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TATJANA GERICKE, PETER WÜRTZ, DANIEL REITZ, TIM LANGEN AND HERWIG OTT*
Institut für Physik, Johannes Gutenberg-Universität, 55099Mainz, Germany
*e-mail: ott@uni-mainz.de

Published online: 19 October 2008; doi:10.1038/nphys1102

Our knowledge of ultracold quantum gases is strongly influenced by our ability to probe these objects. In situ imaging combined with
single-atom sensitivity is an especially appealing scenario, as it can provide direct information on the structure and the correlations
of such systems. For a precise characterization a high spatial resolution is mandatory. In particular, the perspective to study quantum
gases in optical lattices makes a resolution well below one micrometre highly desirable. Here, we report on a novel microscopy
technique, which is based on scanning electron microscopy and allows for the detection of single atoms inside a quantum gas with
a spatial resolution of better than 150 nm. We document the great functionality of this technique by precise density measurements
of a trapped Bose–Einstein condensate and the first experimental demonstration of single-site addressability in a submicrometre
optical lattice.

Ultracold atoms can be visualized by various techniques.
Absorption imaging1 is the workhorse in most experiments and
is typically applied in time of flight to increase the cloud size and
reduce the optical density. Whereas phase-contrast imaging2,3 is
well suited for trapped quantum gases, fluorescence imaging4–9 is
particularly attractive as it allows for single-atom detection with
almost 100% efficiency. It has been applied to isolated thermal
atoms at low densities but has not yet been extended to single-
atom detection in quantum gases. The best achievable resolution of
these optical techniques is ultimately limited by half the wavelength
of the used light field—in practice, the best reported resolution
is about 1 µm (ref. 5). Direct particle detection of metastable
atoms in time of flight10,11 and outcoupling of single atoms from a
condensate with a radio-frequency field12 are alternative techniques
that have been developed. However, they either cannot be applied
to trapped samples10,11 or are restricted to one spatial dimension12.
Although each of these techniques has its specific advantages and
applications, a versatile in situ detection of single atoms in a
quantum gas is lacking. Moreover, a spatial resolution of below
1 µm, which opens the intriguing perspective to resolve single sites
in a submicrometre optical lattice, has not yet been achieved.

WORKING PRINCIPLE

In our experiment we have transferred the principles of scanning
electron microscopy to the detection of ultracold atoms (Fig. 1). A
focused electron beam with 6 keV electron energy, a full-width-at-
half-maximum (FWHM) diameter of 100–150 nm and a current
of 10–20 nA is scanned across a Bose–Einstein condensate of
rubidium atoms, which is prepared in an optical dipole trap13.
The atoms are ionized by electron impact ionization, extracted
with an electrostatic field and subsequently detected by an ion
detector. The small diameter of the electron beam ensures a high
spatial resolution, whereas the ion detection provides single-atom
sensitivity. The total ionization cross-section for rubidium at 6 keV
electron energy is σion = 3.5 × 10−17 cm2 (ref. 14) and represents

40% of all scattering events15,16. Elastic and inelastic electron–atom
collisions constitute the remaining events and lead to atom loss
with no detectable signal. As the cross-section is eight orders of
magnitude smaller than the absorption cross-section of a resonant
photon, the atomic cloud is optically thin for the electron beam.
For typical parameters, only one out of 500,000 incident electrons
undergoes a collision.

IMAGING A BOSE–EINSTEIN CONDENSATE

When exposed to the electron beam, the probability of detection of
an atom at a position {x,y} is given by (see the Methods section)

P(x,y) =
I

e
σion1tηdetN

∫
dz |φ(x,y,z)|2. (1)

Here, I is the electron-beam current, e is the electron charge,
1t is the pixel dwell time of the electron beam, ηdet is the
detector efficiency,

∫
dz |φ(x, y, z)|2 denotes the column density

of the atom’s wavefunction along the propagation direction
of the electron beam (z-direction) and N is the number of
atoms in the single-particle state. In Fig. 2a we show a scanning
electron microscope image of a Bose–Einstein condensate. For
our experimental parameters, a fraction of 350 atoms is detected
(the total number of atoms in the condensate is about 100,000).
In a Bose–Einstein condensate all atoms occupy the same
quantum state and the many-body wavefunction ψ separates
into the product of N identical single-particle wavefunctions
ψ(x1, . . . ,xN ) =

∏N
i=1φ(xi), with N being the number of atoms

in the condensate. Therefore, the interpretation of the image
involves quantum-mechanical concepts: as the single-particle
wavefunction φ extends over the whole atomic cloud, the spatially
resolved detection of an atom must be understood as a projective
measurement in position space. As a consequence, the retrieved
image is intrinsically probabilistic. This is in contrast to almost all
microscopy images showing the distribution of individual atoms, as
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Figure 1 Working principle. The atomic ensemble is prepared in an optical dipole
trap. An electron beam with variable beam current and diameter is scanned across
the cloud. Electron impact ionization produces ions, which are guided with an ion
optical system towards a channeltron detector. The ion signal together with the scan
pattern is used to compile the image.

in these cases the location of the atoms is already fixed before their
detection. Another important aspect is related to the Heisenberg
uncertainty principle. During the detection process, the atom is
coupled to a probe (in our case an electron beam) and energy as well
as momentum can be exchanged between them. Consequently, the
localization of an atom within a range 1x enforces a momentum
spread of 1p ≥ h̄/(21x). If 1x is smaller than the extension of
the wavefunction φ, substantial momentum transfer is unavoidable
and the detected atom is no longer part of the condensate,
regardless of the specific experimental realization. Hence, the
ionization of the atoms in our scheme does not constitute a serious
limitation or drawback. It is even advantageous because it helps to
rapidly extract the reaction products from the remaining system,
keeping possible perturbations small.

Whether the image in Fig. 2a is indeed a probabilistic selection of
the full atomic distribution according to equation (1) can be checked
by summing over many images (Fig. 2b) and comparing them with
a theoretical density profile. The profile is derived from the so-called
semi-ideal model17–19, which describes a bimodal distribution at
finite temperature. Whereas the condensate part is obtained from
a numerical solution of the three-dimensional Gross–Pitaevskii
equation, the thermal component is modelled as a non-interacting
gas in an effective potential, taking into account the repulsion of the
thermal atoms by the condensed atoms (see Methods section). The
comparison with our data (Fig. 3a,b) shows very good agreement
over the whole extension of the cloud including the wings of thermal
atoms. This not only gives indirect evidence of the repulsion between
the condensate fraction and the thermal component in the trap
(Fig. 3b, inset), but also confirms that the image shown in Fig. 2a
shows a probabilistic selection of atoms.

20 µm

0 100Ions/pixel

a

b

Figure 2 Electron microscope images of a trapped Bose–Einstein condensate.
a, An image of a 87Rb condensate. The image has 400×150 pixels with a pixel size
of 300 nm×300 nm. Each pixel was illuminated for 2 µs with the electron beam
(140 nm FWHM beam diameter). Every dot corresponds to a detected atom. In total,
350 ions were collected during the exposure. The condensate contains about 105

atoms and the oscillation frequencies in the dipole trap are νa = 12 Hz
(νρ = 170 Hz) in the axial (radial) direction. b, The sum over 300 images. Each
image was taken in a separate experimental run.

ESTIMATED DENSITY DISTRIBUTION

In Fig. 2b we have summed over 300 individual images,
corresponding to an overall number of processed events that is
comparable to the total number of atoms in the condensate.
The analysis in Fig. 3a,b therefore gives an impression of how
accurately the shape of the condensate would be determined if all
atoms were detected in an idealized experiment. As the effective
number of detected atoms per run is only 350 on average, the
question of how much information can be extracted from a
single image arises. To answer this we apply a recently reported
method for the reconstruction of a probability density from discrete
experimental data20. This approach avoids the use of histograms
and directly evaluates the cumulated data with the help of a Fourier
expansion. It does not require previous knowledge of the shape
of the distribution. The estimated axial density distribution for
the image in Fig. 2a is shown in Fig. 3c. The shape in the centre
is well reproduced and only the wings of the distribution show
larger deviations due to poor statistics. Processing all images in
the same manner and evaluating their FWHM, we find an average
of 50.5 ± 2.5 µm. This is compatible with an FWHM of 48.9 µm
obtained from the theoretical model in Fig. 3a. Hence, the precision
to which the size of the condensate is determined in a single image
is 5%. The necessary extent of data acquisition therefore depends
on the specific application. Substantial averaging as done in Fig. 2b
is required only if very fine structures such as the wings of a
thermal cloud or the precise shape of the density distribution are
under investigation.

Comparing the condensate with and without exposure to the
electron beam (absorption images in the inset of Fig. 3a), we
do not find any significant difference, apart from a reduction in
atom number by about 7%. These losses are composed of two
contributions: primary electron–atom collisions and secondary
collisions of the primary reaction products. We find that every
scattered atom or produced ion kicks off on average one more atom.
In all these collisions the energy transfer is much larger than the
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Figure 3 Analysis of the Bose–Einstein condensate. a, The axial distribution of
the condensate shown in Fig. 2b, integrated in the radial direction. The experimental
data (blue columns, 900 nm bin size) are compared with a bimodal distribution (red
line) calculated in the semi-ideal model for a total atom number of N= 115,000 and
a temperature of T= 80 nK. The condensate fraction is 80%. The inset shows
absorption images of the condensate after 15ms time of flight with and without
exposure to the electron beam. The number of atoms after exposure is reduced by
7% on average. b, The distribution in the radial direction (300 nm bin size). In the
inset we have plotted the radial density of the thermal component in the trap centre
as calculated from the model. The minimum is due to the repulsion from the
condensate fraction. c, The estimated density distribution in the axial direction for
the single-shot image in Fig. 2a (blue line). The data (columns) have been binned
over 3 µm. The blue shaded area indicates the uncertainty of the estimated
distribution. For comparison, the red dashed line shows the solution of the
theoretical model (the same as in a).

depth of the optical potential and all scattered particles can escape
from the trap. Essentially, no energy is deposited in the cloud, as
we observe an additional heating of merely 5 nK after exposure to
the electron beam. Thus, the perturbation caused by the detection
process is very small. If not, the scanning speed could be made
larger than the speed of sound in the condensate, providing an
effectively unperturbed cloud during the whole imaging sequence.
According to equation (1), high imaging speed is associated with a
reduced signal and a convenient setting of the imaging parameters
has to be chosen for each application. Most detected ions are
singly charged (80%), but we also find higher charged states of
up to Rb7+ resulting from inner-shell ionization. Only one out of
50 detected events is due to background gas ionization or dark
counts, which results in a high signal-to-noise ratio, as shown by
Fig. 2. Taking into account a detector efficiency of 30%, the total
efficiency for our detection scheme is currently limited to 12%. It
could be increased by a more efficient ion detector and additional
photoionization of inelastically scattered atoms. We estimate that
a total detection efficiency of more than 50% could be feasible.

8 µm

3 µm

1 µm

a

b

c

Figure 4 Images of a Bose–Einstein condensate loaded in a one-dimensional
optical lattice. a–c, The lattice, which is created by two laser beams (wavelength
l = 850 nm) intersecting at 90◦ , has a period of l= 600 nm. Each image is the sum
of 50 individual images. The pixel size is 200 nm×200 nm (a), 75 nm×75 nm (b)
and 25 nm×25 nm (c). The lattice depth was 20 recoil energies Er
(Er =π2 h̄

2
/ (2ml 2 ), with m being the rubidium mass) and the FWHM diameter of

the electron beam was 95 nm.

The small perturbation of the system in combination with a high
detection efficiency could make it possible to take several images of
the same condensate, thus allowing for a direct observation of the
dynamical evolution of an individual system.

ONE-DIMENSIONAL OPTICAL LATTICE

To characterize the resolution of our imaging technique, we have
loaded the condensate in a one-dimensional optical lattice with
600 nm lattice period. A sequence of electron microscope images
with increasing resolution is shown in Fig. 4a–c. The periodic
structure of the potential is clearly resolved with high contrast.
The atomic density in each lattice site is radially symmetric, with
a diameter of 6 µm and a thickness of 300 nm, and documents the
large depth of focus of the electron optical imaging system.

One of the most intriguing properties of a Bose–Einstein
condensate is its macroscopic phase coherence. In a periodic
potential the phase coherence can be easily verified by interference
experiments. An absorption image of the condensate after a ballistic
expansion of 15 ms is shown in the inset of Fig. 5a. The image was
taken after illumination with the electron beam, and the appearance
of the characteristic diffraction peaks demonstrates that the partial
measurement of a subset of atoms does not destroy the coherence
of the remaining system. Furthermore, it is an example for a
complementary measurement in position and momentum space
on a single many-body quantum system. For a quantitative analysis
we compare the integrated line scans with the Bloch wavefunction
that describes the ground state of non-interacting atoms in the
lattice potential (Fig. 5a,b). The periodic structure and the shape
of the individual on-site wave function are well reproduced for
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Figure 5 Ground state of a Bose–Einstein condensate in a one-dimensional
optical lattice. a,b, The graphs show integrated line scans for a lattice depth of
s= 10 (a) and s= 20 (b), where s measures the lattice depth in units of the recoil
energy. The blue columns are the experimental data, which are compared with a
theoretical model (black line) based on the ground state in the lattice potential (red
dashed line) convolved with a Gaussian electron-beam profile with 95 nm FWHM
diameter. An absorption image after 15ms time of flight (inset in a) reveals that the
phase coherence of the condensate is preserved after exposure to the
electron beam.

both data sets. Together with the observed interference pattern
both the density distribution and the relative quantum-mechanical
phase are determined, and thus the Bloch wavefunction is fully
characterized. Eventually, we conclude from the good agreement
that our imaging technique achieves a spatial resolution of better
than 150 nm (see the Methods section).

SINGLE-SITE ADDRESSABILITY

Ultracold quantum gases in optical lattices21–23 have triggered a lot
of interest owing to the close connection to solid-state systems and
the perspective of possible applications in quantum simulation24

and quantum information processing25. One general difficulty in
this research field is the addressability in these systems, which
has so far been demonstrated only for thermal atoms in a lattice
with 5 µm period26. Not only a site-selective read-out but also a
manipulation of single lattice sites is essential in this context. Here,
we demonstrate the spatially resolved dissipative manipulation of
an ultracold quantum gas in a one-dimensional optical lattice. In
the experiment we first load a Bose–Einstein condensate in a deep
optical lattice (18 recoil energies) and point the electron beam at
a specific site for 35 ms to remove the atoms. As the atoms are
free to move in the radial direction we move the electron beam
across only the central part of the site. After the preparation stage
the atomic distribution is imaged as described before. The optical
lattice shows long-term drifts with respect to the field of view of the
electron beam and we find a typical drift of one lattice site per hour.
Therefore, for long data acquisition times it may occur that during
the preparation stage the electron beam points in between two
lattice sites, thus partially emptying both of them. We compensate
for this effect, carrying out a phase analysis of each individual
image. If the position of the lattice sites is found to deviate more

3 µm

a

b

Figure 6 Single-site addressability. We first remove atoms from the optical lattice,
pointing the electron beam at the specific sites for 35ms. Thereafter the image is
taken (200×325 pixels, 50 nm pixel size, 2 µs pixel dwell time). a, A single emptied
site (sum over 127 images). The lattice depth of 18 recoil energies is enough to
suppress refilling of the lattice site. b, The preparation of an isolated site (sum over
142 images).

than is acceptable from the ideal position (we tolerate ±l/4, where
l is the lattice constant) the image is discarded. The results of two
different scenarios are shown in Fig. 6. In the first image we have
emptied a single lattice site. The data clearly document that this
can be accomplished without affecting the neighbouring lattice
sites. The second image shows the preparation of an isolated lattice
site. Again, this can be done without additional losses in the non-
addressed sites. This is possible because the electron beam is much
smaller than the spacing between the lattice sites.

OUTLOOK

In future experiments, we plan to study the ensuing tunnelling
dynamics after the dissipative manipulation. Both the refilling
of a hole and the spread of an isolated site are interesting
scenarios, which will give more insight into the microscopic
physics of ultracold quantum gases in optical lattices. The applied
scheme is an important step towards tailored quantum systems
and the preparation of mesoscopic atomic ensembles. With the
implementation of a second optical lattice, the extension to
two-dimensional arrays of lattice sites is straightforward. Ultimate
control over the occupancy of the sites can be achieved by starting
from a Mott insulator state in a three-dimensional optical lattice21

and emptying all but one lattice plane perpendicular to the electron
beam. This can be accomplished, for example, by a magnetic-field
gradient in combination with a microwave transition to a different
hyperfine ground state and subsequent removal of the transferred
atoms with a resonant laser beam.

The combination of high spatial resolution with in situ
detection will open up new possibilities for the preparation,
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the manipulation and the characterization of ultracold quantum
gases. The bonus of single-atom sensitivity, which has not yet
been exploited in this work, will provide new means for the
measurements of spatial and temporal correlations in trapped
quantum gases27–29. Previous experimental work on correlations
in trapped30 and expanding11,31,32 gases has already demonstrated
the high potential of such measurements. The local interaction
of the electron beam with the atomic ensemble also constitutes a
new experimental platform for the study of dissipative processes in
many-body quantum systems. In future experiments, the magnetic
field of the electron beam might be used even to coherently
manipulate single atoms in optical lattices.

METHODS

DETECTION PROBABILITY
An atom that is located in the centre of a Gaussian electron beam with a radial
current density of j(ρ) = j0 exp(−ρ2/2ρ2

0) has a lifetime against electron
impact of τ = e/(j0σtot). Here, j0 = I/(2πρ2

0) is the current density in the
beam centre, ρ0 is the σ-width of the beam, and σtot = 9×10−17 cm2 is the
total electron scattering cross-section for rubidium at 6 keV electron energy.
For typical beam parameters (I = 23 nA, FWHM = 140 nm, corresponding to
ρ0 = 58 nm) we obtain τ ≈ 17 µs. If the pixel dwell time 1t is much smaller
than τ, the probability of a scattering event (ionization, elastic or inelastic
scattering) is given by

w = 1−e−
1t
τ ≈

1t

τ
=

j0

e
σtot1t .

If the atom is described by a wavefunction φ(x,y,z) and if we assume
that the beam is much smaller than the extension of the wavefunction, the
probability of a scattering event at the position {x,y} is given by

w(x,y) =
I

e
σtot1t

∫
dz |φ(x,y,z)|2 . (2)

Multiplying equation (2) by the ion production efficiency σion/σtot, the detector
efficiency ηdet and the total number of atoms gives equation (1) of the main text.

BIMODAL DISTRIBUTION
For a given number of condensed atoms N0 we numerically solve the
Gross–Pitaevskii equation[

−
h̄2

2m
∇ +Vext(r)+ g|ψ(r)|2

]
ψ(r) =µψ(r) (3)

using an imaginary time-propagation algorithm. The external potential is
cylindrically symmetric and has the form Vext(ρ,z) =

1
2 m(ω2

ρρ
2
+ω2

a z2),
where z denotes the axial direction of the condensate, ωa = 2π× 12 Hz
(ωρ = 2π×170 Hz) is the axial (radial) oscillation frequency of the dipole
trap, µ is the chemical potential and g = 4πh̄2a/m is the coupling constant.
For the s-wave scattering length we use a value of a = 101 a0, with a0 being
the Bohr radius. In our experiment we produce a spinor condensate in the
|F = 1〉 ground state of rubidium. For the model presented here we ignore
the spinor nature because the difference in the scattering lengths for the F = 0
and 2 scattering channels is only 1% (ref. 33). The condensate wavefunction is
normalized to the total number of condensed atoms, N0 =

∫
d3x |ψ(r)|2. The

numerical solution of equation (3) is used to model an effective potential for
the thermal component

Veff(r) = Vext(r)+2g|ψ(r)|2 .

The density distribution of the thermal component is then given by

nth(r) = l−3
th g3/2(z)

with a modified fugacity

z = exp[−(Veff(r)−µ)/kBT].

and g3/2 =
∑

∞

k=1 zk/k3/2. Here, lth =

√

2πh̄2/mkBT is the thermal de Broglie
wavelength and kB is the Boltzmann constant. The number of atoms in the
thermal component is given by Nth =

∫
d3x nth(r) and the total number of

atoms is N = N0 +Nth.

SPATIAL RESOLUTION
The size of the electron beam can be determined independently by scanning
the beam across a sharp edge of a movable test target which is implemented
in the vacuum chamber. We define the resolution as the distance between two
neighbouring pointlike scatterers where the signal intensity in between drops
to 75%. This definition is the analogue to the Rayleigh criterion in optics and
for our system translates into a resolution of d = 1.18 FWHM, assuming a
Gaussian beam profile. The electron beam used for the measurement in Figs 4
and 5 of the main text has a diameter of 95 nm FWHM, corresponding to a
resolution of 115 nm. The good agreement between the experimental line scan
and the theoretical model in Fig. 5 proves that a similar resolution is achieved
for the electron microscope images of ultracold atoms.
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