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Optimal control of atom transport for quantum gates in optical lattices
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By means of optimal control techniques we model and optimize the manipulation of the external quantum
state (center-of-mass motion) of atoms trapped in adjustable optical potentials. We consider in detail the cases
of both noninteracting and interacting atoms moving between neighboring sites in a lattice of a double-well
optical potentials. Such a lattice can perform interaction-mediated entanglement of atom pairs and can realize

two-qubit quantum gates. The optimized control sequences for the optical potential allow transport faster and
with significantly larger fidelity than is possible with processes based on adiabatic transport.
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I. INTRODUCTION

Quantum degenerate gases, such as Bose-Finstein con-
densates (BECs) [1] or cold Fermi gases [2], trapped in op-
tical lattices, provide a flexible platform for investigating
condensed matter models and quantum phase transitions [3].
It has been proposed to use these systems as quantum simu-
lators of solid state systems [4] and for implementing quan-
tum information processing (QIP) [5-7]. Experiments on
neutral atoms have shown some of the ingredients needed for
QIP: the preparation of a Mott insulator state with just one
particle per well, which is used as the initial state of a quan-
tum register [3], single-qubit rotation [8], and controlled mo-
tion of atoms so as to effect entangling interactions [8,9].

A general requirement of QIP is accurate control of a
quantum system. Often this includes control of degrees of
freedom other than the qubit or computational basis, for ex-
ample the center of mass motion of an ion or atom for which
the spin (internal state) represents the qubit. One approach to
achieving such accurate control is adiabatic manipulation of
the relevant Hamiltonian. Unfortunately adiabaticity limits
the speed of operations. One way to overcome this difficulty
is to use optimal control methods [7,10]. Here we show that
such techniques could improve the speed and fidelity of
transport of atoms in an optical lattice.

Recent experiments [9,11,12] have shown that quantum
gates could be implemented in controllable optical potentials
by adjusting the overlap between atoms trapped in neighbor-
ing sites of an optical lattice. High fidelity of this dynamic
process could be achieved by adiabatically changing the
trapping potential. This, however, limits the overall gate
speed to be much lower than the trapping frequency [7,13].
Here we present a detailed numerical analysis of the trans-
port process used to effect a two-qubit quantum gate in Ref.
[12], which is performed with the controllable double-well
optical potential described in Ref. [14] and find that it gives
an accurate description of the evolution measured in the ex-
periment. Then we apply optimal control theory to the trans-
port process of the atoms, both with and without interactions,
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to show how to increase the speed of the gate. The success of
this method in this specific problem demonstrates the prom-
ise of optimal control for coherent manipulation of a diverse
class of quantum systems.

II. THE EXPERIMENT

A two-qubit quantum gate with neutral atoms can be re-
alized in optical lattices through a controlled interaction-
induced evolution of the wave function that depends on the
states of the two atoms [35,6]. Because atoms in their elec-
tronic ground states generally have short-range interactions,
in order to use these contact interactions to produce entangle-
ment, the atomic wave functions must be made to overlap.
Once the interaction has taken place for a fixed time, the two
atoms can be separated again thus finishing the gate. In this
paper we consider the control of such motion in a specific
setup; however, our theory can be applied to more general
systems.

A. The double-well lattice

Neutral ’Rb atoms are loaded into the sites of a three-
dimensional (3D) optical lattice obtained by superimposing a
2D optical lattice of double wells [14] in the horizontal plane
and an independent 1D optical lattice in the vertical direc-
tion. The horizontal lattice has a unit cell that can be dynami-
cally transformed between single-well and double-well con-
figurations. The horizontal potential experienced by the
atoms is [15]

Vixy)=- V0{0052<§>(0052 ky + cos? kx) + sin2<§>

X[cos ky + cos(kx — 0)* ¢, (1)
where x and y are the spatial coordinates, k=27/\ is the
laser wave vector and A\ is the laser wavelength. The poten-

tial (1) depends on three parameters: (i) the strength V|, of the
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FIG. 1. (Color online) (a) Initial configuration: the potential
(solid lines) is in the \/2 configuration and the single-particle wave
functions are localized in the left (dashed) or right (dotted) well.
(b)—(c) Intermediate snapshots obtained by lowering the central bar-
rier and tilting the potential. (d) End of the process: the particle
initially in the right well ends in the ground state of the single well,
while the particle initially in the left well ends in the first excited
state.

potential wells, (ii) the ratio tan(g) of vertical to horizontal
electric field components, (iii) the phase shift # between ver-
tical and horizontal light components. The angle B deter-
mines the height of the barrier between adjacent double-well
sites: by changing 8/ from 0 to 0.5 the potential changes
from a symmetric double-well configuration, with a spacing
of N/2 (\/2 lattice), to a single-well configuration, with a
spacing of N (\ lattice). By changing 8 and 6 together one
varies the energy offset (tilt) of a well with respect to the
neighboring one. The tilt of the double well is zero for
0/ = *0.5, while it is maximum (with a value depending
on B) for 8/ 7=0 or *1.

To effect a quantum gate, one varies the three parameters
in time so as to move atoms occupying adjacent wells into
the same well, allowing them to interact and finally returning
them to their original positions. In Fig. 1 we show four snap-
shots of the cross section of the optical potential along the
direction of the double wells (x), and of the single-particle
wave functions of the two atoms during a particular transport
sequence. In the initial configuration each atom is prepared
in the ground state of separate wells so that the properly
symmetrized initial state is

1
W) = E(|¢L>I | ) + | [¥)2) (2)

where ¢; and ¢ are wave functions localized in the left and
right well, respectively, and 1 and 2 are the labels of the two
(indistinguishable) atoms [see Fig. 1(a)]. For quantum gate
operation, we would also include the internal state of the
atoms, but here we concentrate only on the external state
(center-of-mass motion). ¢; and i are linear combinations
of the lowest symmetric and antisymmetric energy eigen-
functions of the single-particle potential. In Eq. (2) and
throughout the text we use the convention that single- (two-)
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particle states are labeled with lower (upper) case Greek let-
ters.

The potential is changed by lowering the barrier and at the
same time lowering the right well with respect to the left
one, Figs. 1(b) and 1(c). The atom initially in the right well
remains in the ground state, evolving into the lowest state ¢,
of the final potential, while the atom initially in the left well
evolves into the first excited state ¢, Fig. 1(d). When the
two atoms are in the same potential well they interact
through the usual contact interaction, which can be used to
generate the entangling operation needed to realize a two-
qubit quantum gate [6,7].

B. Experimental procedure

The experimental characterization of the transport process
is accomplished by performing the potential transformation
depicted in Fig. 1 with atomic samples loaded either only in
the left sites or only in the right sites of the double wells
[15]. Briefly, Bose-Einstein condensates of 8’Rb atoms with
4 X 103 < Nppc=2 X 10* are loaded in the sites of the \ lat-
tice with an exponential ramp of 200 ms duration. This load-
ing populates only the ground band of the optical potential
with mostly one atom per lattice site [16]. Then the potential
is transformed to the \/2 lattice in such a way that the atoms
eventually occupy either only the right sites or only the left
sites of the double wells [8,15]. Starting from this initialized
state, we perform the transport process illustrated in Figs.
1(a)-1(d). At the end of the process we measure the occupa-
tion of the lattice bands. To this purpose, we map the quasi-
momentum of atoms occupying different vibrational levels
of the optical potential onto real momenta lying within dif-
ferent Brillouin zones [17,18]. This is achieved by switching
off the optical potential in 500 us and acquiring an absorp-
tion image of the sample after a 13 ms time-of-flight. In this
way atoms occupying different vibrational levels appear spa-
tially separated, allowing us to measure the amount of popu-
lation in each vibrational state.

The comparison between these measurements and the the-
oretical model requires an accurate determination of the evo-
lution of the parameters V|, B3, and 6 characterizing the op-
tical lattice during the experimental sequences. The
parameter V,, which corresponds to the depth of the potential
when it is set in the \/2 configuration, is measured by puls-
ing the N/2 lattice and observing the resulting momentum
distribution in time of flight [19]. The parameters 8 and 6,
which determine the shape of the double-well potential and
are controlled using two electro-optic modulators (EOMs),
are determined from measurements of the polarization of the
laser beams after the EOMs as a function of their respective
control voltages [14].

We perform two series of experimental sequences in order
to study the properties of the atomic transport as a function
of the duration of the process and of the energy tilt between
the two potential wells during the merge. In the first series of
measurements the sequence involves converting the lattice
from the double-well to the single-well configuration by
changing S, rotating the polarization of the input light using
a linear ramp, while leaving constant the light intensity and
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FIG. 2. Two possible sequences (a) (left) and (b) (right) em-
ployed to shift the atoms from a double- to a single-well configu-
ration are shown in the left and right part of the panel. For each
sequence we show the time dependence of V,, B, # for a sequence
duration 7. For sequence (b) we show the time dependence of 6 for
two settings of EOM@: —0.42 7 (solid) and —0.48 7 (dashed).

the setting of the electro-optic modulator EOM 6 dedicated to
the control of the phase shift 6. This sequence is repeated for
different durations of the linear ramp from 7=0.01 ms to
1.01 ms. In a second series of measurements we consider the
dependence of the transport on the tilt of the double-well
potential during the merge. We perform the lattice transfor-
mation using always the same duration of 7=0.5 ms, the
same intensity of the light beam and the same ramp for
changing the polarization angle B, while the setting of
EOMG is kept constant in time during a sequence. We then
repeat the sequence for different settings of EOM 6. The time
dependence for the three lattice parameters V,,, B, and 6 for
measurements of the first series and of the second series are
shown in Figs. 2(a) and 2(b), respectively. Figure 2(b) shows
the evolution of the parameter 6 for two different settings of
EOMS@. The potential parameters are determined using our
calibration of the lattice setup, taking into account effects
such as different losses on the optical elements for different
polarizations of the lattice beams and the dependence of the
optical potential on the local polarization of the light [8].
These effects are responsible for the change of the potential
depth V|, and of the angle 6 during the sequence despite the
fact that both the intensity of the light and the settings of
EOMG@ are not actively changed.

III. THEORETICAL MODEL

Here we describe the theoretical methods that we imple-
ment for investigating the dynamics in the system described
above, starting with the case of noninteracting particles.
Then, we consider the experimental realization of the merg-
ing of adjacent lattice sites into a single site shown in Fig. 1
and we compare the results obtained in the experiment with
the expectations based on our theoretical model. This stage
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represents a useful benchmark to evaluate the reliability of
the numerical model as well as for gaining insight into the
details of the optical potential experienced by the atoms. Fi-
nally, we present the technique for optimizing the transport
sequence, and we show how we can achieve a significantly
higher fidelity at fixed operation time for the atomic motion
than by using smooth sequences based on adiabatic evolu-
tion.

A. Theoretical framework

We consider the 1D problem restricted to the x axis by
assuming that the optical potential can be separated along the
three spatial directions, allowing us to express the atomic
wave functions as a product of three independent terms. We
consider the harmonic approximation of the potential in the y
and z directions, having trap frequencies v, and v, respec-
tively, that can be calculated as shown in [20] and we assume
that along y and z the atoms always occupy the lowest vibra-
tional state. This restriction does not put limitations in study-
ing dynamic processes involving low-energy states of the
double-well potential since it can be chosen to have nonde-
generate vibration frequencies along all three directions, with
the lowest frequency always along x. We calculate the eigen-
states of the system along the x direction by solving the
eigenvalue equation using the finite difference method [21].
For the time evolution we consider the integration of the
time-dependent Schrodinger equation using the Crank-
Nicolson method [22]. This method has the advantage of
being unconditionally stable and the error in the results scale
quadratically with the number of space-time grid points in
which the Schrodinger equation is solved. The relative error
of the data presented is always less than 1073, In the Appen-
dix we present a more detailed description of our numerical
methods.

B. Comparison to experimental results

In this section we present the theoretical analysis of the
transport processes described above and we discuss the
agreement between the model and the experimental measure-
ments. We start by considering the time evolution of the
Hamiltonian spectrum during the two sequences (a) and (b)
shown in Fig. 3. At time =0 the spectrum is made of nearly
degenerate doublets of almost equally spaced pairs of har-
monic oscillator states, while at time =T the levels are simi-
lar to those of a single harmonic oscillator.

Figure 3 shows the time evolution of the eigenstates of the
single-particle Hamiltonian. The atoms initially prepared in
the two local ground states in the right and left wells (i and

'We have verified that the results for the 1D spectrum are in good
agreement with full calculations in 2D (restricted to states with
vibrational excitation along the x direction). Additional energy lev-
els are present in the 2D spectrum, associated with states with vi-
brational excitation along y. However, those states can be neglected
for studying the dynamical process considered here since their en-
ergy is always higher than the three lowest states of the 1D
spectrum.
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FIG. 3. Instantaneous spectrum of the 1D Hamiltonian for se-
quences (a) and (b) for EOM#: -0.42 7.
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) evolve into the instantaneous eigenstates ending in the
ground and first excited state of the final configuration, re-
spectively. This approach requires the sequence to be per-
formed slowly with respect to the time scale associated with
the gaps between the relevant energy levels. The optimal
“speed” in the parameter space can be calculated using the
Landau-Zener theory for avoided level crossings.

For gaining quantitative insight into the properties of the
transport we perform numerical simulations for the se-
quences used in the experiments, also taking into account
possible deviations of the parameters from the experimental
calibrations, and we compare the results with the experimen-
tal measurements. The relevant quantities for our analysis
will be the overlap f, of the energy eigenstates ¢, of the
final potential with the evolved state ¢, where a=L,R indi-
cates the initial well occupation

fi=Ke, UMDy )P, (3)

where the operator U(T) is the single-particle time-evolution
operator from time =0 to time t=7. In the experiment f;’
can be measured as the population of each energy level at the
end of the process.

We now consider how the atoms evolve when the param-
eters change according to sequence a of Fig. 2 as a function
of the total time fﬁ, focusing on atoms starting in |¢L).2 In
Fig. 4 we show the final population of the ground f’a, first ﬂ“
and second excited state f5 measured in the experiments and
calculated for four values of # which differ from the one of

’Both in the experiments and in the simulations the evolution of
the atom initially in the right well, i.e., in state | i), shows a weaker
dependence on the properties of the sequence and is less instructive.
For instance, in the simulations for 7=0.5 ms the population in the
ground state f§ is of order of 99% for a broad range of parameters.
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FIG. 4. Population of the first three eigenstates of the Hamil-
tonian, ground (top), first excited (middle), second excited (bottom),
at the end of sequence a as a function of the sequence duration 7.
The experimental data (symbols) are compared to the four sets of
numerical data (lines) obtained for 6/mw=-0.454+A6,/m, with
A6,/ 7=0 (dot-dash), —0.02 (dash), —0.03 (solid), and —0.04 (dot),
while —0.454 is the nominal value of 6/7 expected from the
calibrations.

Fig. 2(a) by a constant offset A6,.* The results obtained by
the model are in reasonable agreement with the experimental
observations; we find best quantitative matching for A6,/
=-0.03, for which the r.m.s. deviation between model and
theory is reduced from 0.13 (at A6=0) to 0.08.

Now we consider the sequence (b) of Fig. 2, performed
for different ending values 6, of the parameter # around
—0.47. As shown in Fig. 5, both the experiment and the
model show a strong dependence on 6, for the transport of
the atom starting in the left site of the double well. The
transport into the first excited state has a maximum theoret-
ical fidelity of 0.95 for 6,/ m=-0.474. Less negative values
of 6,, i.e., increasing tilts, lead to a decrease of fidelity due to
the increase in the fraction of population ending in the sec-
ond excited state. Values of 6,/ closer to —0.5, i.e., more
symmetric configurations of the double well, lead to decrease
of fidelity associated with larger fractions of population end-
ing in the ground state. Also in this case the experimental
data and the theoretical model are in satisfactory agreement.
For these data the deviation between theory and experiment

3We do not consider variations in Vo and B due to the small
dependence of the transport process on those parameters within the
range associated with the accuracy of our calibrations.
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FIG. 5. Population (overlap absolute squared) of the first three
eigenstates of the Hamiltonian at the end of sequence (b) as a func-
tion of 6,. The duration of the sequence is fixed to 7=0.5 ms. The
experimental data (symbols) are in good agreement with the nu-
merical data (lines). In this graph the x axis for the experimental has
been shifted by an offset of —0.015 with respect to the initial
calibration.

is more sensitive to the value of the phase shift 6,. We find
best agreement by shifting the value determined from the
calibration by an offset A6,/ 7=-0.015, which reduces the
r.m.s. deviation from 0.4 to 0.15. The axis for the experimen-
tal data in Fig. 5 has been corrected by the offset A6,,. Thus,
while showing the reliability of the model in describing the
dynamic process, the comparison between theoretical and
experimental results also allows one to refine the calibration
of the parameters characterizing the optical potential.

Finally we find that adding an offset of A#/7=-0.016 to
the @ calibration brings the data from both sequences to a
good agreement with the theory and reduces the r.m.s. devia-
tion from 0.19 to 0.11. This is three times larger than the
uncertainty of the offset from our EOM calibration but is still
consistent with measurements of the lattice tilt from Ref.
[16]. This discrepancy might be explained by the birefrin-
gence in the vacuum cell windows, which is not accounted
for in our model. Inclusion of this offset should improve both
the predictivity of the model and the experimental optimiza-
tion of the collisional gate based on the numerical technique
described below.

IV. OPTIMIZED TRANSPORT

In this section we employ optimal control theory to obtain
fast and high-fidelity gates. Our aim is to find a temporal
dependence of the control parameters V(z), B(z), 6(¢) that
improves the fidelity even for a shorter sequence duration,
when the adiabatic sequences presented above yield a poor
fidelity. Quantum optimal control techniques have been suc-
cessfully employed in a variety of fields: molecular dynam-
ics [10,23,24], dynamics of ultracold atoms in optical lattices
[25-27], implementation of quantum gates [7,28].

We use the Krotov algorithm [29] as the optimization pro-
cedure. The objective is to find the optimal shapes of the
control parameter sequences that maximize the overlap (fi-
delity) between the evolved initial wave function and a target
wave function. The initial and target wave functions are fixed
a priori. The algorithm works also for more than one par-
ticle. The method consists in iteratively modifying the shape
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FIG. 6. Infidelities (1—f,) for the atom initially in the left («
=L, n=1, squares) and in the right well (a=R, n=0, plus) as a
function of the optimization step.

of the control parameters according to a “steepest descent
method” in the space of functions (for more details see Ref.
[7]). The method requires evolving each particle’s wave
function and an auxiliary wave function backward and for-
ward in time according to the Schrédinger equations. In our
simulations we use the Crank-Nicolson scheme to realize
this step as described in the Appendix.

A. Noninteracting case

We optimize the gate for 7=0.15 ms choosing as a start-
ing point for the optimization a sequence similar to Fig. 2(b),
where 6 is for simplicity taken constant to the final value
0,/ 7=—-0.474.* Without optimization the fidelities for the
atom initially in the left and right well are f1L=O.57 and f§
=0.69, respectively. The infidelities are shown in Fig. 6 as a
function of the number of optimization steps: the algorithm
of optimization is proven to yield a monotonic increase in
fidelity [10], however, it does not guarantee to reach its
100% value. The results for the two atoms give a fidelity
above 98.7%.

The resulting optimized parameter sequences are shown
in Fig. 7 and compared to the original sequence without op-
timization. We find that the optimized sequence for the po-
tential depth V,, differs negligibly from the initial guess. In
principle, the algorithm could achieve still higher single-
particle fidelities from different starting points.

In Fig. 8 we show the square absolute value of the wave
functions of the two atoms as a function of time, the 1D
potential time dependence and the projections of the initially
left-well state onto the lowest four instantaneous energy
eigenstates |¢,(1)):

pa(t) = [, (0| UD ). (4)

Notice that p,(T)=f%. As can be easily seen, the optimal time
evolution is much less smooth than the adiabatic one as it

*We chose this time in order to show the benefits of the optimi-
zation procedure for a sequence duration which cannot provide a
good fidelity with smooth parameter ramps based on adiabatic evo-
lution. While a shorter duration could be chosen in principle, this
choice can be easily experimentally implemented with no major
changes in the present experimental apparatus, allowing future
prosecution of our studies on this subject. Increasing the total time
should improve the best fidelity.
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0.5 nearby wells do not overlap. When the two particles overlap
04 | in the same well we must take into account interactions, and
sl /- we model them with an effective 1D contact potential
02} —
017 AN b Vint(|x1_x2|)=ng5(x1_x2), (5)
0 0"05 0‘. 1 0.15 where x; are the coordinates of the two atoms and g, is an
t(ms) effective 1D coupling strength [30] expressed by gip
042 T T =2a,h\v v, where qa; is the scattering length for 87Rb atoms
-0.44 - and h is the Planck constant. The spectrum is modified by the
046 - interactions: the state with one atom in each well is lower by
& ous =N S ~3 kHz than the doubly occupied states.
® - As in the case without interactions we start with each
051 atom localized in a separate well. Notice that we are consid-
0521~ ering wave functions that are symmetric under the exchange
054 ¢ 0.‘0 S 0‘. . 015 of the coordinates of the two particles. We consider the two-
t (ms) particle fidelity

FIG. 7. Initial (dotted) and optimized waveforms (solid) B(¢)
and 60(7) as a function of time for a sequence of 7=0.15 ms.

takes advantage of quantum interference between nonadia-
batic excitation paths to obtain better results.

B. Interaction effects

Up to now we have considered only the single-particle
evolution of the system, i.e., without including any interac-
tion between the particles. This approximation is valid in our
transport sequence as long as the two wave functions in

Fin= |<(5lg|Uim(T)|¢’in> 2’ (6)

where U,,(T) is the two-particle evolution operator for the
Hamiltonian of the two atoms, which includes interactions.

|‘f’in) is an eigenstate of the two-particle Hamiltonian at time
t=0, corresponding in the limit g;p— 0 to the symmetrized
product of the single-particle wave functions localized in

each well [see Eq. (2)]; the target state |CI~>tg) is an eigenstate

of the two-particle Hamiltonian at time =7 which, in the
limit of vanishing interactions, corresponds to the state
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FIG. 8. (Color online) Comparison between the evolution of the atoms with and without optimal control. Top (left to right): nonoptimized
case, absolute square value of the wave functions as a function of time (atoms initially in the left and right well respectively); 1D trapping
potential as a function of time; projections p,(¢) at time ¢ of the state initially in the left well onto the instantaneous eigenstates | ¢b,()) with
n=0 (blue solid), n=1 (red dashed), n=2 (green dotted), n=3 (magenta dot-dashed). Bottom: analogous plots for the optimized case.
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symmetric wave functions in the coordinates of the two atoms: (a)
Initial wave function in the state |\I7in> with one atom in the left well
and one atom in the right well; (b) wave function of the target state
|d~)1g>. (c) evolved wave function using the nonoptimized sequences
of Fig. 2(b) giving a fidelity F;,=0.22 (for T=150 us); (d) evolved
wave function using the optimized sequences of Fig. 7 giving a
fidelity F;,,=0.93.

1
|(D[g>=E(|¢O>l|¢l>2+|¢1>1|¢0>2)~ (7)

The square modulus of |¥;,) and |(I~>[g), in the two-atom co-
ordinate representation, are shown in Figs. 9(a) and 9(b). In
order to make a comparison between the interacting and non-
interacting cases we define a two-particle fidelity also in the
noninteracting case

F=[(®|U(T) ® Us(D|¥;)], (®)

where U,(T) and U,(T) are the single-particle evolution op-
erators for the two atoms without interactions. In Table I we
summarize our results for 7=0.15 ms obtained with three
different sequences: first, the nonoptimized sequence Fig.
2(b), second, the transport optimized case Fig. 7 where we
used the optimal control algorithm to optimize the single-
particle populations not taking into account interactions,

TABLE I. Results of our numerical simulations for three differ-
ent sets of control parameters: the nonoptimized case Fig. 2(b); the
transport optimized case Fig. 7, where the optimal control algorithm
is used without taking into account interactions; the interaction op-
timized case where the optimal control algorithm is used taking into
account interactions. The quantities shown are: the single-particle
populations fg and f’l“ calculated without interactions, the two-
particle fidelities F and Fj, calculated without and with
interactions.

fg fll‘ F F int

nonoptimized 0.69 0.57 0.22 0.22
transport optimized 0.99 0.99 0.98 0.93
interaction optimized 0.98 0.98 0.96 0.97
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FIG. 10. The normalized Fourier transform magnitudes |3(f)|
(solid) and |5(f)| (dashed) of the optimized control sequences S(z)
and 6(r) shown in Fig. 7. The spectra are normalized to the value at
the fundamental frequency 1/7=6.67 kHz.

third, the interaction optimized case where we apply the op-
timal control algorithm using as the initial guess the transport
optimized sequence Fig. 7 and then optimizing including the
interactions in the evolution.

The resulting wave functions for the nonoptimized and
transport optimized sequences are compared in Figs. 9(c) and
9(d). Without optimal control the two-particle fidelity with
and without interactions is F=F;,=0.22 while with (nonin-
teracting) optimization we obtain F= fﬁf? =0.98 and Fy,
=0.93. This shows that interactions spoil slightly the effi-
ciency of the transport process as one might expect. Optimal
control can subsequently be applied while including interac-
tions in the optimization, producing a control sequence with
a fidelity of F;,=0.97.

Another consideration is the experimental bandwidth
available for feedback control. The optimized control wave-
forms Fig. 7 were obtained with no restriction on the fre-
quency response of the control, and typically have frequency
components on the order of a few times the lattice vibra-
tional spacings (see Fig. 10), i.e., larger than the bandwidth
of our control electronics. Clearly, using a filtered version of
these waveforms will lead to lower control fidelity and it will
be important to increase the experimental bandwidth of the
control electronics (currently about 50 kHz). In addition, it
may be useful to develop an optimization sequence that in-
cludes the limited control bandwidth, although it is likely
that frequencies on the order of the vibrational spacing will
always be needed.

V. CONCLUSIONS

We have presented a detailed, numerical analysis of the
transport process of neutral atoms in a time dependent opti-
cal lattice. We show how to improve the fidelity of the trans-
port process for 7=0.15 ms from F;,;=0.22, using simple
adiabatic switching, to F;,,=0.97, using optimal control
theory. We expect better results for longer control times. We
analyze the effect of atom-atom interactions on the transport
process and we show that the optimal control parameter se-
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quences found in the noninteracting case still work when
including interaction. We obtained the same transformation
as in the case of the adiabatic transport with a better fidelity
and in a time shorter by more than a factor of 3, which
represents a relevant improvement in terms of scalability of
the number of gates that can be performed before the system
decoheres due to the coupling to its environment. This tech-
nique can be easily adapted to other similar transport pro-
cesses and also extended to atoms in different magnetic
states, which can allow the implementation of a fast, high-
fidelity quantum gate in a real optical lattice setup with the
qubits encoded in the atomic internal states [12]. In the fu-
ture, it would be interesting to study the possibility of includ-
ing the effect of errors in the optimization procedure and thus
investigate in more details the robustness and noise-
resilience of the optimal control technique.
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APPENDIX: NUMERICAL METHOD

In our numerical simulations we employ a finite differ-
ence method (see, for example, Ref. [21]) that consists in
discretizing the coordinate representation in a homogeneous
n points mesh in the interval [X;;X,]: x,—x_; =dx, xo=X|,
x,=X,. The number dx=(X,—X,)/n is the lattice spacing. In
this discretized representation the eigenvalue equation be-
comes

&
(V(xk,o) - 5@ o) = Eqiho(xp), (A1)
where €=3.5/(2m)* kHz (3.5 is the conversion coefficient
between kHz and lattice recoils) and #,(x;) is the discretized
wave function. The discretized second-order derivative op-
erator 5)2C acts on any function as

S () = fxn) = 2 0) + fxy) -

Expression (A1) is second order in dx’. If one arranges the
function #,(x;) in an n-dimensional array, then Eq. (A1) can
be rewritten as an eigenvalue problem with a n Xn Hamil-
tonian matrix H. Since this matrix is tridiagonal, the princi-
pal diagonal being V(x;,0)—2¢€/dx* and the two subdiago-

(A2)
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nals being filled with €/ dx?, one can take advantage of its
sparse structure for storage and computing. We calculate
low-energy eigenstates by approximately diagonalizing the
Hamiltonian using the Jacobi-Davidson method [31]. This
method is an iterative method which is capable of finding a
few (typically less than 10) eigenstates close to a chosen
target energy. The advantages of using this and similar algo-
rithms (Lanczos, Arnoldi) instead of exact diagonalization
are that the method is much faster and one does not need to
store the whole Hamiltonian. In our eigenvalue problem we
take full advantage of this method, given the sparse structure
of the Hamiltonian H. The error of this approximate method
compared to an exact diagonalization method is negligible
for our purposes.

To study the time evolution of the wave functions of the
atoms we integrate numerically the time-dependent
Schrodinger equation. Introducing a time slicing in the inter-
val [0;T] with time interval dt, the Schrédinger equation has
the form

Mxkvtnﬂ) - lzb(kan) =—idt H(xk»ln) lzb(xk’tn) .

The discretized expression (A3) gives an iterative relation to
compute the wave function at time 7,,,, from the expression
of the wave function at time 7,. This is one example of an
explicit method: the coefficients (x;,7,,;) can be directly
calculated from f(x;,t,). Explicit schemes have the great
advantages of being extremely fast and easily implemented.
However this expansion is only first order in df and is not
always stable. Therefore, we used the Crank-Nicolson
scheme [22], an implicit method, which consists in taking a
time average of the right-hand side of Eq. (A3) between time
t, and t,,, namely,

(A3)

idt
W Xpotyi) — Pxpat,) = — E[H(Xk,ln) Wxpt,)

+ H(xk’tn+l)¢(xk7 tn+1)]~ (A4)

This method is of the second order in time and space and it
is unconditionally stable. The price for all these advantages
is that a tridiagonal set of linear equations must be solved to
get (t,,,) as shown in Eq. (A4). We used common Fortran
routines to solve the linear equations problem [32].

We solve a 2D time-dependent Schrodinger equation in
the two coordinates of the atoms by making use of the ex-
tension in two dimensions of the Crank-Nicolson method
called the Peaceman-Rachford method [21]. This is an im-
plicit method and the integration proceeds in two steps: first
the initial wave function is integrated in time considering
only one direction in the coordinate space, then from the
intermediate wave function we obtain the final wave function
by integrating in the other direction. This method is an ex-
ample of alternate direction implicit schemes. In our simula-
tions we used n=(X,-X,)/dx=10% and n;=T/dt=5X%10°
that assures convergence of the results with a relative error
which is less than 1073,
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