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Time scales and system size

QM=Ab-1mitio Molecular dynamics (with no QMC!)
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Our dream would be QM-QMC with 10'!fs and
103 atoms, eg protein folding of the simplest protein



First order Langevin dynamics
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Task: sample > P, (R) =

exp(—V(R)/T)

Tool: Stochastic differential equation:
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Proof: Fokker-Planck equation:
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Indeed (Parisi ‘81): P(R,t) = ¢(§7 t)\/Peq(é)

0, P (R, 1) —H®(R,t)
H = -T0%+ Vess(R)
Vg (B) = =10V — 503V
Thus for an harmonic potential: V (R) = %K x°
K? , K

Vers(R) = T T o



Thus the approach at equilibrium of P(R,t)=>
exact by solving an equivalent harmonic problem:

E3 K2

K. K
E, — \/ ff 2:nK

1
The correlation time 7 = 7 independent of T




Thus a faster MD should be faster at
T=0 (structural optimization)

At T=0 when we discretize the LD Equations:
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1.€. the “’steepest descent” and for harmonic case:
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MD steps >> 1 !!!



Also 2" order Newton dynamics suffers...
to sample the canonical distribution exp(-E/T)

one add some damping: B = —vR + f s+ v2I'n

Inverse correlation time 1/

1 < Optimal sampling Several works on this:
=2k M. Tassoni, F. Mauri &R. Car PRB*94
05 | | G.Bussi & M.Parrinello PRE’07
Overdamped-> M.Ceriotti et al. JCP €10
See Y. Luo, A. Zen & SS JCP’ 14
0 <Newton |
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and  Nopr ~ 1S an unavoidable fact.
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But why we have to be limited to the
steepest descent 1n ab-1nitio MD?

In Tassoni, Mauri &Car PRB’94 they noted that with
214 order MD the optimization is faster:

Kmax
nopt — "
min

Some progress has been made later (e.g. Ceriotti et al. 1CP10)
here we observe that with the Newton method

Inopt =1




In fact 1f V quadratic

V(é) = % Z Sz‘,jR@'Rj = Z szz
1,7 1
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Namely time step “’optimal” for all scales



Proposed accelerated Langevin dynamic

5 ~V(R)/T
Task: sample 2> P,(R) = exp(=V(R)/T)

A
Tool: Accelerated stochastic differential equation:
B = —S—l(é)mi - V2T
OR
(ni(R(t))n;(R(t)) = d(t—1)S;; (R)

Proof: Fokker-Planck equation:
... see supplementary information



QMC framework

Unlike DFT, QMC is a many body approach and deals with electronic correlations.
Z Z a, ]ln(l)a ]la

\MF> \
a=1 u,=1

SLATER DET: made with y;(r)
JASTROW: two and three body term  yglecular orbitals expanded on

J =exp E (l,])

localized at. basis

, systematic improvable and fully ab-
Initio.
and (now important) with the number of
Processors.

- Error bars: few digits accuracy / noisy quantities.
- Huge computational cost, before this work only a few water molecules possible by

QMC



The wavetunction for realistic systems

(7,7 = u, (F -

Y+ > ATy

aab”iaj

u, (r)= L7 "a(b)" labels atom positions R (R,)

21+ Br

The non-homogeneous part a=b 1s local named 3J
less # parameters (no 4-body) than full named 4J

e.g. Y, (r)= exp[—Zk |7—R, I ], 1.e. localized atomic orbitals, many
(SD|JHJ|SD)
Aq-SD (SD|J*|SD)

variational parameters (say~1000) determined by: min



Quantum Monte Carlo vs DFT, 1s 1t worth? In H, clear
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With a very small basis (2 gaussians/atom) one
gets the essentially exact dispersion for H,



Choice of the acceleration matrix S

In QMC we have statistical error on atomic forces:

_ OV(R) .
i = OR, QMC noise

(fif;) — (fa)lf) = Cov

Cov; ; = (0f;) Signal/Noise= 0 fi




But there is a special direction: R — R + AZ

That maximizes the signal/noise ratio:

(Zz %‘fz')Q
z:(jOU@j$j$j
t,]

hdaxf

Thus \f: COU_lf

1s the best direction to move for minimizing the
Born-Oppenheimer Energy surface in QMC, e.g.
in structural optimization.




We started with a compressed 10 H sytem

~5 a.u.

The final molecule 1s very weakly bound

due to dispersive interactions taken into account by
the Jastrow factor. With the covariance method we
solved the problem of dealing with two very
different energy scales Kinaa ~ 900

Kopin




Covariance method :

Steepest descent :

Position (a.u.)
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Steepest descent —o—
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Noise 1s useful!!!

Y. Luo, A. Zen and S.S. JCP’14

3 1 1 1 1 1
asym. stretcﬂing, eig 1 gg exp 3759 cm:]
Choice of S Sym. stetching,eig 1.65, exp 9657 omy =
25
— Qreat freedom
— properly adapting time 2T
steps
P 15} k&
— large time step slow ]
modes Tt
— small time steps for fast .
modes | \
Our choice 0f s —&
estimated by QMC . | . | | |
T 0.5 0 0.5 1 15

X (a.u.)

Si,j — CO”Uz',j — < 5fz' ' 5fj >QMC




Generalization to finite T

S.S. and G. Mazzola arXiv:1605.08423 now

much more efficient than G.Mazzola and S.S. JCP (2012)

R(t+A) = R(t)+V2TAZ)

S(R(t - A)) - S(R)

+ S7YR) {AfR—

@ (t)25(t)) = S;;(R())

2

<é<t-A>—fé<t>>}

where: Sij(é) = (fif;) — (Fa)([35)

May be the optimal choice for QMC, but other
choices are possible (Hessian?). And what in DFT?



Concluding theory part in words

A method 1s presented that “’equalize’’ all time
scales at given 10nic positions: for appropriate
acceleration matrix S when the H-C bond makes
one oscillation (~11s) the >’protein’” downfolds to
1ts native state (~S)

Well this 1s a dream...

This method cannot avoid the problem to cross
free energy barriers. But other methods exist, e.g
metadynamics, Wang Landau... No problem to
combine them with this “’local time” equalizer.
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Hydrogen phase diagram
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The phase diagram
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Finite size effects with k-average
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In QMC a 4x4x4 mesh 1s for free (c. piericoni ctal. NAS “16).



Dynamics: WF optimization

At each MD step 6-15 steps of electronic optimization (iterative
scheme) are done in order to follow the Born-Oppenheimer
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Relevance to fulfill exactly the BO constraints:
the forces converge with at least x 2 # opt. steps
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Realistic stmulation does not
alter the high-energy modes:
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Basis set in QMC
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Larger basis favors slightly the molecular phase
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We start always with two “’random” conf. (scaled)
with atomic or molecular character:

From molecular to atomic = pressure goes down
From atomic to molecular = pressurs increases
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Quantum effects within BO

As well known the PIMD approach 1s equivalent to
a classical simulation with P beads:

ﬁl ﬁQ ... R p  attemperature Tp=T x P

The Hessian matrix in this case 1s just dominated by
the Harmonic part, which 1s exactly given by:

K’ip,jl = (PT)QA’{(SZ’J(Q(SP,Z - 5p,l+1 — 5p+1,l)

Thus the expected speed-up 1n MD 1s :

min T
Speed up ~
———I;?m.w — -172;)- vs 2nd order MD



Conclusions

1) A simple algorithm is given for accelerating MD
for equilibrium properties, based on an
acceleration matrix S close to the Hessian one.

2) In QMC a useful choice 1s S=Cov(atomic forces),
but better choices are possible, as well as the
method could work also 1n standard ab-initio MD
based on DFT.

3) Application to Hydrogen—> more accurate phase
diagram with MD. QMC consistent with DF2

4) Use of S for quantum effects extremely useful.



