTDH equations of motion (two-layer version)

Wang, MT, J. Chem. Phys. 119, 1289 (2003); Wang, J. Phys. Chem. A 119, 7951 (2015)



Multi-Layer MCTDH Method

• Multilayer representation of wavefunction

• Tensor decomposition: Hierarchical Tucker format

Wang, MT, J. Chem. Phys. 119, 1289 (2003); Wang, J. Phys. Chem. A 119, 7951 (2015)

Applied Mathematics: Grasedyck, SIAM J. Matrix Anal. Appl. 31, 2029 (2010)



ML-MCTDH – Scaling of numerical effort

Manthe, J. Chem. Phys. 128, 164116 (2008)

f number of degrees of freedom (f=2L)

L number of layers

n number of single-particle functions (SPF)

N number of static basis functions

a increase factor of SPFs in higher layers

number of coefficients (A,B,C, …) 



• Simulation of time-correlation functions at finite temperature 

• Evaluation of Boltzmann operator 𝑒−𝛽𝐻 via imaginary time propagation 
and Monte Carlo sampling

• Extension to describe correlated dynamics of indistinguishable particles, 
in particular many-electron problems

• Simulation of laser-driven dynamics                                                        
and transport phenomena

• Heidelberg MCTDH program package (Meyer et al.): 
www.pci.uni-heidelberg.de/cms/mctdh.html

Multi-Layer MCTDH Method

Wang, MT, et al., JCP 124, 034114 (2006); 131, 024114 (2009); PRB 89, 205129 (2014) 

Meyer, Gatti, Worth (Eds.) Multidimensional Quantum Dynamics (Wiley, 2009)
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Spin-Boson model

• bath spectral density
nuclear configuration

e
n
e
rg

y

Δ

Electron transfer in the condensed phase

bath spectral density

electronic coupling

energy gap

reorganization energy

Δ



• Discretization of the continuous distribution of bath modes, J(!), with a 

finite number of modes

Spin-Boson model

density of frequencies 



• Discretization of the continuous distribution of bath modes, J(!), with a 

finite number of modes

Spin-Boson model

density of frequencies 



• Discretization of the continuous distribution of bath modes, J(!), with a 

finite number of modes

• Sampling of thermal distribution of initial state

Spin-Boson model

ML-MCTDH



Spin-Boson model

Discretization of bath



Spin-Boson model

Convergence with respect to number of basis functions (SPFs)



Spin-Boson Model

Scaling of ML-MCTDH method

Wang, J. Phys. Chem. A 119, 7951 (2015)



Spin-Boson Model

Scaling of ML-MCTDH method

Wang, J. Phys. Chem. A 119, 7951 (2015)



Spin-Boson model

Ohmic spectral density, T = 0 K

For increasing electron-phonon coupling α, the dynamics undergoes a transition

coherent → incoherent → localization

α = 0.05

α = 0.5

α = 0.7

α = 1.5

Wang, Thoss, J. Chem. Phys. 119, 1289 (2003); New J. Phys. 10, 115005 (2008)



Spin-Boson model

Sub-Ohmic spectral density, T = 0 K

Wang, Thoss, Chem. Phys. 370, 78 (2010)

α = 0.05

α = 0.3

α = 0.5

α = 1



Spin-Boson model with anharmonic bath

Wang, Thoss, J. Phys. Chem. A 111, 10369 (2007) 



Energy transport in a spin-boson model

T = 60 K T = 120 K energy current

energy current

Velizhanin, Wang, Thoss, 
Chem. Phys. Lett.  460, 325 (2008)

Segal, Nitzan, Phys. Rev. Lett. 94, 034301 (2005); 
J. Chem. Phys. 122 , 194704 (2005)



population of the excited electronic state 

ET

Photoinduced electron transfer in mixed-valence compounds

hν

solvent

electronic-vibrational coupling

Wang, MT, et al., J. Chem. Phys. 124, 034114 (2006) 



Dynamics after photoexcitation  - comparison of different methods

Mean-Field (Hartree)

Ehrenfest Method

ML-MCTDH

Golden Rule

• dynamical correlations and quantum effects are important

• perturbation theory is not valid

Photoinduced electron transfer in mixed-valence compounds



hνe-
V
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Extension of the ML-MCTDH method 
to treat many-electron problems

Electron transport in 
molecular junctions

Electron transfer in molecular 
systems at metal surfaces

ML-MCTDH method for indistinguishable particles



Electron transport in single molecule junctions

Model

metal – molecule – metal

molecule-metal interaction

electronic-vibrational coupling

vibrations

electron-electron interaction

Härtle, MT, et al., PRL 107, 046802 (2011); Ullmann, Leitherer, MT, Weber, et al., Nano Lett. 15, 3512 (2015)



Simulation of electron transport using wavefunction methods

• Expression for current in terms of wavefunctions

electrons: vibrations:

initial state: bias voltage: 

𝑉 = 𝜇𝐿 − 𝜇𝑅



Simulation of electron transport using wavefunction methods

• Expression for current in terms of wavefunctions

Wang, Thoss, et al., J. Chem. Phys. 131, 024114 (2009); 138, 134704 (2013)

• Quantum dynamics: 

• Finite representation of the infinite leads employing a discretization 

of the electronic continuum

But:              involves indistinguishable particles (electrons) !   

Multilayer Multiconfiguration Time-Dependent Hartree Method ?



ML-MCTDH method for indistinguishable particles

occupation number states can be 

formally represented as products

Concept: Employ second quantization representation of Fock space

Example:  Two-layer MCTDH with 8 orbitals

Wang, Thoss, J. Chem. Phys. 131, 024114 (2009)

cf. also: Multiconfiguration Time-Dependent Hartree Fock (MCTDHF): Koto, Nest, Scrinzi, McCurdy, …

Bosons (MCTDHB): Schmelcher, Streltsov, Alon, Cederbaum, …



ML-MCTDH method for indistinguishable particles

Implementation: Sign operator 

Wang, Thoss, J. Chem. Phys. 131, 024114 (2009)

cf. Jordan-Wigner transformation:



ML-MCTDH method for indistinguishable particles

• Multiconfiguration expansion of wavefunction in terms of          

single-particle functions for electrons and nuclei

• Multilayer representation of wavefunction

• Representation of single-particle functions of deepest layer by    

time-independent basis functions (fermionic Fock space)



Test: ‘Noninteracting’ problem

e-

0.1 V
40 states 
per lead

160 states

80 states

stationary state

Simulation of electron transport



electronic

vibronic

Correlated electronic-vibrational 

dynamics results in suppression of 

current (phonon blockade)

Simulation of electron transport

Transient and stationary current in a molecular junction with 

electron-vibrational interaction

Wang, MT et al., J. Chem. Phys. 131, 024114 (2009); 

135, 244506 (2011)

e-

0.1 V



e-

0.1 V

electronic 
(λ=0)

λ=0.06 eV

λ=0.12 eV

λ=0.24 eV

Simulation of electron transport

Effect of electron-vibrational interaction: Phonon blockade 

Wang, Pshenichnyuk, Härtle, Thoss, J. Chem. Phys. 135, 244506 (2011)



Simulation of electron transport

Comparison: Path integral – ML-MCTDH

Albrecht, Wang, Mühlbacher, Thoss, Komnik, Phys. Rev. B 86, 081412(R) (2012)

Mühlbacher, Rabani, PRL 100, 176403 (2008)

Symbols: Path integral

Lines: ML-MCTDH



Simulation of electron transport

Influence of electronic-vibrational correlation 

without correlation (1 SPF)

with correlation

(# SPF > 1)

0.1 V

Wang, Thoss, J. Chem. Phys. 138, 134704 (2013)



Electron-electron (U) and electron-vibrational (λ) interaction

Simulation of electron transport

0.1 V

population of bridge state

without interaction (U = 0, λ = 0)

U = 1 eV, λ = 0.25 eV

U = 0.5 eV, λ = 0.25 eV

U = 0, λ= 0.25 eV

Wang, Thoss, J. Chem. Phys. 138, 134704 (2013)

cf. recent application as impurity solver: Balzer, Li, 

Vendrell, Eckstein, PRB 91, 045136 (2015)



Simulation of electron transport

Dynamics on longer time scales: Combination of          

reduced density matrix theory and ML-MCTDH

Kernel κ(t) decays typically on significantly shorter time scale than the reduced 

density matrix 𝜌

Strategy: Calculate kernel κ(t) using the ML-MCTDH method

Nakajima-Zwanzig equation for reduced density matrix 𝜌 of electronic degrees 

of freedom of molecular bridge

Wilner, Wang, Cohen, Thoss, Rabani, PRB 88, 045137 (2013); 92, 195143 (2015) 

Zhang, Ka, Geva, JCP 125, 044106 (2006); Cohen, Rabani, PRB 84, 075150 (2011), 

Cohen, Gull, Reichman, Millis, Rabani, PRB 87, 195108 (2013) 

𝑖
𝜕

𝜕𝑡
𝜌 𝑡 = 𝐿S𝜌 𝑡 − 𝑖  

0

𝑡

𝑑𝜏 𝜅 𝜏 𝜌(𝑡 − 𝜏)



Simulation of electron transport

Dynamics on longer time scales: Combination of          

reduced density matrix theory and ML-MCTDH

Nakajima-Zwanzig equation for reduced density matrix 𝜌 of electronic degrees 

of freedom of molecular bridge

Wilner, Wang, Cohen, Thoss, Rabani, PRB 88, 045137 (2013); 92, 195143 (2015) 

𝑖
𝜕

𝜕𝑡
𝜌 𝑡 = 𝐿S𝜌 𝑡 − 𝑖  

0

𝑡

𝑑𝜏 𝜅 𝜏 𝜌(𝑡 − 𝜏)

𝜅 𝑡 = 𝑡𝑟𝐵{𝐿𝑆𝐵𝑒
−𝑖𝑄𝐿𝑄𝑡𝑄𝐿𝜌𝐵} 𝑃 = 𝜌𝐵𝑡𝑟𝐵 𝑄 = 1 − 𝑃

𝜅 𝑡 =  𝑖
𝜕

𝜕𝑡
Φ(t) − Φ(𝑡)𝐿S + 𝑖  

0

𝑡

𝑑𝜏 Φ 𝑡 − 𝜏 𝜅 𝜏

Φ 𝑡 = 𝑡𝑟𝐵{𝐿𝑆𝐵𝑒
−𝑖𝐿𝑡𝜌𝐵}

Zhang, Ka, Geva, JCP 125, 044106 (2006); Cohen, Rabani, PRB 84, 075150 (2011), 

Cohen, Gull, Reichman, Millis, Rabani, PRB 87, 195108 (2013) 

𝐿S𝜌 = [𝐻𝑆, 𝜌]



Simulation of electron transport

Combination of reduced density matrix theory and ML-MCTDH

Wilner, Wang, Thoss, Rabani, PRB 90, 115145 (2014) 

𝑖
𝜕

𝜕𝑡
𝜌 𝑡 = 𝐿S𝜌 𝑡 − 𝑖  

0

𝑡

𝑑𝜏 𝜅 𝜏 𝜌(𝑡 − 𝜏)

𝜔𝑐 = 0.06 eV

𝜆 = 0.48 eV

𝜖𝑑 = 0.5 eV

𝑇 = 0 K

Γ = 0.16 eV



Simulation of electron transport

Combination of reduced density matrix theory and ML-MCTDH

ωc = 0.012 eV ωc = 0.06 eV ωc = 0.12 eV

population of bridge state

unoccupied, 

vibrations equilibrated

with occupied state

Preparation at t=0:   

unoccupied

Vneutral(x)

Vcharged(x)

‘equilibrium’ ‘nonequilibrium’

occupied, 

vibrations equilibrated

with unoccupied state

Γeff = Γe
−
𝜆
𝜔𝑐



Summary

• Multiconfiguration wave function methods are efficient approaches to 

describe quantum dynamics

• ML-MCTDH method allows accurate quantum dynamical simulations of 

systems with many degrees of freedom, including indistinguishable 

particles and condensed phase models at finite temperature

• Combination with density matrix theory extends accessible time scale

Current limitations of ML-MCTDH:

• Applications to large systems are limited to restricted form of the 

Hamiltonian

• Propagation for long times in systems with strong correlation

Meyer, Gatti, Worth (Eds.) Multidimensional Quantum Dynamics (Wiley, 2009)

Wang, J. Phys. Chem. A 119, 7951 (2015)

Wilner, Wang, Thoss, Rabani, Phys. Rev. B 92, 195143 (2015) 
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