
Photon storage in �-type optically dense atomic media. IV. Optimal control using gradient ascent

Alexey V. Gorshkov,1 Tommaso Calarco,2 Mikhail D. Lukin,1 and Anders S. Sørensen3

1Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
2Institut für Quanteninformationsverarbeitung, Universität Ulm, Albert-Einstein-Allee, D-89081 Ulm, Germany

3QUANTOP, Danish National Research Foundation Center for Quantum Optics, Niels Bohr Institute, University of Copenhagen,
DK-2100 Copenhagen Ø, Denmark

�Received 12 October 2007; published 4 April 2008�

We use the numerical gradient ascent method from optimal control theory to extend efficient photon storage
in �-type media to previously inaccessible regimes and to provide simple intuitive explanations for our
optimization techniques. In particular, by using gradient ascent to shape classical control pulses used to
mediate photon storage, we open up the possibility of high efficiency photon storage in the nonadiabatic limit,
in which analytical solutions to the equations of motion do not exist. This control shaping technique enables an
order-of-magnitude increase in the bandwidth of the memory. We also demonstrate that the often discussed
connection between time reversal and optimality in photon storage follows naturally from gradient ascent.
Finally, we discuss the optimization of controlled reversible inhomogeneous broadening.

DOI: 10.1103/PhysRevA.77.043806 PACS number�s�: 42.50.Gy, 03.67.�a, 32.80.Qk, 42.50.Nn

I. INTRODUCTION

Faithful mapping between quantum states of light �flying
qubits� and quantum states of matter �storage and/or memory
qubits� is an important outstanding goal in the field of quan-
tum information processing and is being pursued both theo-
retically and experimentally by a large number of research
groups around the world. Photon storage in �-type atomic
media is a promising avenue for achieving this goal. In a
recent theoretical paper �1�, we unified a wide range of pro-
tocols for photon storage in �-type media, including the
techniques based on Electromagnetically Induced Transpar-
ency �EIT�, off-resonant Raman interactions, and photon
echo. In Ref. �1� we also demonstrated equivalence between
all these protocols and suggested several efficiency optimi-
zation procedures, some of which have since been demon-
strated experimentally �2�. In the three preceding papers of
this series, Refs. �3–5�, which we will refer to henceforth as
papers I, II, and III, we presented some details and many
extensions of the analysis of Ref. �1�. Most of the results in
Ref. �1� and in papers I, II, and III were obtained based on
physical arguments and on exact solutions available in cer-
tain limits. However, the optimization problems discussed
there fall naturally into the framework of optimal control
problems, for which powerful numerical optimization meth-
ods exist �6,7�. Thus, in the present paper, we apply these
optimal control methods to the problem of photon storage.
As a result, we open up the possibility of efficient photon
storage in previously inaccessible regimes by increasing the
bandwidth of the memory and provide simple intuitive un-
derstanding for the optimization methods underlying photon
storage.

We refer the reader to paper I for a comprehensive intro-
duction to photon storage in �-type atomic media and for the
full list of references. Here we summarize only a few impor-
tant points. In a typical photon storage protocol, an atomic
ensemble with �-type level structure shown in Fig. 1 is as-
sumed to start with all N atoms pumped into the metastable
state �g�. The incoming quantum light mode is coupled to the

�g�-�e� transition with a collectively enhanced coupling con-
stant g�N and is mapped onto the collective coherence
�called a spin wave� between the metastable states �s� and �g�
using a classical two-photon-resonant control pulse with
time-dependent Rabi frequency ��t�. Ideal mapping of the
light mode onto the spin wave and back can be achieved in
an ensemble that has infinite resonant optical depth d on the
�g�-�e� transition. However, despite the existence of propos-
als for achieving high values of d �8�, in most current experi-
ments d �or the cooperativity parameter C for ensembles en-
closed in a cavity �9�� is limited to d�10 due to
experimental imperfections such as competing four-wave
mixing processes �10�, spatially varying light shifts �9�, num-
ber of atoms in a trap �11,12�, or inhomogeneous broadening
and short interaction lengths �13,14�. As a result of the lim-
ited optical depth, the experimentally demonstrated efficien-
cies for the light-matter interface are low, which makes the
optimization of photon storage protocols at finite values of d
crucial. The optimization in Ref. �1�, in papers I, II, and III,
as well as in the present paper relies on the knowledge of the
shape of the incoming photon mode. Note that such knowl-
edge is not incompatible with storing unknown quantum
states because the mode usually acts simply as a carrier while
the information is stored in the quantum state of the har-
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FIG. 1. �Color online� �-type medium coupled to a quantum
field �dashed� with a collectively enhanced coupling constant g�N
and a two-photon-resonant classical field �solid� with time-
dependent Rabi frequency ��t�.
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monic oscillator corresponding to this mode �15�. A different
type of problem is the storage of an unknown mode or,
equivalently, the storage of multiple photonic modes within
an ensemble �16�. While we believe that the optimization
procedures considered here will probably also be relevant to
this situation, we shall not discuss it in more detail here.

The main tool used in this paper is a numerical iterative
optimization with respect to some set of control parameters,
which are updated to yield higher photon storage efficiency
at every iteration. Such iterative optimization methods are a
standard tool in applied optimal control theory �6,7�. These
methods and their variations are already being used in a va-
riety of applications including laser control of chemical re-
actions �17–19�, design of NMR pulse sequences �20�, load-
ing of Bose-Einstein condensates into an optical lattice �21�,
atom transport in time-dependent superlattices �22�, quantum
control of the hyperfine spin of an atom �23�, and design of
quantum gates �24,25�. Although advanced mechanisms for
updating the control parameters from one iteration to the
next exist and exhibit superior convergence characteristics
�6,21,26–28�, we will concentrate in the present paper on
optimization via a simple gradient ascent method �6,7,20,23�,
except for Sec. III where advanced updating mechanisms
will also be used. Gradient ascent methods are often more
efficient than simple variations of the control parameters us-
ing, e.g., genetic algorithms. Moreover, we will show that
gradient ascent optimization has the advantage that it can
often be understood physically and can provide deeper intu-
ition for the photon storage problem. In particular, in papers
I, II, and III, we used involved physical arguments and exact
analytical solutions available in certain limits to derive a
time-reversal-based iterative optimization with respect to the
shape of the incoming photon mode. In the present paper, we
show that these time-reversal iterations and the general and
often discussed connection between optimality and time re-
versal in photon storage �1,29,30,33� naturally follow from
the gradient ascent method. The results of papers I, II, and III
are, however, still crucial since they show in certain cases
that the solutions obtained via the local gradient ascent
method represent global, rather than local, optima.

In addition to considering optimization with respect to the
shape of the input mode, we consider in the present paper
optimization with respect to the storage control field. In par-
ticular, we show that shaping the control field via the gradi-
ent ascent method allows for efficient storage of pulses that
are an order of magnitude shorter than when the control field
is optimized in the adiabatic approximation discussed in Ref.
�1� and in papers I and II. In other words, this new control
shaping method increases the bandwidth of the memory. Fi-
nally, we discuss the performance of optimal control pulses
in the context of photon storage via controlled reversible
inhomogeneous broadening �CRIB� �30�. In particular, as-
suming one is interested in storing a single known incoming
light mode and assuming one can shape control pulses with
sufficient precision, we are not able to identify any advan-
tages of CRIB-based photon storage compared to photon
storage with optimal control pulses in homogeneously broad-
ened media.

The remainder of the paper is organized as follows. In
Secs. II–IV, we show how gradient ascent can be used to

optimize with respect to the control field, the input mode,
and the inhomogeneous profile, respectively. We summarize
the discussion in Sec. V and, finally, present some details
omitted in the main text in the Appendixes A–D.

II. OPTIMIZATION WITH RESPECT TO THE STORAGE
CONTROL FIELD

In principle, both the incoming light mode and the classi-
cal control pulse may be adjusted to maximize the light stor-
age efficiency. However, it is often easier to vary the classi-
cal control pulse. In particular, the photonic state we wish to
store may be some nonclassical state generated by an experi-
mental setup, where we cannot completely control the shape
of the outgoing wave packet. This is, e.g., the case for single
photons generated by parametric down conversion �16,31� or
by single nitrogen-vacancy centers in diamond �32�, where
the shape of the wave packet will be, respectively, set by the
bandwidth of the setup and the exponential decay associated
with spontaneous emission. Alternatively, the wave packet
may also be distorted in an uncontrollable way by the quan-
tum channel used for transmitting the photonic state �15�. In
this section, we therefore discuss optimization with respect
to the storage control field in both the cavity model �Sec.
II A� and the free space model �Sec. II B�.

A. Cavity model

As discussed in papers I and II, the cavity model, in
which the atomic ensemble is enclosed in a cavity, is theo-
retically simpler than the free space model because only one
collective atomic mode can be excited. In addition, as shown
in papers I and II, the cavity setup can yield higher efficien-
cies in certain cases than the free space model due to the
enhancement of the optical depth by the cavity finesse and
due to �for certain spin-wave modes� better scaling of the
error with the optical depth d �1 /d in the cavity vs 1 /�d in
free space�. We, therefore, start with the cavity model. As in
paper I, to get the closest analogy to the free-space regime,
we will discuss in the present paper only the so-called “bad
cavity” limit, in which the cavity mode can be adiabatically
eliminated. However, the method of gradient ascent can eas-
ily be applied outside of this limit, as well.

To simplify the discussion, we first consider the simplest
example, in which one stores a given resonant input mode
into a homogeneously broadened ensemble enclosed in a
cavity and having negligible spin-wave decay rate. It is im-
portant to note that, because only one spin-wave mode is
accessible in the cavity model, the retrieval efficiency is in-
dependent of how the storage is done �see paper I�. This
makes it meaningful to optimize storage separately from re-
trieval �the latter does not have to be optimized since its
efficiency depends only on the cooperativity parameter �see
paper I��.

We follow the derivation of paper I to adiabatically elimi-
nate the cavity mode and to reduce the equations of motion
to the following complex number equations on the time in-
terval t� �0,T�:

Ṗ�t� = − ��1 + C�P�t� + i��t�S�t� + i�2�CEin�t� , �1�
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Ṡ�t� = i��t�P�t� . �2�

Here the optical polarization P�t� on the �g�-�e� transition and
the spin polarization S�t� on the �g�-�s� transition satisfy ini-
tial conditions P�0�=0 and S�0�=0, respectively, corre-
sponding to the absence of atomic excitations at t=0. In this
example, the shape of the incoming mode Ein�t� is assumed
to be specified, real, and normalized according to 	0

TdtEin
2 �t�

=1. � is the decay rate of the optical polarization and C is the
collectively enhanced cooperativity parameter equal to the
optical depth of the atomic ensemble times the cavity finesse.
The goal is to find the slowly varying control field Rabi
frequency envelope ��t� �assumed to be real� that maximizes
the storage efficiency �s= �S�T��2. �To avoid carrying around
extra factors of 2, ��t� is defined as half of what is usually
called the Rabi frequency: it takes time � / �2�� to do a �
pulse�. For the moment, we suppose that there is no con-
straint on the energy of the control pulse and return to the
possibility of including such a constraint below. It is worth
noting that due to their linearity, the equations of motion
�and all the results of the present paper� apply equally well
both to classical input fields with pulse shapes proportional
to Ein�t� and to quantum fields whose excitations are confined
to the mode described by Ein�t�. The efficiency � is thus the
only parameter required to fully characterize the memory
�see paper I�.

Since the optimization of �s is constrained by the equa-
tions of motion �1� and �2�, we introduce Lagrange multipli-

ers P̄�t� and S̄�t� to ensure that the equations of motion are
fulfilled, and turn the problem into an unconstrained maxi-
mization of �6,7�

J = S�T�S��T� + 

0

T

dt�P̄��− Ṗ − ��1 + C�P + i�S

+ i�2�CEin� + c.c.� + 

0

T

dt�S̄��− Ṡ + i�P� + c.c.� ,

�3�

where c.c. stands for the complex conjugate �34�.
The optimum requires that J is stationary with respect to

any variation in P, S, and �. As shown in Appendix A,
setting J to be stationary with respect to variations in P and
S requires that the Lagrange multipliers �also referred to as

the adjoint variables� P̄ and S̄ satisfy the equations of motion

P̄
˙

= ��1 + C�P̄ + i�S̄ , �4�

S̄
˙

= i�P̄ , �5�

subject to boundary conditions at time t=T

P̄�T� = 0, �6�

S̄�T� = S�T� . �7�

These are the same equations as for S and P �Eqs. �1� and
�2�� except that there is no input field and that the decay with
rate ��1+C� is replaced with growth, which will function as

decay for backward evolution. This backward evolution, in
fact, corresponds to retrieval with the time-reversed control
field and can be implemented experimentally as such �see
papers I, II and Ref. �2��. It is satisfying to have obtained this
purely mathematical and simple derivation of the often dis-
cussed connection between optimality and time reversal in
photon storage �1–5,29,30,33,35�. As explained in the intro-
duction to paper I and as shown in detail in paper II, this
connection goes beyond the perfect reversibility of unitary
evolution discussed in Refs. �29,30,35� by including systems
with nonreversible dynamics, as exemplified, for example,
by the decay rate � in the present model.

Equations �4�–�7� ensure that J is stationary with respect
to variations in P and S. To find the optimum it remains to
set to zero the functional derivative of J with respect to �.
This functional derivative is given by

�J

���t�
= − 2 Im�S̄�P − P̄S�� , �8�

where “Im” denotes the imaginary part.
In general, if one has a real function of several variables,

one way to find a local maximum is to pick a random point,
compute partial derivatives at that point, move a small step
up the gradient, and then iterate. The same procedure can be
applied to our optimal control problem �6,7�. The gradient
ascent procedure for finding the optimal storage control
pulse ��t� is to take a trial ��t� and then iteratively update
��t� by moving up the gradient in Eq. �8� according to

��t� → ��t� −
1

�
Im�S̄�P − P̄S�� , �9�

where 1 /� regulates the step size. In order to compute the
right hand side of Eq. �9�, one has to evolve the system
forward in time from t=0 to t=T using Eqs. �1� and �2� to
obtain S�t� and P�t�. Then project the final atomic state de-
scribed by S�T� and P�T� onto S according to Eqs. �6� and

�7� to obtain P̄�T� and S̄�T�. Then evolve S̄ and P̄ backward
in time from t=T to t=0 according to Eqs. �4� and �5�.

In general, as in any gradient ascent method, the step size
1 /� in Eq. �9� has to be chosen not too big �one should not
go up the gradient so quickly as to miss the peak� but not too
small �in order to approach the peak relatively quickly�. To
achieve faster convergence, one could use a different step
size 1 /� for each iteration; but for the problems considered
in the present paper, convergence is usually sufficiently fast
that we do not need to do this �unless the initial guess is too
far from the optimum, in which case changing � a few times
helps�. Moreover, in some optimization problems �22�, 1 /�
has to be chosen such that it depends on the argument of the
function we are trying to optimize, i.e., in this case the time
t; this is not required for the present problems, and 1 /� is
just taken to be a constant.

For example, let us take C=1, T�=10, and a Gaussian-
like input mode

Ein�t� = A�e−30�t/T − 0.5�2
− e−7.5�/�T , �10�

where A2.09 is a normalization constant and where the
mode is chosen to vanish at t=0 and t=T for computational
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convenience. Starting with an initial guess ��t�=�� /T and
using �=0.5, it takes about 45 iterations for the efficiency to
converge to within 0.001 of the optimal efficiency of C / �1
+C�=0.5 �see paper I for the derivation of this formula�. If,
however, � is too small �e.g., �=0.1�, then the step size is too
large, and, instead of increasing with each iteration, the effi-
ciency wildly varies and does not converge.

We now compare the optimal control field shaping to the
adiabatic control field shaping presented in paper I. We first
take C=10 and consider the input mode in Eq. �10� with T
=50 /�. Following paper I, we calculate the storage control
field using the adiabatic equations �Eq. �26� in paper I�, then
numerically compute the storage efficiency with this control
field, and multiply it by the complete retrieval efficiency
C / �1+C� to obtain the total efficiency. Since we are in the
adiabatic limit �TC�=500	1�, the resulting total efficiency
is equal to the maximum possible efficiency C2 / �1+C�2

=0.83 �see paper I�. Figure 2�a� shows the input mode in Eq.
�10� �dashed line� and the adiabatic storage control field �dot-
ted line�. The optimal control field shaping using gradient
ascent via Eq. �9� also yields the maximum possible effi-
ciency C2 / �1+C�2=0.83 independent of the initial guess for
��t�. The four solid lines in Fig. 2�a� show ��t� resulting
from optimal control field shaping for four different initial
guesses ��t� /�=0.2, 1, 2, and 3. The four optimal control
fields and the adiabatic control field agree except at small
times. The reason for the disagreement is that the depen-
dence of storage efficiency on the front section of the control
field is very weak because this section affects only the front

part of the excitation, and a large part of this anyway leaks
out at the back end of the atomic ensemble. In fact, the
dependence is so weak that gradient ascent leaves the front
part of the initial guesses almost unperturbed.

It is worth noting that, in general, gradient ascent methods
are not guaranteed to yield the global optimum, and the it-
erations may get trapped in a local maximum. However, for
our photon storage problem, we know what the global opti-
mum is in some cases. In particular, we have shown in paper
I �for the cavity model� and in paper II �for the free space
model� that, in the adiabatic limit, adiabatic control field
shaping yields the global optimum. Since control shaping via
gradient ascent agrees with the adiabatic shaping in this
limit, we have a strong indication that gradient ascent always
yields the global optimum also outside of the adiabatic limit.
The global optimum is here the �unique� maximum possible
efficiency, which, within the numerical error, is achievable
for a variety of control fields due to the lack of sensitivity to
the control field for small times �see Fig. 2�.

We now repeat the same steps except that we use T
=0.5 /�. The resulting control fields are shown in Fig. 2�b�.
Again the four optimal control fields correspond to different
initial guesses ���t� /�=2, 5, 8, and 11�. The adiabatic con-
trol field now differs from the optimal one on the entire time
interval. The reason is that the adiabatic limit �TC�	1� is
not satisfied to a sufficient degree �TC�=5�, and, as a result,
the adiabatic approximation does not work well. Indeed, the
efficiency yielded by the adiabatic control �0.49� is much
smaller than that yielded by the optimal control �0.81�.
Physically, the breakdown of the adiabatic approximation
means that the optical polarization P�t� no longer follows the
spin wave S�t� adiabatically, but rather evolves dynamically
according to the full differential Eq. �1�. Since in this regime
�TC��1� the optimal control field is turned on abruptly fol-
lowing a time period when it is off �see Fig. 2�b��, the opti-
mal storage procedure acquires some characteristics of
photon-echo type fast storage �1,3,4,29�. In fast storage, the
input pulse is first absorbed on the �e�-�g� transition in the
absence of the control field, and is then mapped to the �s�-�g�
coherence via a control � pulse. This connection is not sur-
prising since fast storage is indeed optimal for certain input
modes of duration T�1 / �C��. Finally, we note that all the
initial guesses for � that we tried yielded the same optimal
control �up to the unimportant front part� and the same effi-
ciency, which is a signature of the robustness of the optimi-
zation protocol and is another strong indication that, for this
optimal control problem, gradient ascent yields the global,
rather than local, optimum.

Having performed the comparison of the control fields
generated by adiabatic shaping and by gradient ascent, we
turn to the investigation of the dependence on C and on TC�
of the efficiency achieved by these two methods. In Fig. 3�a�,
we compare the efficiency of storage followed by retrieval of
the input mode of Eq. �10� obtained using the adiabatic con-
trol field �dotted lines� and using the control found via gra-
dient ascent �solid lines�. The efficiencies are plotted as a
function of TC� for three indicated values of C
�=1, 10, 100�. Dashed lines correspond to C2 / �1+C�2, the
maximum efficiency possible at any given C. We note that
the dotted lines have already been shown in Fig. 2�a� of
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FIG. 2. Adiabatic �dotted� and optimal �solid� control fields for
the storage of a Gaussian-like input mode Ein�t� �dashed� in the
cavity model with C=10 and T=50 /� �a� and T=0.5 /� �b�. The
four different optimal control pulses correspond to four different
initial guesses for the gradient ascent optimization. The adiabatic
control field agrees with the optimal one in the adiabatic limit
�TC�	1� �a� and deviates from it otherwise �b�.
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paper I. According to the arguments presented in papers II
and III, we note that it is impossible to retrieve into a mode
much shorter than 1 / ��C�, and hence, by time-reversal, it is
impossible to efficiently store such a short mode. Figure 3�a�
confirms that indeed, when TC�
1, even optimal controls
cannot give high efficiency. Using gradient ascent instead of
adiabatic shaping, one can, however, efficiently store input
modes that are about an order of magnitude shorter and, thus,
an order of magnitude larger in bandwidth. It is worth repeat-
ing that although the method of gradient ascent is generally
not guaranteed to yield the global maximum, the fact that it
does give the known global maximum in the limit TC�	1
suggests that it probably yields the global maximum at all
values of TC�.

To confirm the robustness and generality of the optimiza-
tion procedure, we show in Fig. 3�b� the results of the same
optimization as in Fig. 3�a� but for a square input mode
Ein�t�=1 /�T instead of the Gaussian-like input mode of Eq.
�10�. As in Fig. 3�a�, we see that gradient ascent control
shaping improves the threshold in the value of TC�, where
efficiency abruptly drops, by an order of magnitude. This can
again be interpreted as an effective increase in the bandwidth
of the memory by an order of magnitude. The optimal stor-
age efficiency for the square input pulse falls to half of the
maximum at smaller TC� than for the Gaussian-like input
pulse because the latter has a duration �half-width at half
maximum, for example� significantly shorter than T �see Eq.
�10� or Fig. 2�. On the other hand, as TC� is increased, the
maximum is approached slower for the square input mode
than for the Gaussian-like mode. This is because the high
frequency components contributed by the sharp edges of the
square pulse are difficult to store.

Most experiments have features that go beyond the simple
model we have just described. Therefore, in Appendix B, we
generalize this model and the optimization procedure to in-
clude the possibility of complex control field envelopes ��t�
and input mode envelopes Ein�t�, nonzero single-photon de-
tuning � and spin wave decay rate �s, and �possibly revers-
ible �30�� inhomogeneous broadening. Our model of inho-
mogeneous broadening is applicable both to Doppler
broadening in gases and to the broadening of optical transi-
tions in solid state impurities caused by the differences in the
environments of the impurities �36�. For the case of Doppler
broadened gases, we also allow for the possibility of model-
ing velocity changing collisions with rate �c. Finally, in Ap-
pendix B, we also show how to take into account the possi-
bility that the classical driving fields available in the
laboratory are not sufficiently strong to realize the optimal
control fields, which may be the case for short input modes
and/or large single-photon detuning �, both of which require
control pulses with large intensities.

Although a comprehensive study of optimization for �
�0 is beyond the scope of the present paper, we will now
prove that the maximum efficiency for ��0 is exactly equal
to the maximum efficiency for �=0. Suppose we know the
control field �0�t� that achieves the optimum for a given
resonant input Ein�t�. Then, for an input at ��0 with the
same envelope Ein�t�, we can construct the control field ��t�
as a sum of two parts �written in the two-photon-resonant
rotating frame as in Eqs. �B1� and �B2��

��t� = �2e−i�2t + �0�t�ei�t. �11�

The first part is a far-detuned control ��2	�2 , �� that Stark
shifts level �e� into resonance with the input �i.e., such that
�2

2 /�2=��, while the second part is resonant with the Stark-
shifted �e�-�s� transition and has the envelope equal to the
optimal resonant control. The reason why an extra detuning
� is needed to bring the second term in two-photon reso-
nance is because �2 Stark shifts both �e� and �s� by �. The
resulting efficiency must be equal to the optimal resonant
efficiency up to an error on the order of the small population
mixing between �e� and �s� caused by �2; that is,
���2 /�2�2=� /�2. To verify mathematically that the control
in Eq. �11� works, one can write P and S as a sum of a slowly
varying piece and a rapidly oscillating piece, extract separate
equations for the rapidly and slowly oscillating variables,
and finally adiabatically eliminate the rapidly oscillating
variables. We have also numerically verified the performance
of the control in Eq. �11� and the scaling of the error
��� /�2� by integrating the equations of motion for the case
of homogeneous broadening at several different values of T�
and C for the pulse shape in Eq. �10�. Thus, the optimal
off-resonant efficiency is greater than or equal to the optimal
resonant efficiency for the same input envelope Ein�t�. Car-
rying out the same argument backward �i.e., using �2�t� to
shift �e� out of resonance�, we conclude that the optimal ef-
ficiency must be the same on and off resonance. When ap-
plying this idea in practice, one should, of course, realize
that, in addition to a possible technical limit on the available
control power, the three-level approximation and the

1

10
100

�a�

0 5 10 15 20
T C Γ0

0.25

0.5

0.75

1

Η

1

10
100

�b�

0 2.5 5 7.5 10
T C Γ0

0.25

0.5

0.75

1

Η

FIG. 3. �a� The total efficiency of storage followed by retrieval
for the Gaussian-like input mode in Eq. �10� using adiabatic equa-
tions �dotted� and gradient ascent �solid� to shape the storage con-
trol field. Results are shown as a function of TC� for the indicated
values of C �=1, 10, 100�. The dashed lines are C2 / �1+C�2, the
maximum efficiency possible at any given C. �b� Same for Ein�t�
=1 /�T.
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rotating-wave approximation may start to break down for
sufficiently large values of �2 and �2.

B. Free space model

Although the cavity model discussed in Sec. II A is theo-
retically simpler and results, in certain cases, in higher effi-
ciencies than the free space model, the latter is easier to set
up experimentally. Moreover, because of the accessibility of
a large number of spin wave modes, the free space model can
provide higher efficiencies in some other cases �see paper II�
and can, in principle, function, as a multimode memory.
Therefore, we turn in the present section to the analysis of
the free space model.

To demonstrate how optimization with respect to the con-
trol field works in the free space model, we again begin with
a simple example of resonant photon storage in a homoge-
neously broadened atomic ensemble with negligible spin-
wave decay. It is important to note that, in contrast to the
cavity model, the free space model gives access to many
different spin-wave modes, which makes the retrieval effi-
ciency dependent on how storage is carried out �see paper
II�. Therefore, optimization of storage alone is not a priori
very practical. However, as shown in paper II, the optimiza-
tion of storage alone is indeed useful because, in many cases,
it also optimizes storage followed by backward retrieval.

In order to have slightly simpler mathematical expres-
sions, we work in the co-moving frame �see paper II�, al-
though the same argument can be carried out using the origi-
nal time variable, as well. The complex number equations of
motion on the interval t� �0,T� are then �see Ref. �1� and
paper II�

�z̃E�z̃, t̃� = i�dP�z̃, t̃� , �12�

�t̃P�z̃, t̃� = − P�z̃, t̃� + i�dE�z̃, t̃� + i�̃�t̃�S�z̃, t̃� , �13�

�t̃S�z̃, t̃� = i�̃�t̃�P�z̃, t̃� , �14�

with initial and boundary conditions

E�0, t̃� = Ein�t̃� , �15�

P�z̃,0� = 0, �16�

S�z̃,0� = 0. �17�

These equations are written using dimensionless variables, in
which �comoving� time and Rabi frequency are rescaled by �

�t̃= t� and �̃=� /�� and the position is rescaled by the length
L of the ensemble �z̃=z /L�. E�z̃ , t̃� describes the slowly vary-
ing electric field envelope, the input mode Ein�t̃� satisfies the

normalization constraint 	0
T̃�Ein�t̃��2dt̃=1, d is the resonant op-

tical depth, and �̃�z̃� and Ein�t̃� are for now assumed to be
real. �To avoid carrying around extra factors of 2, d is de-
fined as half of what is often referred as the optical depth: the
steady-state solution with �=0 gives probe intensity attenu-
ation �E�z̃=1��2=e−2d�E�z̃=0��2.� The goal is to maximize the
storage efficiency

�s = 

0

1

dz̃�S�z̃,T̃��2 �18�

with respect to �̃�t̃�. A procedure analogous to that used in
the cavity model in Sec. II A yields equations of motion
�also referred to as the adjoint equations� for the Lagrange

multipliers E�z̃ , t̃�, P̄�z̃ , t̃�, and S̄�z̃ , t̃�:

�z̃E = i�dP̄ , �19�

�t̃P̄ = P̄ + i�dE + i�̃S̄ , �20�

�t̃S̄ = i�̃P̄ , �21�

with initial and boundary conditions

E�1, t̃� = 0, �22�

P̄�z̃,T̃� = 0, �23�

S̄�z̃,T̃� = S�z̃,T̃� . �24�

As in the cavity discussion in Sec. II A, these equations de-
scribe backward retrieval and provide a simple mathematical
connection between optimality and time reversal. In order to
move up the gradient, one should update ��t̃� according to

�̃�t̃� → �̃�t̃� −
1

�



0

1

dz̃ Im�S̄��z̃, t̃�P�z̃, t̃� − P̄�z̃, t̃�S��z̃, t̃�� .

�25�

We showed in Ref. �1� and in paper II that, in the adia-
batic limit �Td�	1� and for a certain class of input modes of
duration T�1 / �d��, one can achieve a universally optimal
�for a fixed d� storage efficiency that cannot be exceeded
even if one chooses a different input mode. We showed that
in that case the obtained control field will also maximize the
total efficiency of storage followed by backward retrieval.
However, this would not necessarily be the case for a general
input mode in the nonadiabatic limit �Td��1�, which is pre-
cisely the limit, in which gradient ascent optimization be-
comes most useful. Moreover, for the case of forward re-
trieval, the control field that maximizes the storage efficiency
does not maximize the total efficiency of storage followed by
retrieval even in the adiabatic limit. Thus, in Appendix C, we
describe how to use gradient ascent to maximize �still with
respect to the storage control field� the total efficiency of
storage followed by retrieval.

As in the cavity model in Sec. II A, we now compare
adiabatic shaping of the storage control field �see Ref �1� and
paper II� to the optimal shaping via gradient ascent. To com-
pare with the results of paper II, we maximize the total effi-
ciency of storage followed by backward retrieval rather than
the storage efficiency alone. We assume that d=10 and that
Ein�t� is the Gaussian-like input mode in Eq. �10�, shown as a
dashed line in Figs. 4�a� and 4�b�. We first consider the case
T=50 /� and shape the storage control using adiabatic shap-
ing �Sec. VI B of paper II�. Then we numerically compute
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the total efficiency of storage followed by complete back-
ward retrieval using this storage control field �the total effi-
ciency is independent of the retrieval control field provided
no excitations are left in the atoms�. The adiabatic storage
control is shown as a dotted line in Fig. 4�a�. Since for this
input mode the adiabatic limit is satisfied �Td�=500	1�,
the adiabatic storage control yields an efficiency of 0.66,
which is the maximum efficiency possible at this d �1�. For
the same reason, the adiabatic control agrees with the control
field computed via gradient ascent �solid line�, which also
yields an efficiency of 0.66. Figure 4�a� shows four solid
lines �optimal control fields� corresponding to four initial
guesses ��t� /�=0.2, 0.5, 1, and 1.5. As in the cavity model
discussion in Sec. II A, the difference between the four op-
timal controls and the adiabatic control is inconsequential.

Repeating the calculation for T=0.5 /�, we obtain Fig.
4�b�. Since the adiabatic limit �Td�	1� is no longer satisfied
�Td�=5�, the adiabatic approximation does not work and the
adiabatic control differs from the optimal control and gives a
lower efficiency 0.24 vs 0.58. As in Fig. 4�a�, the four opti-
mal control fields plotted correspond to different initial
guesses ��t� /�=1, 3, 5, and 7. As in the cavity discussion,
Fig. 4�b� indicates that, in the regime Td��1, where the
adiabatic approximation no longer holds, the optimal control
field acquires characteristics of the control field used in fast
storage.

As in the analysis of the cavity model in Sec. II A, we
now analyze the dependence on d and Td� of the efficiency
yielded by the adiabatic control shaping and the optimal con-

trol shaping. In Fig. 5, we compare the efficiency of storage
followed by complete backward retrieval of the input mode
in Eq. �10� obtained using the control field shaped using the
adiabatic equations �dotted lines� and using gradient ascent
�solid lines�. The efficiencies are plotted as a function of Td�
for three indicated values of d �=1, 10, 100�. Horizontal
dashed lines represent the maximum efficiency possible at
the given d �1�. The dotted lines are the same as in Fig. 6�a�
of paper II. Similar to the corresponding discussion of the
cavity model in Sec. II A, Fig. 5 confirms the predictions of
paper II and III that efficient photon storage is not possible
for Td��1. It also illustrates that optimal control fields open
up the possibility of efficient storage of input modes with a
bandwidth that is an order of magnitude larger than the band-
width allowed by the adiabatic storage. In addition, the same
reasoning as in the cavity discussion leads to the conclusion
that for this problem, gradient ascent most likely yields the
global, rather than local, maximum at all values of Td�.

Various generalizations of the presented procedure can be
made. First, the generalization to limited control pulse en-
ergy, �possibly reversible �30�� inhomogeneous broadening,
complex � and Ein, and nonzero �, �s, and �c can be carried
out exactly as in the cavity case �Appendix B�. Second, in
the case of backward retrieval, if the two metastable states
are nondegenerate and have a frequency difference sg, one
should incorporate an appropriate position-dependent phase

shift of the spin wave of the form exp�−2i�k̃z̃�, where �k̃
=Lsg /c �see Sec. VIII of paper II�. Finally, another exten-
sion can be made for the cases when the total efficiency
depends on the retrieval control field �e.g., if �s and/or �c are
nonzero�. In those cases, one can simultaneously optimize
with respect to both the storage and the retrieval control
fields. However, one may then need to put a limit on the
energy in the retrieval control pulse since, for the case of
�s�0, for example, the faster one retrieves, the higher is the
efficiency, and the optimal retrieval control field may, in
principle, end up having unlimited power �e.g., an infinitely
short � pulse�.

III. OPTIMIZATION WITH RESPECT TO THE INPUT
FIELD

Although it is usually easier to optimize with respect to
the control field, optimization with respect to the input mode
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FIG. 4. Adiabatic �dotted� and optimal �solid� control fields for
the storage followed by backward retrieval of a Gaussian-like input
mode Ein�t� �dashed� in the free space model with d=10 and T
=50 /� �a� and T=0.5 /� �b�. Four optimal control pulses were ob-
tained using four different initial guesses for the gradient ascent
procedure. The adiabatic control field agrees with the optimal one in
the adiabatic limit �Td�	1� �a� and deviates from it otherwise �b�.
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FIG. 5. The total efficiency of storage followed by backward
retrieval for the Gaussian-like input mode in Eq. �10� using adia-
batic equations �dotted� and gradient ascent �solid� to shape the
storage control field. The results are shown for the indicated values
of d �=1, 10, 100�, as a function of Td�. The dashed lines repre-
sent the maximum efficiency possible at the given d �1�.
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can also be carried out in certain systems. For both classical
and quantum light, the mode shape can often be controlled
by varying the parameters used during the generation of the
mode. For example, if the photon mode is created by releas-
ing some generated collective atomic excitation, one can,
under certain assumptions, generate any desired mode shape
�1�. For the case of classical light, one can also shape the
input light pulse simply using an acousto-optical modulator.
An important advantage of optimizing with respect to the
input mode is that the iterations can be carried out experi-
mentally �2,4�. In this section, we consider the maximization
of light storage efficiency with respect to the shape of the
input mode.

The gradient ascent method, used in Sec. II to optimize
with respect to the control field, can be easily applied to the
optimization with respect to the input mode shape both in the
cavity model and in the free space model. Since one is inter-
ested in finding the optimal input mode shape, the optimiza-
tion has to be carried out subject to the normalization condi-
tion 	0

Tdt�Ein�t��2=1. This condition can be included by
adding an extra term with a Lagrange multiplier to the func-
tional J to be optimized. The iterations are then done as
follows: one first integrates the storage equations for a trial
input mode; then integrates the adjoint equations correspond-
ing to backward retrieval �as in Secs. II A and II B�; then
updates the trial input mode by adding to it a small correc-

tion proportional to the output of backward retrieval �−iP̄�t�
in the cavity model or E�0, t̃� in the free space model�; and
finally renormalizes the new input mode to satisfy the nor-
malization condition.

An important feature that distinguishes the optimization
with respect to the input mode from the optimization with
respect to the control field is the possibility of making finite
�not infinitesimal� steps. Standard gradient-ascent improve-
ment �such as via Eqs. �9� and �25�� is, in principle, infini-
tesimal due to its reliance on the small parameter 1 /�. Sev-
eral decades ago, Krotov introduced and developed an
important powerful and rapidly converging global improve-
ment method �6,21,26–28� that is not characterized by a
small parameter. Largely thanks to the presence of the nor-
malization condition on the input mode, this method can be
applied to derive noninfinitesimal quickly converging up-
dates for the problem of optimization of light storage effi-
ciency with respect to the input mode. For the cavity model
of Sec. II A, this update is given by

Ein�t� → − iP̄�t� , �26�

followed by a renormalization of Ein�t�, while for the free-
space model of Sec. II B, the update is given by

Ein�t̃� → E�0, t̃� , �27�

followed by renormalization. These updates precisely corre-
spond to the time-reversal-based iterations suggested in Ref.
�1� and explained in more detail in papers I and II. In these
iterations, optimization of light storage with respect to the
input field is done by carrying out storage of a trial input
mode followed by backward retrieval, and then using the
normalized output of backward retrieval as the input mode in

the next iteration. The beauty of this update procedure is the
possibility of carrying it out experimentally. In fact, the ex-
tension of this procedure to the optimization of storage fol-
lowed by forward retrieval, suggested in Ref. �1� and in pa-
per II, has already been demonstrated experimentally �2�.

In the language of gradient ascent, one can still think of
Eqs. �26� and �27� as steps along the gradient. These steps
are, however, finite, not infinitesimal. This allows one to
think of time-reversal-based optimization with respect to the
input mode as simple intuitive walk up the gradient. As
shown in paper I, the fact that only one collective atomic
mode can be excited in the cavity model makes the iterations
of Eq. �26� converge to the optimum in a single step. Using
the terminology of gradient ascent, the optimization with re-
spect to the input field in the cavity model can, surprisingly,
be achieved with a single large step up the gradient.

We note that the optimization procedure discussed in this
section can be easily generalized to include inhomogeneous
broadening and �for the case of Doppler broadened gases�
the presence of velocity changing collisions. One can show
that, even with these features, the iterative optimization pro-
cedure still works in exactly the same way by updating the
input mode with the output of time-reversed retrieval.

IV. OPTIMIZATION WITH RESPECT TO THE
INHOMOGENEOUS PROFILE

Having discussed optimization with respect to the control
field and the input mode, we now turn to the optimization
with respect to the shape of the inhomogeneous profile. This
optimization is most relevant in the context of controlled
reversible inhomogeneous broadening �CRIB� �30�. The
main idea of CRIB is that by introducing inhomogeneous
broadening into a homogeneously broadened medium �via
Stark or Zeeman shifts, for example� and by optimizing the
shape and width of this inhomogeneous profile, one can bet-
ter match the absorption profile of the medium to the spec-
trum of the incoming photon mode and, thus, increase the
storage efficiency �30�. At the same time, one can minimize
the losses caused by dephasing of different frequency classes
with respect to each other by using an echo-like process trig-
gered by a reversal of the inhomogeneous profile between
the processes of storage and retrieval �29,30�. We refer the
reader to papers I and III for a full list of references, and to
Ref. �37� and paper III for examples of recent theoretical
studies.

A. Cavity model

As in Sec. II, we begin the discussion with the theoreti-
cally simpler cavity model. Although one can, of course,
optimize with respect to the inhomogeneous profile in the
problem of storage alone �i.e., not followed by retrieval�, in
the context of CRIB it is more relevant to consider the prob-
lem of storage followed by retrieval with the reversed inho-
mogeneous profile �30�. Moreover, although the approach
can be extended to nonzero single-photon detuning and arbi-
trary control fields, we suppose for simplicity that the input
mode Ein�t� is resonant and that the storage and retrieval
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control pulses are � pulses. Following the convention of Ref.
�1� and papers I–III, we refer to this use of �-pulse control
fields as fast storage and fast retrieval.

We leave most of the mathematical details of the problem
to Appendix D. Here we only note that we describe the in-
homogeneous profile by a discrete number of frequency
classes. The index j labels the frequency class with detuning
� j from the center of the line containing a fraction pj of
atoms �� jpj =1�. In Appendix D, we show how to carry out
optimization with respect to pj and/or � j.

We now present the results of gradient ascent optimiza-
tion with respect to the inhomogeneous profile for a particu-
lar example. We suppose that the input pulse is the Gaussian-
like mode in Eq. �10� and that C=50. The total efficiency of
storage followed by retrieval, as a function of TC�, is shown
in Fig. 6�a� for various storage protocols. The dash-dotted
line gives the efficiency of fast storage �i.e., storage obtained
by applying a control � pulse on the �g�-�e� transition at the
end of the input mode at time T� followed by fast retrieval
using a homogeneous line. As discussed in papers I and II, a
homogeneous ensemble enclosed in a cavity has only one
accessible spin-wave mode and can, therefore, fast-store only
one input mode, which has duration T�1 / �C��. As a result,
the decay at TC�	1 of the efficiency represented by the
dash-dotted line is dominated by leakage of the input mode
into the output mode and not by polarization decay. We now
consider introducing reversible inhomogeneous broadening

and iteratively optimizing with respect to its shape �using Eq.
�D6� or Eq. �D8��. As expected, the efficiency grows with
each iteration independently of the choice of the number of
frequency classes, the choice of � j, and the initial guess for
pj. The landscape in the control space, however, depends on
the number of frequency classes and on � j. This landscape is
also not as simple as in Secs. II and III, i.e., there exist local
maxima. We did not perform an exhaustive search, but out of
all the initial configurations, number of frequency classes,
and � j distributions that we tried, the highest efficiencies
were obtained for the cases when gradient ascent converged
to only two nonempty frequency classes with opposite detun-
ings �we have not been able to come up with a simple physi-
cal reason for this�. We therefore focus on the case of only
two frequency classes with detunings ��I and optimize with
respect to �I �using Eq. �D9��. The optimized efficiency is
shown with circles in Fig. 6�a�. For TC� less than about
0.75, it is optimal to have �I=0. For larger TC�, the optimal
�I is shown in Fig. 6�b�: at small TC�, it scales approxi-
mately as ��TC��−1 and then slower. The presence of two
frequency classes and hence two accessible spin wave modes
instead of one allows us to reduce the leakage error, so that
the efficiency �circles in Fig. 6�a�� is now limited by polar-
ization decay.

Finally, we would like to compare the broadening-
optimized efficiency to the homogeneous control-optimized
efficiency. Repeating the optimization procedure of Sec. II A
for C=50, we obtain the solid line in Fig. 6�a�. The maxi-
mum efficiency possible at this C is C2 / �C+1�2 and is shown
as the dashed line. The dashed line and the solid line are the
same as in Fig. 3�a�, except that now C=50. The fact that the
solid line in Fig. 6�a� lies above the circles indicates that we
have not been able to identify any advantage of fast storage
with CRIB compared to optimal storage in the homogeneous
medium. Moreover, all inhomogeneous broadening configu-
rations we tried to introduce into the optimized homoge-
neous protocol converged back to the homogeneous profile.
These results suggest that if one wants to store a single mode
of known shape using a homogeneously broadened ensemble
of �-type systems enclosed in a cavity and can shape and
time the control field with sufficient precision, it may be
better to use optimal homogeneous storage and not to use
CRIB.

It is, however, worth noting that we have only carried out
the simplest optimization of fast storage with CRIB. In par-
ticular, the performance of fast storage with CRIB may be
further enhanced by optimizing with respect to the time, at
which the storage � pulse is applied. Such optimization rep-
resents an optimal control problem with a free terminal time
�6� and is beyond the scope of the present paper �although it
can be carried out in a straightforward manner by repeating
the optimization above systematically for different times of
the �-pulse application�.

It is also important to note that the use of CRIB in the
cavity model may allow for implementing a multimode
memory �16� in the cavity setup. Unlike the free space
model, which allows for the storage of multiple temporal
input modes using, e.g., Raman- or EIT-based protocols
�1,4,38,39�, the homogeneously broadened cavity model
only has a single accessible spin-wave mode. Therefore, if
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FIG. 6. Comparison of the efficiency for storage followed by
retrieval in the cavity model with and without controlled reversible
inhomogeneous broadening �CRIB�. We consider storage of the
Gaussian-like input mode of duration T �Eq. �10�� in a cavity with
C=50. �a� The figure shows the efficiency of fast storage followed
by fast retrieval with a homogeneous line �dash-dotted�, fast storage
followed by fast retrieval with a reversible optimized inhomoge-
neous profile, i.e., CRIB �circles�, optimal storage and retrieval with
a homogeneous line as in Fig. 3�a� �solid�, and the asymptotic value
C2 / �C+1�2 �dashed�. �b� The optimal inhomogeneous width �I for
CRIB.
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we do not use CRIB or some other inhomogeneous broaden-
ing mechanism, it can only store a single input mode.

B. Free space model

Having discussed the optimization with respect to the in-
homogeneous profile in the cavity model, we note that the
same procedure can be carried out for the free space model
in an analogous manner. The appropriate update equations
are listed at the end of Appendix D.

In paper III, we compared storage using adiabatic control
shaping in a homogeneous ensemble to fast storage with
CRIB. We found that fast storage with CRIB can indeed do
better than adiabatic homogeneous storage for Td��1. We
show now that this result was mainly due to imperfect con-
trol field optimization outside of the adiabatic limit and that,
in the present work, we have not been able to identify any
advantages of fast storage with CRIB compared to optimal
homogeneous storage. We consider storage of the resonant
Gaussian-like input mode in Eq. �10� in a free space atomic
ensemble with d=100 followed by backward retrieval. The
total efficiency for various storage protocols is shown in Fig.
7 as a function of Td�. The dash-dotted line and the two
solid lines labeled G and L are taken from Fig. 8�a� of paper
III. The dash-dotted line is the efficiency of fast storage fol-
lowed by fast backward retrieval using a homogeneous line.
The two solid lines labeled G and L are obtained using fast
storage with optimal-width reversible inhomogeneous broad-
ening with Gaussian profile and Lorentzian profile, respec-
tively. Although the optimization with respect to the inhomo-
geneous width can be done efficiently via gradient ascent
�using Eq. �D11��, we have already performed this optimiza-
tion in paper III by sampling a sufficiently large set of inho-
mogeneous widths. The remaining third solid line and the
dotted line �both taken from Fig. 5� correspond to homoge-
neous storage with optimal storage controls �solid� and with
adiabatic controls �dotted�. The dashed line �also from Fig.
5� is the maximum possible efficiency at this d. The plot

shows that while adiabatic control field shaping �dotted�
makes homogeneous storage less efficient for some values of
Td� than fast storage with CRIB �solid lines labeled G and
L�, optimal control field shaping �unlabeled solid line� may
enable homogeneous storage to be more efficient than fast
storage with CRIB at all values of Td�.

As in Sec. IV A, we note, however, that we have pre-
sented only the simplest optimization of CRIB and that the
full investigation of the advantages of CRIB is beyond the
scope of the present paper. In particular, the CRIB efficiency
may be enhanced by optimizing with respect to the time, at
which the storage � pulse is applied. Moreover, CRIB might
be useful in circumstances such as when a homogeneously
broadened three-level system is not available, when more
complicated inputs �such as time-bin qubits� are used, or
when precise shaping and timing of the control pulse is
harder to achieve than controlled reversible broadening. Fi-
nally, CRIB-based memories may even be implemented
without any optical control fields �37�.

V. SUMMARY

In conclusion, we have shown that the powerful numeri-
cal optimal control method of gradient ascent allows one to
obtain simple intuitive understanding and to achieve a sig-
nificantly improved efficiency and a higher bandwidth in the
problem of photon storage in �-type atomic ensembles.
First, we showed how to apply gradient ascent to numeri-
cally compute optimal control fields even outside of the adia-
batic limit both with and without a constraint on the energy
in the control pulse. In particular, this opens up the possibil-
ity of efficient storage of input modes that are an order of
magnitude shorter �and hence an order of magnitude larger in
bandwidth� than the shortest modes that can be efficiently
stored using adiabatic control field shaping. Second, we
showed that gradient ascent provides an alternative justifica-
tion for the often discussed connection between optimality
and time-reversal in photon storage, as well as for the itera-
tive time-reversal-based optimization procedure with respect
to the input field suggested in Ref. �1�, discussed in detail in
papers I, II, and III, and demonstrated experimentally in Ref.
�2�. In particular, we confirmed that the iterative procedure
works even in the presence of inhomogeneous broadening
and �for the case of Doppler broadened gases� in the pres-
ence of velocity changing collisions. Finally, we showed how
to use gradient ascent to optimize with respect to inhomoge-
neous broadening and demonstrated how this can signifi-
cantly increase the efficiency of fast storage followed by fast
backward retrieval in the presence of controlled reversible
inhomogeneous broadening �CRIB� �30�. Provided one is in-
terested in storing a single input photon mode of known
shape and provided the control pulses can be generated with
sufficient precision, we have not, however, been able to iden-
tify any advantages of CRIB-based photon storage compared
to photon storage with optimal control pulses in homoge-
neously broadened media.

In general, gradient ascent methods do not guarantee the
attainment of the global maxima. The global maximum is,
however, indeed attained for our problem in the regimes
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FIG. 7. Comparison of optimized homogeneous-line storage
with storage based on CRIB. For d=100, the plot shows the effi-
ciency of storage followed by backward retrieval of the Gaussian-
like input mode of duration T �Eq. �10��. The curves show results
for fast storage and tetrieval with a homogeneous line �dash-dotted�,
fast storage and retrieval with an optimized reversible Gaussian �G�
or Lorentzian �L� inhomogeneous profile, i.e., CRIB �solid lines
labeled G and L�, storage and retrieval with a homogeneous line
using adiabatic �dotted� or optimal �unlabeled solid line� control
field shaping �same as in Fig. 5�, and the asymptotic value �dashed�.
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where this maximum is known. This strongly suggests that,
for the optimization with respect to the input mode and with
respect to the storage control, gradient ascent may indeed be
yielding the global optimum. We also note that one can op-
timize simultaneously with respect to various combinations
of the control parameters simply by simultaneously updating
each of them along the corresponding gradient. One can also
include other possible control parameters that are available
in a given experimental setup but have not been discussed in
the present paper. For example, for the case of photon stor-
age in solid-state systems, one can consider optimizing with
respect to the number of atoms put back into the antihole
�30,36� or with respect to a time-dependent reversible inho-
mogeneous profile. Other light storage systems, such as pho-
tonic crystals �40� or cavity models where the cavity field
cannot be eliminated, are also susceptible to gradient ascent
optimization. Therefore, we expect the optimization proce-
dures described in the present paper to allow for increased
efficiencies and increased bandwidths in many current ex-
periments on quantum memories for light, many of which
are narrowband and suffer from low efficiencies. Such im-
provements would facilitate advances in fields such as quan-
tum communication and quantum computation.
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APPENDIX A: DERIVATION OF THE ADJOINT
EQUATIONS OF MOTION IN THE CAVITY MODEL

In Sec. II A, we omitted the derivations of the adjoint
equations of motion �4� and �5� and of the corresponding
boundary conditions �6� and �7�. We provide these deriva-
tions in this appendix.

Varying J given in Eq. �3� with respect to S, S�, P, and P�,
we obtain

�J = S�T��S��T� + 

0

T

dtP̄��− �Ṗ − ��1 + C��P + i��S�

+ 

0

T

dtS̄��− �Ṡ + i��P� + c.c., �A1�

where “c.c.” means complex conjugate taken of the whole
expression after the equal sign. Integrating by parts the terms
containing time derivatives, we obtain

�J = S�T��S��T� − P̄��T��P�T� + 

0

T

dtP̄
˙ ��P

+ 

0

T

dtP̄��i��S − ��1 + C��P� − S̄��T��S�T�

+ 

0

T

dtS̄
˙��S + 


0

T

dtS̄��i��P� + c.c. �A2�

Since the initial conditions are fixed, we have here used
�S�0�=�P�0�=�S��0�=�P��0�=0 to simplify the expression.

The optimum requires that �J=0 for any variations �P
and �S. Hence we collect the terms multiplying, e.g., �P�T�
and set the result to zero. Carrying out this procedure for
�P�T�, �S�T�, and their conjugates, we obtain the boundary
conditions �6� and �7�. Collecting terms proportional to �P,
�S, and their conjugates, we obtain adjoint equations of mo-
tion �4� and �5�.

APPENDIX B: CONTROL FIELD OPTIMIZATION
IN THE CAVITY MODEL: GENERALIZATION

In Sec. II A, we showed how to perform control field
optimization in the simplest possible version of the cavity
model: a resonant input mode with a real envelope was
stored using a control pulse with a real envelope and unlim-
ited power into a homogeneously broadened ensemble with
infinite spin-wave lifetime. In this appendix, we show how to
optimize the control field in a more general model that in-
cludes the possibility of complex control field envelopes
��t� and input mode envelopes Ein�t�, nonzero single-photon
detuning � and spin-wave decay rate �s, and �possibly re-
versible �30�� inhomogeneous broadening such as Doppler
broadening in gases or the broadening of optical transitions
in solid state impurities �36�. For the case of Doppler broad-
ened gases, we also include velocity changing collisions with
rate �c. We also show how to take into account possible
experimental restrictions on the strength of the classical con-
trol fields.

Using the notation of paper III, the complex number equa-
tions describing the generalized model are

Ṗj = − �� + i�� + � j��Pj − �C�pjP + i�Sj + i�2�C�pjEin

+ �c��pjP − Pj� , �B1�

Ṡj = − �sSj + i��Pj + �c��pjS − Sj� , �B2�

where j labels the frequency class with detuning � j from the
center of the line containing a fraction pj of atoms �� jpj
=1� and where the total optical and spin polarizations are
P=�k

�pkPk and S=�k
�pkSk, respectively. The terms propor-

tional to �c describe completely rethermalizing collisions
with rate �c �41�. One can, of course, also take �c to be
different for P and S. For example, if �c
�, which is often
the case, one can drop the terms proportional to �c in Eq.
�B1� �42�. In addition to moving atoms from one frequency
class to the other, collisions also result in line broadening,
which can be taken into account by increasing � �43�. We
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assume that the goal is to maximize the efficiency �s
= �S�T��2 of storage into the symmetric mode S�T� with re-
spect to the control pulse ��t� for a given input mode shape
Ein�t� satisfying the normalization condition 	0

Tdt�Ein�t��2=1.
A procedure very similar to that described in Sec. II A and in
Appendix A yields the following equations of motion for the
adjoint variables:

P̄
˙

j = �� − i�� + � j��P̄j + �C�pjP̄ + i�S̄j − �c��pjP̄ − P̄j� ,

�B3�

S̄
˙

j = �sS̄j + i��P̄j − �c��pjS̄ − S̄j� , �B4�

where P̄=�k
�pkP̄k and S̄=�k

�pkS̄k. The corresponding ini-
tial conditions for backward propagation are

P̄j�T� = 0, �B5�

S̄j�T� = �pjS�T� . �B6�

Similarly to Sec. II A, after taking an initial guess for ��t�
and solving for Pj , Sj , P̄j, and S̄j, one updates ��t� by mov-
ing up the gradient

��t� → ��t� +
1

�
i�

j

�S̄j
�Pj − P̄jSj

�� . �B7�

Short input modes and/or large single-photon detuning �
require control pulses with large intensities that might not be
available in the laboratory. There exist ways to include a
bound on the control field amplitude �6�. Alternatively, one
may want to consider a slightly simpler optimization prob-
lem with a limit on the control pulse energy 	0

T���t��2dt�E
for some E �44�. In order to carry out the optimization sub-
ject to this constraint, one should first carry out the optimi-
zation without the constraint and see whether the optimal
control satisfies the constraint or not. If it does not satisfy the
constraint, one has to add a term ���E−	0

T���t��2dt� to J, so
that the update becomes

��t� → ��t� +
1

��i�
j

�S̄j
�Pj − P̄jSj

�� − ����t�� , �B8�

where �� is adjusted to satisfy the constraint. By redefining
�� and �, this update can be simplified back to Eq. �B7�
followed by a renormalization to satisfy the constraint. De-
pending on how severe the energy constraint is, one can then
sometimes �but not always� further simplify the update by
completely replacing ��t� with the gradient �i.e., set �=�� in
Eq. �B8�� followed by a renormalization of ��t�, as is done,
for example, in Ref. �17� for the problem of laser control of
chemical reactions.

We note that these optimization protocols can be trivially
extended to the full process of storage followed by retrieval,
which, in the presence of inhomogeneous broadening, one
might not be able to optimize by optimizing storage and
retrieval separately. Similarly, one may include the possibil-
ity of reversing the inhomogeneous profile between the pro-
cesses of storage and retrieval �30�.

APPENDIX C: CONTROL FIELD OPTIMIZATION IN THE
FREE-SPACE MODEL: GENERALIZATION TO

STORAGE FOLLOWED BY RETRIEVAL

In Sec. II B, we showed how to use gradient accent to find
the control field that maximizes the storage efficiency. How-
ever, the obtained storage control field does not always maxi-
mize the total efficiency of storage followed by retrieval.
Therefore, in this appendix, we consider the maximization of
the total efficiency of storage followed by retrieval with re-
spect to the storage control field. While we demonstrate the
procedure only for the case of forward retrieval, the treat-
ment of backward retrieval is analogous.

We suppose that the control field ��t� consists of a stor-
age control pulse on t� �0,T� and a retrieval control pulse on
t� �Tr ,Tf�. We want to optimize with respect to the former
given the latter and the input mode �note that the total effi-
ciency is independent of the retrieval control for sufficiently
strong retrieval control pulses, and it is therefore often less
important to optimize with respect to the retrieval control
pulse�. Here 0�T�Tr�Tf, and the subscripts in Tr and Tf
stand for “retrieval” and “final.” The time interval �T ,Tr�
corresponds to the waiting �i.e., storage� time between the
processes of storage �which ends at t=T� and retrieval
�which begins at t=Tr�.

We suppose that storage is described by Eqs. �12�–�17� on
t� �0,T�. Then forward retrieval that follows after the stor-
age time interval �T ,Tr� is described by the same Eqs.
�12�–�14� but on the time interval t� �Tr ,Tf� with initial and
boundary conditions

E�0, t̃� = 0, �C1�

P�z̃,T̃r� = 0, �C2�

S�z̃,T̃r� = S�z̃,T̃� , �C3�

where T̃r=Tr� �similarly, T̃f =Tf��. Equation �C2� assumes
that the polarization has sufficient time to decay before re-
trieval starts, while Eq. �C3� assumes that spin-wave decay is
negligible during the storage time. The goal is to maximize
the total efficiency of storage followed by retrieval,

�tot = 

T̃r

T̃f
dt̃ �E�1, t̃��2, �C4�

with respect to the storage control field. Constructing J and
taking appropriate variations, we obtain initial and boundary
conditions for backward propagation:

E�1, t̃� = E�1, t̃� for t̃ � �T̃r,T̃f� , �C5�

P̄�z̃,T̃f� = 0, �C6�

S̄�z̃,T̃f� = 0, �C7�

and

E�1, t̃� = 0 for t̃ � �0,T̃� , �C8�
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P̄�z̃,T̃� = 0, �C9�

S̄�z̃,T̃� = S̄�z̃,T̃r� . �C10�

By taking the variational derivative of J with respect to �̃�t̃�
on the storage interval, we find that the update is exactly the
same as for the optimization of storage alone and can be
done via Eq. �25�.

We note that if the retrieval control pulse leaves no atomic
excitations, one can obtain the same optimization equations
by solving the storage optimization problem in Sec. II B but
changing the function to be maximized from the number of

spin-wave excitations 	0
1dz̃S�z̃ , T̃�S��z̃ , T̃� to the complete re-

trieval efficiency from S�z̃ , T̃� (Eq. �6� of Ref. �1�). It is also
worth noting that the derivation presented here can trivially
be extended to apply to backward �instead of forward� re-
trieval and to include complex � and Ein, �possibly revers-
ible �30�� inhomogeneous broadening, and nonzero �, �s,
and �c.

APPENDIX D: OPTIMIZATION WITH RESPECT TO THE
INHOMOGENEOUS PROFILE: MATHEMATICAL

DETAILS

In Sec. IV, we presented the results on the optimization of
photon storage with respect to the inhomogeneous broaden-
ing without providing the mathematical details. In this ap-
pendix, we present these details.

We first consider the cavity model, but turn briefly to the
free-space model at the end of this appendix. We suppose for
simplicity that the input mode Ein�t� is resonant and that the
storage and retrieval control pulses are � pulses at t=T and
t=Tr, respectively. In order to simplify notation, we define
xj =�pj, satisfying the normalization � jxj

2=1. The storage Eq.
�B1� on the interval t� �0,T� then becomes

Ṗj = − �� + i� j�Pj − �CxjP + i�2�CxjEin, �D1�

with P=�kxkPk and with the initial condition Pj�0�=0. A �
pulse at t=T mapping P onto S followed by another � pulse
at t=Tr mapping S back onto P result in an overall 2� pulse,
so that Pj�Tr�=−Pj�T�. Assuming the broadening is reversed
at some time between T and Tr, the equations for retrieval on
the interval t� �Tr ,Tf� are

Ṗj = − �� − i� j�Pj − �CxjP . �D2�

The total efficiency of storage followed by retrieval is then

�tot = 

Tr

Tf

dt�Eout�t��2 = 

Tr

Tf

dt�i�2�CP�t��2. �D3�

One can show that the equations of motion for the adjoint

variables �i.e., the Lagrange multipliers� P̄j are

P̄
˙

j = �� + i� j�P̄j + �CxjP̄ − 2�CxjP �D4�

for t� �Tr ,Tf� with P̄j�Tf�=0 and

P̄
˙

j = �� − i� j�P̄j + �CxjP̄ �D5�

for t� �0,T� with P̄j�T�=−P̄j�Tr�, where we defined P̄

=�kxkP̄k. The last term in Eq. �D4� describes an incoming
field that is the time reverse of the retrieved field. Assuming
we are optimizing with respect to xj, the update is

xj → xj +
1

�
Aj , �D6�

followed by a rescaling of all xj by a common factor to
ensure the normalization � jxj

2=1. Here Aj is given by

Aj = − �C Re�

0

T

dt + 

Tr

Tf

dt��P̄j
�P + P̄�Pj�,

− �2�C Im

0

T

dtEinP̄j
� + 2�C Re


Tr

Tf

dtPj
�P , �D7�

where Re denotes the real part. Numerics show that the up-
date can usually be simplified in a way that avoids the search
for convenient values of � and does not lose convergence.
Specifically, taking �→0 in Eq. �D6�, we obtain

xj → Aj , �D8�

followed by renormalization. By defining a particular func-
tional form for the dependence of xj on � j, one could also
consider optimization with respect to only a few parameters,
such as, for example, the width �I and the degree of local-
ization n of the inhomogeneous profile of the form pj =xj

2

�1 / �1+ �� j /�I�n�.
Equivalently, instead of optimizing with respect to xj, one

can optimize with respect to � j. To illustrate this procedure,
we consider a simple optimization procedure with respect to
a single parameter, the inhomogeneous width �I. We write
� j =�If j for some fixed dimensionless parameters f j and con-
sider maximizing the efficiency with respect to �I for fixed xj
and f j. The equations of motion and the initial conditions for

both Pj and P̄j stay the same as in the optimization with
respect to xj while the update becomes

�I → �I +
1

�
Im�

j
�


0

T

dt − 

Tr

Tf

dt�P̄j
�f jPj . �D9�

By adjusting f j and xj, one can choose a particular inhomo-
geneous profile shape �e.g., Lorentzian, Gaussian, or a
square� and optimize with respect to its width.

Having discussed the cavity case, we now list the
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corresponding free-space results. In free space, the update of
xj via Eq. �D8� would use

Aj = − �d Im

0

1

dz̃�

0

T̃
dt̃ + 


T̃r

T̃f
dt̃��P̄j

�E + E�Pj� .

�D10�

Similarly, the update of �̃I=�I /� would be

�̃I → �̃I +
1

�
Im�

j



0

1

dz̃�

0

T̃
dt̃ − 


T̃r

T̃f
dt̃�P̄j

�f jPj .

�D11�
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