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Two atoms in an anisotropic harmonic trap
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We consider the system of two interacting atoms confined in axially symmetric harmonic trap. Within the
pseudopotential approximation, we solve the Schrodinger equation exactly, discussing the limits of quasi-one-
and quasi-two-dimensional geometries. Finally, we discuss the application of an energy-dependent pseudopo-
tential, which allows us to extend the validity of our results to the case of tight traps and large scattering
lengths.
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Atomic interactions at ultralow temperatures are of cen- We consider two interacting atoms of massonfined in
tral importance for recent research on quantum degenerasn axially symmetric harmonic trap with frequencies and
gaseq1]. A typical feature of experiments on ultracold mat- w,. In the following we use dimensionless variables, in
ter is the presence of a weak trapping potential, which modiwhich all lengths are expressed in units of harmonic oscilla-
fies the properties of the cloud of atoms, while it does notor length a,=vA/mw,, and all energies are expressed in
affect the collisions of individual particles. Development of units of Zw,. In these units the trapping potential V&(r)
optical lattice technology, however, has created systemsZ(77p?+7), where p=w,/w, and p?=x2+y?. We assume
where the atoms are tightly confined in the wells of opticalthat the range of the interatomic potential is much smaller
potential [2]. In addition, the experimental achievement of than the oscillator lengths, and a, =v#/mw,, which
the Mott insulator phask8] has allowed for a precise control guarentees that the interatomic potential is not distorted
over a number of atoms stored in a single well. This hasy the harmonic trap. For sufficiently low energies, the
opened a way for experimental studies of interactions of inscattering is purely ofswave type and we model the
dividual atoms in the presence of trapping potential and, toatom-atom interaction by a Fermi pseudopotentir)
gether with other approaches to micromanipulation of neutrak 47a8(r)(9/ dr)r with s-wave scattering lengta [11]. For

atoms such as atom chip4,5] or tight dipole trapg6], it the harmonic confining potential, the total Hamiltonian
represents a major candidate for the implementation of quan-

tum information processing. A theoretical understanding of ~ 1
the dynamics of few atoms in deformed tight-confining ge- H=- 2
ometries would be of great help in all these contexts. R

From the theoretical side, the analytical solution for twocan be split into a center of mass patigy=—3Va+V+(R),

atom; interacting in' a harmonic trap is known only for theand the relative motion partt:Ire|=—%Vr2_+VT(r)+V(\s“§r),
spherically symmetric cag&,8]. The corresponding problem where r=(r;~r,)/\2 and R=(r,+1,)/\2. To solve the

for axially symmetric trap was studied numerically [i8)]. - : : .
. o Schrédinger equation for the relative motion, we decompose
However, there the authors considered only the limiting re- T . . !
) ) ) . . .the wave function in the basis of eigenstates of the noninter-
gimes of quasi-one- and quasi-two-dimensional traps. In this

. . .acting problem, substitute this decomposition into the
paper we present the exact solution for the axially symmetri g . . i
. . ! chrédinger equation, and then extract the expansion coeffi-
harmonic trap of arbitrary geometry. In particular, when the™. g . . .
cients by projecting onto noninteracting statgd. This

ratio of axial to radial trapping frequency is an integer, or the . . _ . 2
inverse of an integer, we give the explicit analytic form of yields the wave function ofn,=0 states, with vanishing an

. X .. qular momentum along the axis
the exact solution. In the other cases, we derive an efﬁuerﬁ 9

1

\S
)

V3+Vi(r) +Ve(ro) +V(r =ro), (1)

recurrence relation that allows for evaluating it. Furthermore, 22 np?
we study the asymptotic behavior of eigenenergies and w eX tE—ECOIht—7COW7ﬁ)
eigenfunctions in the limit of quasi-one- and quasi-two- W (r)= ns/zf dt — :
dimensional traps. (2m)><Jo vsinh(t)sinh(7t)
A standard treatment of ultracold atom interactions is (2)

based on the replacement of a real physical potential by a

s-wave delta-function pseudopotential. To extend the validityThe harmonic oscillator states witim,# 0 vanish atr =0,

of this model interaction to the case of tight traps and largeand they are not influenced by the pseudopotential. Equation
scattering lengths, one can utilize the concept of an effective?) represents the wave function that is not normalized, and
energy-dependent scattering lenftB]. We discuss this idea is related with the single particle Green function of the an-
and show how our results can be generalized to the case fotropic harmonic oscillator bW (r)=-2G(r,0). We note
magnetically tunable Feshbach resonances. that the integral representatiof2) is valid for energies
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smaller than the ground-state energy of the harmonic oscilarge. To determine the energy levels in the limit of quasi-
lator: Eq=1/2+%. The validity of Eq.(2), however, can be one- and quasi-two-dimensional traps, we derive the
extended folE= E, by means of the analytic continuation. asymptotic form ofF(x, ) for »>1 andp<1.

The presence of the trapping potential implies the discrete Let us first focus on the case of>1. Performing an
character of the energy spectrum. The allowed values of erexpansion in the integra#) for large » and making use of
ergy E have to be determined from the equation:the recurrence formulé?) we arrive at
-1/(v2ma)=[(a/ or)r¥(r)],o, which results from derivation .
of Eqg. (2), and expresses a boundary condition imposed by ~ [ AL [ 1
zero-range interaction. Investigation of the integral in €. Foum = 777;[{(2,1 #x0n) + Al GO/ (x+ 2)] ®
for small values of, shows that¥(r) behaves like 1(27r) where {(s,a) denotes the Hurwitz zeta function. This
asr —0. This divergence is removed by the regularizationasymptotic formula is valid fox> -7, which corresponds to
operator(d/dr)r in the Fermi pseudopotential. Subtracting the range of energieE<Ey+2%. For the lowest excited
from the integral(2), the part that gives rise to therléin-  states GKE-E;<<27 we approximate{(1/2,1+x/#) by
gularity, the condition for the eigenenergies can be rewritter?(1/2,1) in Eq. (8), and match the resulting energy spectrum
as with the energy spectrum of two atoms in a one-dimensional

— (1D) trap. The latter is determined by2a,p=T((E,
—\2mla=F(- (E-E)/2,m), 3) -E)/2)IT((Eg+1-E)/2) [7]. The two spectra are identical,
where provided that the one-dimensional scattering lengtiais
. » =-1/na-{(1/2,1) /25, which agrees with the value of the
Fx,7) = f dt 7e 1 _ @) renormalized scattering length derived for a quasi-one-
' V1-e'(1-e t3/2 dimensional waveguidgl2]. On the other hand, for energies
_ . E<E,, we can user(x, n) = Vmnl{(1/2 x/ ), which follows
For particular values of the anisotropy paramejethe func-  from Eqs.(7) and (8). This approximation, substituted into

tion F(x,7) can be calculated analytically. In the case of(3) |eads to the condition determining the energy of a bound
cigar-shaped traps witlp=n, wheren is a positive integer, state

0

we obtain _ _
-1 V2la+\nz(112,(Es- E)(27) =0, 9)
Vil () 2 F(Lxix+3;e@mm) which is identical to the known result derived for the quasi-
Fxn) = m=1 _ 2Vl one-dimensional waveguidé2,13.
’ I(x+3) r(x-3%)’ In the case of quasi-two-dimensional traps1, we ob-
(5) tain the following approximate formula faF(x, n):
<1
whereF(a,b;c;x) denotes the hypergeometric function and F ’; —Px) - | — X 10
I'(x) is the Euler gamma function. It can be easily verified x.7) 09 = In(z) = ), (10)
that the sum in Eq(5) involving complex roots of unity isa where
real number forxe R. On the other hand, for pancake- B
shaped traps with anisotropy parametgrl/n, the follow- B (2k)!
ing result holds: P()=2-In(1+x) + Zgl (2% 1 )2
—n-1
2V T'(x+m/n) ( 1) X +k
Fx,1n)=- . 6 =
(1) = == zor(x_1/2+w”) (6) x[ k2 Jin———+1, (11)

Forn=1, we recover obviously the WeII-IQown result for the and ¢(z)=(d/d2)In I'(z) denotes the digamma function. This
spherically symmetric trapF(x,1)==2V#'(x)/T'(x—1/2) result is valid forx>-1, which corresponds to energiés
[7]. We note that Eq95) and(6) are derived from the inte- <E,+2. For the lowest excited states<E-Ey<2, we ap-
gral representatiori4) applicable forx>0; however, their proximate®(x) by ®(0) in Eq. (10), and compare the result-
validity for x<0 is extended by virtue of the analytic con- ing energy spectrum to that of the two-dimensio(zdd) sys-
tinuation. tem. In the two-dimensional trap, the eigenenergies of two
In the general case, whepdoes not meet the conditions interacting atoms are given by +Ra3;7)=y((Eq
of Egs.(5) and(6), the energy spectrum can be determined-E)/(27)) [14]. In this way we find the value of the two-
numerically. ForE <Ej, the functionF(x, ») is given by Eq.  dimensional scattering lengts, for which both spectra are
(4), while for E>E,, one can utilize the following recur- the same:aZDZexr{%(D—@Zr/agD)]/\s’E, where D=®(0)

rence relation: =1.938. This result agrees with the valueagf, derived for
_ - a quasi-two-dimensional system without confinement in the
Foxm) = Fock ) =l 0T (x+ 1/2), ™ radial direction[15]. In the range of energies corresponding
which can be easily derived from the definition B€x, 7). to a bound state, we use an asymptotic expansiap(xfz)

From the practical point of view, the use of the exactfor x/#>1 in Eq.(10), which yields F(x, ) = -®(x)-In x.
results of Eqs(5) and(6) is efficient as long as is not too  Substituting this approximation int@®), we obtain the equa-
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120 T T 2 o
—— ~(np2+2D)12 _ 1k
€ (-1 k €&
W(r)= { HZk(z)F<— - —)
2732 2| 2%l n 27
k €&
. xu(———,l,npzﬂ. (14)
s n 27

Here E=E-E,, L(x), andH(z) are, respectively, the La-
guerre and Hermite polynomialB,(x) is the parabolic cyl-
inder function andJ(a, b, z) denotes the confluent hypergeo-
metric function. As it can be easily observed, the first
expansion involves the harmonic oscillator wave functions in
the radial direction and the one-dimensional solution for two

FIG. 1. Energy spectrum of two atoms interacting via regular-interacting atoms in the axial direction. We have verified that
ized delta potential in a three-dimensional trap wigh =0, /w,  for elongated trap$z> 1), the first term of this series pro-
=100 and(b) »=0.01(b). Panel(a): The exact energy levelsolid  vides already a quite good approximation for the wave func-
lines) are compared with the energy spectrum of the one-ion of the lowest excited states. A similar feature is observed
dimensional system with renormalized scattering len@tashed for the second series in Eq14) in the traps withnp<1.
lines), and with the energies of a bound state calculated from EqConversely, for energieBE < E, the two series involve gen-
(9). (The dotted lines are almost indistinguishable from the solidera”y several terms. In this regime, we can analyze the be-
ones) Panel(b): The exact energy levelsolid lineg are compared  havior of the wave functions on the basis of the integral
with the energy spectrum of the two-dimensional system withyenresentatiori2). Due to the complicated form of the latter
renormalized scattering lengttashed lines and with the energies integral, we focus here only on the limiting case of quasi-
of a bound state calculated from Eq.2) J(dc’id lines. The scat- gneor guasi-two-dimensional traps, and investigate only the
tering lengtha is scaled in h.o. unita,=A/Maw,. behavior of the axialp=0) and the radialz=0) profiles of
) _ ) ~ the wave functions.
tion tha_t determines the energy of a bound state in quasi-two- Expanding the integral in Eq2) for 7> 1, we obtain the
dimensional traps axial (V20 =W¥(z2)) and radia'¥ , (p) =¥ (pp)) profiles of
the wave function, applicable fd&&<E,

71

7 < exp-2/zZ\my-E/2)
For a shallow bound staté,—E<1) one can approximate Wy (2) = ZTE n—£/2
D((Eq—E)/2) by ®(0) and in this regime the binding energy m=0 Vi

\V2mla= d((Ep-E)/2) +I[(Eg-E)/2].  (12)

©

, (15

is given byE,—E=0.288 exgy2/a) [15]. o1 P
Figure 1 shows the energy spectrum of two interacting ¥ (p) ~ e_”’]PZ/2|:p_l+ \'775(1/2,——)}/(277)- (16)
atoms calculated fofa) =100 and(b) »=0.01. Figure (a) 2y

compares the exact energy levels given by Eﬁa)_sand ®), For |Z] J=£>1, the main contribution to the sum in EG.5)
W!th the energy SPeC”“”.‘ of the one—dlmen_smnal SYSteMymes from the first term. In this case the wave function
with renormallzed scattering IengmlD,_ and with bound- exhibits the exponential decay, which is similar to the behav-
state energies calculated from HE). Figure 1b) presents ior of a one-dimensional bound-state in a free spake)

the exact result of Eqg3) and(6), the energy spectrum of ~exp(—\e"—_25|z|). On the other hand, the wave function in

the two-dimensional system with renormalized scattermg(he radial direction has a Gaussian profile, characteristic for

lengtha,p, and bound-state energy calculated from EQ). the ground state of the harmonic oscillator, whereas the di-

We have not included the energy levels calculated from a vergent term 1(27p) arises due to the interaction potential
proximations(8) and(10), which for »=100 and5=0.01 are 9 P P :

indistinguishable from the exact result. We observe that fo In quasi-two-dimensional traps, for energies<E,, we

r . ) . :
E> E, the one- and the two-dimensional spectra fit very WeIIfount(‘ti the following radial and axial profiles of the wave
the exact eigenenergies, whereas they are incorrect with rét_mc lons

spect to the bound-state energies. The latter, however, are 7<l “ 2m)
well described by Eqg9) and(12). ¥, (p) = 732 (Z(m—),)zKo(ZP\’m_E/Z)v (17)
We now turn to the calculation of wave functions. While meo (&M

for E<Eq they can be evaluated from the integral represen-

tation (2), in the general case, they can be determined from - ”flizzlz 1 O(=£2) +In(=£12) g
the following expansions A2 = 27 | |7 - Jar . (18
7 -2~ 29m- & , Where.Ko(x) is a modified Bessgl function. The asymptotic
W(r)= WZ 27 Lin(7p%) behavior of Ky(x) for x>1 is governed by Ky(x)
T m=0 ~\ml2xe™*. Hence, forp-£> 1, the sum in(17) is domi-
— nated by the first term, and the asymptotic decay of the wave
X De_pym(|2 \'2)], (13)  function in the radial direction is similar to the one observed
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L 0.20 . .
FIG. 2. The axial(p=0) and the radial(z
=0) profiles of the ground-state wave function for
- 0.15 two atoms interacting via a regularized delta po-
tential with a=+~. The atoms are confined in a
r0.10 harmonic trap with(a) »=w, /w,=100 and(b)
17=0.01. The exact profileolid lines are com-
L0.05 pared with the approximate results of Egs.
(15—17) (dashed lines All lengths are scaled to
0.00 a,= \e““h/mwz.

for a bound state in two dimensionsI!(p)~K0(\s’——25p). bach resonances, trewave phase shift is known analyti-
Along the tightly confined, axial direction, the wave function cally [19], and in this case one can derive an explicit formula
has a Gaussian profile, which is modified at short distancefor agi(E) [10].
by the interaction potential. In summary, we solved analytically the problem of two
The behavior of the ground-state wave function in theatoms interacting in an axially symmetric harmonic trap with
unitarity limit (a=+%) in the quasi-one-dimensiongly  arbitrary trap anisotropy. For integer ratios of the.trapping
=100 and quasi-two-dimensional trapgs;=0.01) is pre- frequencies we gave plosed formqlas for the solutions. Fur-
sented in Fig. 2. The figure compares the exact profile1€rmore, by introducing an effective energy dependence in
evaluated from Eqs(13) and (14) with the approximate re- the scattering length10,16, we can find the solutions for

sults of Egs.(15—17). We observe that all approximate &Y value of the latter. Therefore our result allows for a
curves fit qui.te well thé exact functions direct exact evaluation of the dynamics of a pair of interact-

Finally we would like to stress that our derivation can being neutral atoms in very tight traps, possibly in reduced

easily supplemented to include an energy-dependent SCa,[t(?dri_mensionality and under an arbitrary external magnetic
ing length [10,16.17. This extends the validity of the eld, even in the presence of Feshbach resonances. Applica-

) S . tions include a significant range of situations involving quan-
pseudopotential approximation to scattering lengths muc‘fhm control at the atomic level, from single-atom interferom-

larger than the trap size, and allows us to properly describgtry to quantum information processing
the entire molecular spectrum. The energy-dependent effec- '

tive scattering length is defined through thevave phase We thank L.P. Pitaevskii, M. Holland, G. Orso, and M.
shift 8y ae4(E)=—tandy(k)/k, wherefik is the relative mo-  Wouters for valuable discussions. We are grateful to E. Bolda
mentum[18]. The application of this model interaction in our for making available his numerical data reported ®j. T.
derivations leads to substitution af by a.#(E) in Eq. (3) Calarco acknowledges support from the EC under Contract
determining the eigenenergies, and requires a self-consisteNb. IST-2001-38863(ACQP) and from MIUR (COFIN
solving for the value ofE. For magnetically tunable Fesh- 2002.
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