Theoretical Quantum Optics

Sheet 5

Date of issue: 26-05-2017

Exercise 7 Population and coherence in terms of the density matrix

We consider the density matrix $\hat{\rho}$ and an orthogonal basis $|u_n\rangle$ (n = 1, 2, ...) of the state space.

a) By using the Cauchy-Schwarz inequality, prove the relation

$$\rho_{nn}\rho_{mm} \geq |\rho_{nm}|^2 \tag{1}$$

for $\rho_{nm} \equiv \langle u_n | \hat{\rho} | u_m \rangle$. Inequality (1) reveals that for a density matrix $\hat{\rho}$, the coherence $(\rho_{nm} \neq 0 \text{ for } n \neq m)$ can only occur between the states $|u_n\rangle$ and $|u_m\rangle$ whose populations $(\rho_{nn} \text{ and } \rho_{mm})$ are non-zero.

(1 point)

b) Moreover, prove that Inequality (1) results in the criteria

 $\mathrm{Tr}\rho^2 \leq 1$

for the system to be in a pure $(\text{Tr}\rho^2 = 1)$ or in a mixed $(\text{Tr}\rho^2 < 1)$ state.

(1 point)

Exercise 8 Two spin-1/2 particles and Werner states

We consider a system of two spin-1/2 particles. A basis of this bipartite system is given, for example, in terms of the Bell states

$$\begin{split} |\Phi^+\rangle &= \frac{1}{\sqrt{2}} \left(|\downarrow\rangle_1 |\downarrow\rangle_2 + |\uparrow\rangle_1 |\uparrow\rangle_2\right) , \\ |\Phi^-\rangle &= \frac{1}{\sqrt{2}} \left(|\downarrow\rangle_1 |\downarrow\rangle_2 - |\uparrow\rangle_1 |\uparrow\rangle_2\right) , \\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}} \left(|\downarrow\rangle_1 |\uparrow\rangle_2 + |\uparrow\rangle_1 |\downarrow\rangle_2\right) , \\ |\Psi^-\rangle &= \frac{1}{\sqrt{2}} \left(|\downarrow\rangle_1 |\uparrow\rangle_2 - |\uparrow\rangle_1 |\downarrow\rangle_2\right) , \end{split}$$

where the spin-up state $|\uparrow\rangle_i = \begin{pmatrix} 1\\ 0 \end{pmatrix}$ and the spin-down state $|\downarrow\rangle_i = \begin{pmatrix} 0\\ 1 \end{pmatrix}$ form a basis of the state space for a single spin-1/2 particle i (i = 1, 2).

SS 2017 Discussion: 02-06-2017 a) Find the two-particle states corresponding to the total spin S = 1 (triplet) and the two-particle state corresponding to the total spin S = 0 (singlet) in terms of the Bell states.

(1 point)

b) Present the Bell states as matrix by evaluating the tensor products, for example $|\downarrow\rangle_1 |\downarrow\rangle_2 = |\downarrow\rangle_1 \otimes |\downarrow\rangle_2$.

(1 point)

c) We introduce a family of the Werner states

$$\hat{\rho}(\alpha) = \alpha |\Phi^+\rangle \langle \Phi^+| + \frac{1}{4}(1-\alpha)\mathbb{1}_4$$

characterized by a real parameter α . Represent the Werner states as a 4x4-matrix in the basis $\{|\uparrow\rangle_1 |\uparrow\rangle_2, |\uparrow\rangle_1 |\downarrow\rangle_2, |\downarrow\rangle_1 |\uparrow\rangle_2, |\downarrow\rangle_1 |\downarrow\rangle_2\}$.

(1 point)

d) Find the conditions for α , such that $\hat{\rho}(\alpha)$ is a density matrix.

(2 points)

e) Calculate the parameter α for which the Werner state describes a pure state.

(1 point)

f) Obtain the reduced density matrices $\hat{\rho}_1$ and $\hat{\rho}_2$ for the single particle states. Find the values of α , such that either $\hat{\rho}_1$ or $\hat{\rho}_2$ are not in a mixed state.

(2 points)

Exercise 9 Density matrix for a continuous basis

A bipartite system, consisting of the two subsystems A and B, is prepared in a pure state and characterized by the wave function $\psi(\alpha, \beta)$, where α and β are continuous variables of the subsystems A and B, accordingly. We introduce the reduced density matrix

$$ho_A(lpha, lpha') ~=~ \int \mathrm{d}eta \, \psi^*(lpha, eta) \psi(lpha', eta)$$

to describe only the subsystem A.

- a) Find the condition for the function $\psi(\alpha, \beta)$, such that
 - $\operatorname{Tr}(\rho_A) = 1$ is fulfilled.
 - the reduced density matrix $\rho_A(\alpha, \alpha')$ describes a pure state.

b) We define the mean value $\langle \hat{f}_A \rangle$ of the operator \hat{f}_A , which only acts on the subsystem A, as

$$\left\langle \hat{f}_A \right\rangle \equiv \left\langle \psi \right| \hat{f}_A \left| \psi \right\rangle \; .$$

Represent $\left\langle \hat{f}_A \right\rangle$ in terms of $\rho_A(\alpha, \alpha')$.

(1 point)

c) Write down the dynamical equation for $\rho_A(\alpha, \alpha', t)$.

(2 points)