624. WE-Heraeus-Seminar, Bad Honnef, September 19-22, 2016 Simulating Quantum Processes and Devices

### **Quantum annealing in imaginary time**

### Anders W Sandvik, Boston University Cheng-Wei Liu (BU → HP) Anatoli Polkovnikov (BU) Na Xu (BU)

C. De Grandi, A. Polkovnikov, A.W. Sandvik, PRB 84, 224303 (2011)
C.-W. Liu, A. Polkovnikov, A.W. Sandvik, PRB 87, 174302 (2013)
C.-W. Liu, A. Polkovnikov, A.W. Sandvik, PRB 89, 054307 (2014)
C.-W. Liu, A. Polkovnikov, A.W. Sandvik, PRL 114, 147203 (2015)



# Outline

### **Introduction**

- Quantum annealing for quantum computing/optimization
- Transverse-field Ising model, quantum phase transition

### Quantum dynamics in real and imaginary time

- Exact numerical solutions for small systems
- Dynamical quantum Monte Carlo in imaginary time

### **Dynamic scaling at phase transitions**

- Kibble-Zurek velocity scaling
- Demonstration for classical Ising model

### **Quantum spin glass transition**

- Imaginary-time QMC and KZ scaling
- Implications for quantum computing

### [Going all the way to the classical spin-glass ground state]

- Scaling of success probability in real and imaginary time
- Problem hardness in real and imaginary time



# **Thermal and Quantum Annealing**

### Simulated (Thermal) Annealing

Reduce T as a function of time in a Monte Carlo simulation

- efficient way to equilibrate a simulation
- powerful as optimization algorithm

### **Quantum Annealing**

Reduce quantum fluctuations as a function of time

- start with simple quantum system  $H_0$  (s=0):
- end with a complicated classical potential  $H_1$  (s=1)

 $H(s) = (1 - s)H_0 + sH_1 \qquad [H_0, H_1] \neq 0$ 

s = s(t) = vt,  $v = 1/t_{\text{max}}$ 

### **Adiabatic Theorem:**

For small v, the system stays in the ground state of H[s(t)]

#### Can quantum annealing be more efficient than thermal annealing?

Kadowaki, Nishimory (PRE 1998), Farhi et a (Science 2002),....

### **Useful paradigm for quantum computing?**

# **Quantum Annealing & Quantum Computing**

The D-wave "quantum annealer"; ~1000 flux qubits

- Claimed to solve some hard optimization problems
- Is it really doing quantum annealing?
- Is quantum annealing really better than simulated annealing (on a classical computer)?





MOST COMPLEX PROBLEMS. IT'S BACKED BY JEFF BEZOS, NASA AND THE CIA. EACH ONE COSTS \$10,000,000 AND OPERATES AT 459° BELOW ZERO. AND NOBODY KNOWS HOW IT ACTUALLY WORKS





Hamiltonian implemented in D-wave quantum annealer....

# Hamiltonian of the D-Wave Device

Solves optimization problems mapped onto frustrated Ising model

$$H_1 = \sum_{i=1}^{N} \sum_{j=1}^{N} J_{ij} \sigma_i^z \sigma_j^z, \quad \sigma_i^z \in \{-1, +1\}$$

Interactions J<sub>ij</sub> are programmable - restricted to "Chimera lattice"

$$H_0 = -\sum_{i=1}^N \sigma_i^x = -\sum_{i=1}^N (\sigma_i^+ + \sigma_i^-)$$
$$[H_0, H_1] \neq 0$$

Tune the strength of the field

 $H(s) = (1 - s)H_0 + sH_1$  $s = s(t) = vt, \quad v = 1/t_{\text{max}}$ 

adiabatically from s=0 to s=1



D-wave Chimera-lattice setup, picture from Martin-Mayor & Hen, arXiv: 1502.02494

### Studies of dynamics of transverse-field Ising models

## **Quantum Phase Transition**

One can expect a quantum phase transition in the system

 $H(s) = (1 - s)H_0 + sH_1 \qquad [H_0, H_1] \neq 0$ 

Ground state changes qualitatively as s changes

- trivial (easy to prepare) for s=0

- complex (solution of hard optimization problem) at s=1

#### $\rightarrow$ expect a quantum phase transition at some s=s<sub>c</sub>

as in the clean transverse-field Ising ferromagnet

$$H(s) = -s \sum_{\langle ij \rangle} \sigma_i^z \sigma_{i+1}^z - (1-s) \sum_{i=1}^N \sigma_i^x \qquad (N \to \infty)$$

- trivial x-oriented ferromagnet at s=0  $(\rightarrow \rightarrow \rightarrow)$ 

- z-oriented ( $\uparrow\uparrow\uparrow$  or  $\downarrow\downarrow\downarrow\downarrow$ , symmetry broken) at s=1
- s<sub>c</sub>=1/2 in 1D, appr. 0.25 in 2D

### Have to pass through $s_c$ and beyond adiabatically

How long does it take (versus problem size N)?

# **Quantum Dynamics**

#### Time evolution

 $|\Psi(t)\rangle = U(t,t_0)|\Psi(t_0)\rangle$ 

Time evolution operator with time-dependent H

$$U(t,t_0) = T_t \exp\left[i \int_{t_0}^t dt' H[s(t')]\right]$$

#### Difficult to study numerically for a many-body system

- exact diagonalization of small systems
- DMRG/MPS/TEBD for ID systems (moderate sizes and times)

#### **Alternative approach:**

Schrödinger dynamics in imaginary time t=iT

 $|\Psi(\tau)\rangle = U(\tau,\tau_0)|\Psi(\tau_0)\rangle \qquad U(\tau,\tau_0) = T_\tau \exp\left[-\int_{\tau_0}^{\tau} d\tau' H[s(\tau')]\right]$ 

Can be implemented in Quantum Monte Carlo De Grandi, Polkovnikov, Sandvik, PRB2011

#### What can imaginary time tell us about real-time dynamics?

# Real and imaginary time quantum dynamics

Example: linear ramp of transverse-field Ising ferromagnet

$$H(s) = -s \sum_{\langle ij \rangle} \sigma_i^z \sigma_j^z - (1-s) \sum_{i=1}^{N} \sigma_i^x \qquad s \in [0,1], \quad s = vt$$

 $\mathcal{N}$ 

2D square-lattice system; N=L<sup>2</sup> Start from eigenstate of H(s=0) at t=0

- Instantaneous ground state:  $|\Psi_0(t)
  angle = |\Psi_0(s[t])
  angle$
- Actual state during evolution:  $|\Psi(t)
  angle$

Distance between these states given by log-fidelity

$$-\ln[F(t)] = -\frac{1}{2}\ln\left(|\langle\Psi_0(t)|\Psi(t)\rangle|^2\right)$$

Integrate Schrödinger equation numerically for small L - compare real and imaginary time

#### How different? Which one is more adiabatic?









Dynamic exponent z is same in real and imaginary time De Grandi, Polkovnikov, Sandvik, PRB 2011

#### Use imaginary time for large systems

# **Quantum Monte Carlo Algorithm**

Schrödinger dynamic in imaginary time t=iT

 $|\Psi(\tau)\rangle = U(\tau,\tau_0)|\Psi(\tau_0)\rangle \qquad U(\tau,\tau_0) = T_{\tau} \exp\left[-\int_{\tau_0}^{\tau} d\tau' H[s(\tau')]\right]$ 

Implemented in quantum Monte Carlo as:

 $|\Psi(\tau)\rangle = \sum_{n=0}^{\infty} \int_{\tau_0}^{\tau} d\tau_n \int_{\tau_0}^{\tau_n} d\tau_{n-1} \cdots \int_{\tau_0}^{\tau_2} d\tau_1 [-H(\tau_n)] \cdots [-H(\tau_1)] |\Psi(0)\rangle$ 

Simpler scheme: evolve with just a H-product (Liu, Polkovnikov, Sandvik, PRB 2013)

 $|\Psi(s_M)\rangle = H(s_M)\cdots H(s_2)H(s_1)|\Psi(0)\rangle, \quad s_i = i\Delta_s, \quad \Delta_s = \frac{s_M}{M}$ Time unit is  $\propto I/N$ , velocity is  $v \propto N\Delta_s$ 

Difference in v-dependence between product evolution and imaginary-time Schrödinger dynamics is O(v<sup>2</sup>)

- same critical scaling behavior, dynamic susceptibilities

How is this method implemented?

# **QMC** Algorithm Illustration

Transverse-field Ising model: 2 types of operators:

 $H_1(i) = -(1-s)(\sigma_i^+ + \sigma_i^-) \qquad \text{Represented as "vertices"} \\ H_2(i,j) = -s(\sigma_i^z \sigma_j^z + 1) \qquad \qquad \mathbf{H} \mathbf{A} \quad \mathbf$ 

MC sampling of networks of vertices



Simple extension of ground-state projector QMC (fixed H)

Analyze results versus velocity v and system size

# **Dynamic QMC Illustration**

k

i=1

### Test on clean 2D Ising model in transverse field

#### Using H-product dynamics

"Asymmetric" expectation values  $\langle \mathcal{A} \rangle_{k} = \langle \Psi(\Psi) ( \prod_{i=M}^{1} \prod_{i=M}^{1} (\prod_{i=k}^{i}) \prod_{i=k}^{M} (\mathcal{B}_{i}) _{i} \prod_{i=k}^{i} \prod_{i=1}^{k} (\mathcal{B}_{i}) _{i} ) \rangle_{k}$ 

Same leading-order (in v) behavior as conventional expectation values

Computational advantage: All s=values in one simulation!

### Animation of single configuration



Collect data, do scaling analysis...

# **Dynamic Critical Exponent and Gap**

### **Dynamic exponent z** at a phase transition

- relates time and length scales

#### At a continuous transition (classical or quantum):

- large (divergent) correlation length

$$\xi_r \sim |\delta|^{-\nu}, \quad \xi_t \sim \xi_r^z \sim |\delta|^{-\nu z}$$

Continuous quantum phase transition
excitation gap at the transition
depends on the system size and z as

$$\Delta \sim \frac{1}{L^z} = \frac{1}{N^{z/d}}, \quad (N = L^d)$$

Exponentially small gap at a first-order (discontinuous) transition

$$\Delta \sim e^{-aL}$$

### Important issue for quantum annealing!

P. Young et al. (PRL 2008)

 $\delta$  = distance from critical point (in T or other param)



Exactly how does z enter in the adiabatic criterion?

# **Kibble-Zurek Velocity and Scaling**

The adiabatic criterion for passing through a continuous phase transition involves exponents z and V:

Must have  $v < v_{KZ}$ , with

 $v_{\rm KZ} \sim L^{-(z+1/\nu)}$ 

# Same criterion for classical and quantum phase transitions

- adiabatic (quantum)
- quasi-static (classical)

#### Kibble 1978

- defects in early universe Zurek 1981
- classical phase transitions
   Polkovnikov 2005 + others
- quantum phase transitions

#### **Generalized finite-size scaling hypothesis**

$$\begin{split} A(\delta, v, L) &= L^{-\kappa/\nu} g(\delta L^{1/\nu}, v L^{z+1/\nu}) & \begin{array}{l} \delta \text{ = distance from critical} \\ \text{point (in T or other param)} \\ A(\delta, v, N) &= N^{-\kappa/\nu'} g(\delta N^{1/\nu'}, v N^{z'+1/\nu'}), \quad \nu' = d\nu, \ z = z/d \end{split}$$

#### Will use for spin glasses of interest in quantum computing

#### Apply to well-understood classical system first...

### **Classical simulated annealing**



Repeat many times, collect averages, analyze,....

# Velocity Scaling, 2D Ising Model

Repeat process many times, average data for T=T<sub>c</sub>



Used known 2D Ising exponents  $\beta = 1/8, \nu = 1$ 

Adjusted z for optimal scaling collapse

**Result:**  $z \approx 2.1767(5)$ consistent with values obtained in other ways

Liu, Polkovnikov, Sandvik, PRB 2014

Can also be done for quantum systems in imaginary time

# **2D Transverse-Ising, Scaling Example**

$$A(\delta, v, L) = L^{-\kappa/\nu} g(\delta L^{1/\nu}, v L^{z+1/\nu}) \qquad z = 1, \nu \approx 0.70$$

If z, V known, s<sub>c</sub> not: use

 $vL^{z+1/\nu} = \text{constant}$ 

for I-parameter scaling

Example: Binder cumulant

$$U = \frac{3}{2} \left( 1 - \frac{1}{3} \frac{\langle m_z^4 \rangle}{\langle m_z^2 \rangle^2} \right)$$

Step function should form,
jump from U=0 to I at s<sub>c</sub>
- crossing points for
finite system size



#### Do similar studies for quantum spin glasses

# 3-regular graphs with anti-ferro couplings

### N spins, randomly connected, coordination-number 3



Classical model has mean-field glass transition - Tc known exactly (Krazakala et al.)

The quantum model was studied by Farhi, Gosset, Hen, Sandvik, Shor, Young, Zamponi, PRA 2012

- $s_c \approx 0.37$  from quantum cavity approximation
- QMC consistent with this  $s_c$ , power-law gaps at  $s_c$

### More detailed studies with quantum annealing

Edwards-Anderson spin-glass order parameter

 $q = \frac{1}{N} \sum_{i=1}^{N} \sigma_i^z(1) \sigma_i^z(2)$ 

(1) and (2) are independent simulations (replicas)

### Analyze <q<sup>2</sup>> using QMC and velocity scaling

# **Extracting Quantum-glass transition**

### **Using Binder cumulant**

$$U(s, v, N) = U[(s - s_c)N^{1/\nu'}, vN^{z' + 1/\nu'}]$$

But now we don't know the exponents. Use

$$v \propto N^{-\alpha}, \quad \alpha > z' + 1/\nu'$$

- do several  $\alpha$
- check for consistency

Best result for  $\alpha = 17/12$ 

#### s<sub>c</sub> = 0.3565 +/- 0.0012

**Consistent with previous** work, but smaller errors



Next, critical exponents...

# Velocity Scaling at the Glass Transition



Significance of the exponents?

# **Relevance to Quantum Computing**

The time needed to stay adiabatic up to  $s_c$  scales as

 $t \sim N^{z'+1/\nu} \qquad z'+1/\nu' \approx 1.3$ 

Reaching  $s_c$ , the degree of ordering scales as

 $\sqrt{\langle q^2 \rangle} > \sim N^{-\beta/\nu'} \qquad \beta/\nu' \approx 0.43$ 

Let's compare with the know classical exponents (finite-temperature transition of 3-regular random graphs)

ClassicalQuantum $\beta/\nu' = 1/3$  $\beta/\nu' \approx 0.43$  $z'+1/\nu' = 1$  $z'+1/\nu' \approx 1.3$ 

- It takes longer for quantum annealing to reach its critical point
- And the state is further from ordered (further from the optimal solution)



**Proposal: Do velocity scaling with the D-wave machine!**