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Small groups of ions as qubit carriers in miniaturized, two-dimensional 
electrode arrays might be a scalable approach for large-scale quantum 
computation1,2. 

By this method processing of quantum information is achieved by shuttling 
ions to and from separate memory and qubit manipulation zones enabling 
quantum computation via principles of quantum communication. 

Transport of ion groups in this scheme plays a major role and requires 
precise experimental control and fast shuttling times. 

We discuss theoretically the transport performance and limitations 
associated with shuttling ions in typical  miniaturized Paul trap arrays by 
modeling the process by a dragged, parametrically driven harmonic 
oscillator. 

Here, we present a theoretical framework to describe and optimize these 
transport processes and discuss implications on trap technology.

1 D.J. Wineland et al.,  J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998) 
2 D. Kielpinski et al.,  Nature 417, 709 (2002)

4 Results for the simple ion trap model 5 Minimal energy transfer and phase-insensitive transport

principle: 

in the 4rod geometry below, ions are trapped     
radially by RF fields applied to the blue rods, and 
axially by two DC endcap electrodes.

trapping ion strings along the center axis requires
that the (degenerate) radial trap frequencies are   
larger than the axial frequency.

1 Transport equations

traditional ion traps current technology

3 Quantum solution
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2 Classical transport

Surface-electrode trap at NIST:

S. Seidelin et al. PRL 96, 253003 (2006) 
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assume equispaced configuration
for the control electrodes to
transport in x direction.

apply time varying potentials to the
electrodes in order to translate the
trapping well of the ion.

An Ermakov ansatz to the homogeneous equation (f=0) of Eq.(1) 

gives two equations instead of one

with the use of a Green’s function we can find a particular solution and
thus write the general solution of Eq. (1)

We observe squeezing by relating the dispersions to classical amplitude
changes

that governs the classical energy transfer to the oscillatory motion by the external time-dependent
force according to

In the adiabatic limit                          we can find an approximate solution to Eq.(2)

2,5: endcap electrodes;   1,3,4: control electrodes;
rf electrode;

+initial conditions

define

design potential so that

resulting equation in moving frame with coordinate

Newton’s equation (to describe a transport in lab frame along q=x axis)

expand              only to 2nd order, neglect higher terms, and use

result is a parametrically driven, forced harmonic oscillator

transport function (moves minimum of the well)

Utilizing a generalized invariant theory (Kim et al. PRA 53, 3767 (1996))
we can define the annihiliation and creation operators by the class. terms

We can use their properties to define the coordinate and momentum operator,
and Hamiltonian in a Heisenberg picture as a function of time

If we use the standard operators at initial time –t0

by averaging over the initial classical phase we find the classical mean
energy and energy dispersion (ω assumed constant)

we can determine the mean values in a coherent state            
to find the equivalency to the classical trajectory

If ω is constant,  lhs of equation (2) has the general solution

In the constant frequency regime we can employ Eq.(3) to see that 
are proportional to 

and that they exhibit an oscillatory behaviour with opposite phase.
, respectively, 

How to find optimum waveforms of potentials for safely transporting an ion?

Recipe: solve linear near-singular system for waveform vector a at 
any position q0:

S contains overlaps of 
control potentials φi with φj

a well controlled 
transport is where 

and

Typical superposition
of nearby electrodes
to form a local
parabolic potential

dashed curve is desired
parabolic potential, vertical
lines define the optimization
range; participating electrodes
are numbered from left to right.

The common minimization of these two terms stabilizes the solution 
because it feeds back information to the system.

We employ a Tikhonov regularization to find a[q0]
K describes overlap of 
φi with desired potential 
(dashed curve)

In a classical description the energy transfer is phase-sensitive and depends on the temporal shape
of the transport function q0(t).

What is the optimum choice for q0(t) ?        (let’s assume a constant frequency and             )

We give two examples that have quite different results.

Then we can define the adiabatic suppression amplitude

Normalize q0 so that
start location is at -1 and 
final destination at +1. 
The transport duration is
given by              .

For typical experimental
parameters we find:

there is a slow decay of
the adiabatic amplitude
for a sine as transport
function. Transport of a
single ion over a distance
of about 1.2 mm requires
~100 oscillation periods
to stay near the ground
state *.

For an error function
transport, the same
transport can be done
in about 6 oscillation
Periods with similar amount
of energy transfer.

* consistent with experimental observations of  Rowe et al.  Quant. Inf. Comp. 4, 257 (2002) 

figure on the right shows residual frequency and force modulation for
different aspect ratios of                                (see fig in 1) during a transport for
typical trap parameters.
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this provides the interlink between the classical and quantal solution.
For  constant frequency we can also obtain the first two moments of the
energy distribution

φi is the potential of 
control electrode i

Time-dependent waveforms to move the
parabolic well from electrode 19 to electrode 23,
i.e. over 4 electrode widths (ai=2 means 2V applied).

Results for an examplary configuration for a set of 40
equispaced electrodes as illustrated in section 1.

Adding up more electrodes for smaller          improves the performance but also
increases resources. Our example configuration suggests that a value of
to be optimal.                  

blue dotted curve 
shows the 
comparison to the
transporting force.
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