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Quantum optimal control theory allows us to design accurate quantum gates. We employ it to design
high-fidelity two-bit gates for Josephson charge qubits in the presence of both leakage and noise. Our
protocol considerably increases the fidelity of the gate and, more important, it is quite robust in the
disruptive presence of 1=f noise. The improvement in the gate performances discussed in this work (errors
�10�3–10�4 in realistic cases) allows us to cross the fault tolerance threshold.
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One of the fundamental requirements of any proposed
implementation of quantum information processing is the
ability to perform reliably single- and two-qubit gates. In
the last decade there has been intense experimental and
theoretical activity to realize suitable schemes for quantum
gates in a variety of physical systems such as NMR, ion
traps, cold atoms, solid-state devices, just to mention a few
[1]. Typically, as compared to single-bit gates, two-qubit
gates are much more difficult to realize. The interaction
between the qubits is more delicate to control while pre-
serving coherence. Furthermore two-bit gates are more
sensitive to imperfections, noise and, whenever present,
leakage to noncomputational states. It is therefore of cru-
cial importance to find strategies to alleviate all these
problems. A powerful tool to realize accurate gates is
quantum optimal control [2], already applied, for example,
to quantum computation with cold atoms in an optical
lattice [3]. The aim of the present work is to apply optimal
control to the realm of solid-state quantum computation,
more specifically to qubits realized with superconducting
nanocircuits. Josephson-junction qubits [4,5] are consid-
ered among the most promising candidates for implement-
ing quantum protocols in solid-state devices. Because of
their design flexibility, several different versions of super-
conducting (charge, flux, phase) qubits have been theoreti-
cally proposed and experimentally realized in a series of
beautiful experiments [6]. Several schemes for qubit cou-
pling have also been proposed (see the reviews [4,5]). On
the experimental side, coupled qubits have been realized in
the charge [7,8] and in the phase [9] regimes where a CNOT,�������������

iSWAP
p

gates have been implemented, respectively. In the
experiment of Steffen et al. [9] the measured fidelity was of
the order of 75% increasing up to 87% after accounting for
measurement errors. Further improvements in the accuracy
rely on achieving larger decoherence times. In the experi-
ment of Yamamoto et al. [8] a direct determination of the
fidelity from the data was not possible, but it has been

estimated to be�80%. Advances in fabrication techniques
will play a crucial role in achieving accurate quantum
gates; however, as the thresholds for fault tolerant compu-
tation [10] are quite demanding, gate optimization is a
powerful tool for a considerable improvement of their
accuracy. A major open question is the resilience of opti-
mized operations to imperfections affecting a real labora-
tory implementation, including leakage to states outside
the Hilbert subspace employed for logical encoding, in-
accurate realization of the desired pulse shape, and classi-
cal noise in the system. In this Letter we apply optimal
quantum control to superconducting charge qubits (that we
choose for illustration purposes). We analyze in detail the
effect of noise and leakage, and we show that optimization
keeps yielding a considerable improvement in gate fidel-
ities even under such realistic conditions. In the context of
superconducting charge qubits, it has been proposed to
couple the qubits via a capacitance [7,11], an additional
Josephson Junction (JJ) [12] or an inductance [13,14]. The
two-bit gate is realized by an appropriate choice of pulses
in the gate potentials. For the two cases of capacitive and JJ
coupling we construct the optimal pulse shapes, thereby
obtaining very high fidelities. For the case of capacitive
coupling optimal control has been applied to superconduct-
ing qubits for the first time by Spörl et al. [15]. Here, we
extend their results in two important aspects: First, we
compare two different couplings in order to optimize the
design. Second, we include the effect of 1=f charge noise,
believed to be the main source of decoherence in these
systems [16,17], and show that the optimal gates are robust
against it. We further show that gate accuracy is maintained
even under partially distorted pulse shapes.

Coupled Josephson qubits.—Josephson charge qubits,
sketched in Fig. 1, are defined in the regime in which the
Josephson coupling is much smaller than the charging
energy. The single-qubit Hamiltonian (including also non-
computational states) is defined as [4,5]
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where ni is the number of excess Cooper pairs on the ith
(i � 1, 2) qubit, n�i�g � CgV

�i�
g =�2e� is the offset charge

controlled by the gate voltage V�i�g (Cg is the gate capaci-

tance), EC is the charging energy, and E�i�J is the Josephson
coupling. By projecting onto the Hilbert space spanned by
the states j0i, j1i (D � 2,D is the dimension of the Hilbert
space) one recovers the charge qubit Hamiltonian. We want
to include the effect of leakage to the charge states (in this
case D> 2). Since we have EJ=EC � 1, it is sufficient to
add few other charge states. We included the charge states
from j � 2i to j3i, i.e., D � 6. However, in the range
EJ=EC � 5–10� 10�2 [7] we verified that retaining the
charge states j � 1i, j0i, j1i, j2i is sufficient.

The coupling between the qubits [see Fig. 1(b)] can be
either via a capacitor or a Josephson junction. In the case of
capacitive coupling, Fig. 1(b) (left), the interaction
Hamiltonian reads

 H cc
I �Ecc

X
n1;n2

�n1�ng;1��n2�ng;2�jn1;n2ihn1;n2j (1)

where Ecc is the charging energy associated to the
Coulomb interaction between the qubits. If instead the
coupling is via a Jospehson junction, Fig. 1(b) (right), the
coupling Hamiltonian is given by

 H JJ
I �

~EJJ
2

X
n1;n2

�jn1ijn2 � 1ihn1 � 1jhn2j � H:c:� (2)

where ~EJJ is the Josephson energy of the coupling junction
[18].

Two-qubit gates.—The goal is to implement the univer-
sal two-qubit gates GJJ and Gcc for the JJ and capacitive
couplings, respectively. They read

 GJJ �

0 0 0 1
0 	i 0 0
0 0 	i 0
1 0 0 0

0
BBB@

1
CCCA; Gcc �

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

0
BBB@

1
CCCA;

(3)

where we used the basis fj � �i; j � �i; j � �i; j � �ig
for GJJ and the basis fj11i; j10i; j01i; j00ig for Gcc (j	i �
�j0i 	 j1i�=

���
2
p

). Even under ideal operating conditions
these gates cannot be implemented exactly [8,12]. As
discussed in Ref. [12], GJJ can be approximately realized
by tuning both qubits to degeneracy, fixing all the
Josephson couplings to be equal in magnitude and turning
on the interaction for a time �JJ ’ 0:972�= ~EJJ. ForGcc we
choose the same parameters of the experiment [8]
(EJ=E

�1�
C ’ 0:0777, EJ=E

�2�
C ’ 0:0610, Ecc=E

�1�
C ’ 0:1653).

The time needed for the gate is �cc ’ 1:18�=E�1�J . Defining
U�
� (� � JJ, cc) as the time evolution operator associated

to the full Hamiltonian H 1 �H 2 �H �
I , a figure of

merit to quantify the accuracy of a quantum gate is the
error defined as

 " � 1� Tr�Gy� ~U�
� �: (4)

The ~U is the time evolution operator projected onto the
computational states (the fidelity of the operation should be
tested only on the computational basis jn1; n2i � j00i,
j01i, j10i, j11i). The fidelity is defined as F 
 1� ". In
the following we determine optimized fidelities, up to a
global phase for the gates in Eq. (3) when implemented
with charge qubits. In order to be as close as possible to the
experimental situation, we search for optimal pulses with
the constraint that after the gates the two qubits are in their
idle points.

Optimized quantum gates.—Quantum control tech-
niques described in Refs. [2,3] allow us to minimize the
error " defined in Eq. (4). One assumes that the
Hamiltonian is controlled by a set of external parameters
which can be varied in time. The goal is to find the time
dependence of the parameters that minimizes ". To illus-
trate it in a little more detail, let us imagine a system
governed by the time-dependent Hamiltonian H �g�t��,
where g�t� is the control parameter. The goal of a quantum
optimal control algorithm in general is to reach, in a certain
time �, a desired target state j Ti with high fidelity. The
algorithm employed here, due to Krotov [2], works as
follows: (i) an initial guess g0�t� is chosen for the control
parameter; (ii) the initial state j 0i is evolved in time
according to the dynamics dictated by H �g�t�� until
time �: j g���i � U��g�j 0i; (iii) an auxiliary state
j�g���i 
 j Tih T j E���i is defined, which can be inter-

Coupling

a)

b)

EJ

C

ng

FIG. 1 (color online). (a) A Cooper pair box can implement a
charge qubit when tuned in the regime in which only two charge
states are relevant. The box between the qubits represents the
coupling which is specified below. (b) An extra Josephson
junction (right) or of a capacitance (left).
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preted as the part of j g���i that has reached the target j Ti
and the auxiliary state is evolved backwards in time until
t � 0; (iv) j�g�t�i and j g�t�i are propagated again forward
in time, while the control parameter is updated with the
rule g�t� ! g�t� � Im�h�g�t�j@gHj g�t�i�=��t� and the
weight function ��t� constrains the initial and final values
of the control parameter; (v) steps (iii) and (iv) are repeated
until the desired value of the fidelity is obtained. The same
procedure can be followed also when the Hamiltonian
contains more than one parameter. After a sufficient num-
ber of iterations, the algorithm converges and reaches
asymptotically a minimum "min. In the present case, we
consider E�i�J , ng;i, E� as control parameters (Josephson
couplings can be tuned by means of an applied magnetic
flux), and we look for optimal pulse shapes to improve the
fidelity F �. Although in principle one may consider all the
different couplings independently, this is impractical for an
experimental point of view. In the case of JJ coupling we
keep the gate voltage fixed and consider the same time
dependence for all the Josephson couplings. This type of
control can be achieved by applying a uniform time-
dependent magnetic field. In the case of capacitive cou-
pling we allow for time-dependent gates but keep the
Josephson couplings fixed. Relaxing these constraints
will certainly lead to a further optimization of the fidelity
at the cost, however, of a more complex external control.
The important point is that already at the level discussed in
this work the improvement in the gate performances allows
for crossing the fault tolerance threshold [10].

The presence of leakage may be disruptive for two-bit
gates in Josephson charge qubits [19]. Optimization, how-
ever, fully compensates for leakage in both of the schemes
depicted in Fig. 1. In the case of JJ coupling, Fig. 2 (left
panel), we have only one control parameter, the Josephson
coupling energy [E�1�J �t� � E�2�J �t� � ~EJJ�t�]. The nonopti-
mized gate (open circles) is realized as described in
Ref. [12] while the optimized curve, for the qubits of
Ref. [8] (EJ=EC � 3� 10�2), gives an error of the order

of 10�4. This error is not appreciably influenced by the
choice of the initial pulse, but rather it is physically deter-
mined by the constraints imposed on the pulse itself—for
instance, requiring it to start and end at an optimal working
point away from degeneracy, as we do here. In both cases
we include leakage and the small effect of a finite charging
energy Ecc. In the case of capacitive coupling, we build on
the results obtained in Ref. [15] and use their pulse se-
quence as the initial guess. Thus we present here only the
optimized gate. Our results are shown in Fig. 2 (right
panel). In this setup, which coincides with that of the
experiment of Ref. [8] the coupling Ecc cannot be changed.
The values of the parameters E�i�J =E

�i�
C , E�i�J =Ecc (i � 1, 2),

and �cc should be chosen properly in order to realize the
gate Gcc. Consistently, if E�i�J =Ecc is changed by a given
factor, �cc should be divided by the same factor. For the
experimental value of E�i�J =Ecc, the error is of the order
"min ’ 10�4. Note that increasing E�i�J =Ecc results in a
faster gate, thus reducing the effect of decoherence. Here,
in the best case, we can reduce the gate time to �� 30 ps,
while keeping the fidelity constant.

An important question to be addressed is to what extent
our optimized gates are robust against noise. For this
reason we check how stable the fidelity (optimized in the
absence of noise) is when the environment is taken into
account [20]. The most important source of decoherence in
charge qubits is 1=f charge noise [21]. Although its under-
standing is far from complete, 1=f noise is believed to
originate from two-level fluctuators present in the substrate
and/or in the insulating barrier. Several theoretical works
have recently studied the relation between 1=f noise and
decoherence in charge qubits (see Refs. [16,17] and refer-
ences therein). Here we follow the approach of Ref. [17]
and model the environment as a superposition of bistable
classical fluctuators resulting in an additional random con-
tribution �n�i�g �t� to the gate charge. A distribution of
switch rates � behaving as P��� / 1=� in a range
��min:�max� results in a noise power spectrum Sng�!� �

h�n�i�g �t��n
�i�
g �0�i! �!�1. Following [17] we chose the

switching rates such that the typical frequency of the gates
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FIG. 2 (color online). Error "min as a function of leakage for
two-qubit gates: for Josephson-junction coupling (including a
residual capacitive coupling with Ecc= ~EJJ � 0:05), with and
without optimization (lower and upper curve, respectively)
(left panel); for capacitive coupling, with optimization, as a
function of the ratio E�1�J =Ecc (which we use here since the
two charging energies in the experiment E�i�C are different) (right
panel). The experimental value E�1�J =Ecc � 0:47 from Ref. [8] is
marked.
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FIG. 3 (color online). Optimized gate error "min under noise
having power spectrum Sng �!� � A=! as a function of noise
strength A: for Josephson coupling with EJ=EC � 0:05, with and
without optimization (lower and upper curves, respectively) (left
panel); for capacitive coupling with E�1�J =Ecc � 0:47 (right
panel). Typical experimental value are around A� 10�5.
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is centered in between the 2 orders of magnitude over
which the 1=f noise extends (We checked the stability of
our results with the choice of �min and �max; data not
shown). We considered up to 1000 independent fluctuators
coupled weakly to the qubits and we assumed that the
charge noise on the two separate qubits is uncorrelated.
The results of our analysis are reported in Fig. 3: regardless
of the coupling scheme, the fidelity turns out to be quite
robust against noise. Moreover, the error rates remain
orders of magnitude better than without application of
the quantum control algorithm, even under significant
noise strengths, up to A� 10�4–10�3. We checked these
results also with different kinds of noise (white noise,
homogeneous frequency broadening in the control pulses)
and we found similar conclusions (see also Ref. [15]). We
finally investigated the dependence of the gate error on the
experimentally unavoidable inaccuracies of the pulse
shapes. To this end we applied a filter to suppress the
contribution of harmonics above a cutoff !c in the shape
of the optimal pulses. In Fig. 4 we show the dependence of
the error on the number of frequencies that compose the
optimized pulses. In both cases the most important correc-
tions are those at lower frequencies, as already pointed out
in Ref. [15]. This explains the robustness of both optimized
gates against noise processes: the fidelity is just marginally
influenced by new frequencies introduced by the noise.
Although the realization of (nearly) optimal pulses is de-
manding, it definitely leads to accurate gate operation. One
can then imagine realizing the two-bit gates in a longer
time, in which case the shape of the pulse should be easier
to realize. On the other hand, if the gate is too slow
decoherence becomes relevant. It is then important to
find an optimal gate time for which these two competing
effects are minimized. We believe that this may be an
avenue to realizing high-fidelity computations with
Josephson nanocircuits.
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FIG. 4 (color online). Gate error "min as a function of the pulse
spectral cutoff !c for Josephson coupling with EJ=EC � 1=20
(left) and for capacitive coupling with E�1�J =Ecc � 0:47 (right).
Insets: Corresponding optimal pulses.
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