Exercise 7 \hspace{0.5cm} \textit{Population and coherence in terms of the density matrix}

We consider the density matrix $\hat{\rho}$ and an orthogonal basis $|u_n\rangle$ ($n = 1, 2, ...$) of the state space.

a) By using the Cauchy-Schwarz inequality, prove the relation

$$\rho_{nm} \rho_{mm} \geq |\rho_{nm}|^2 \quad (1)$$

for $\rho_{nm} \equiv \langle u_n | \hat{\rho} | u_m \rangle$. Inequality (1) reveals that for a density matrix $\hat{\rho}$, the coherence ($\rho_{nm} \neq 0$ for $n \neq m$) can only occur between the states $|u_n\rangle$ and $|u_m\rangle$ whose populations (ρ_{nn} and ρ_{mm}) are non-zero.

(1 point)

b) Moreover, prove that Inequality (1) results in the criteria

$$\text{Tr} \rho^2 \leq 1$$

for the system to be in a pure ($\text{Tr} \rho^2 = 1$) or in a mixed ($\text{Tr} \rho^2 < 1$) state.

(1 point)

Exercise 8 \hspace{0.5cm} \textit{Two spin-1/2 particles and Werner states}

We consider a system of two spin-1/2 particles. A basis of this bipartite system is given, for example, in terms of the Bell states

$$|\Phi^+\rangle = \frac{1}{\sqrt{2}} (|\downarrow\rangle_1 |\downarrow\rangle_2 + |\uparrow\rangle_1 |\uparrow\rangle_2) \quad ,$$

$$|\Phi^-\rangle = \frac{1}{\sqrt{2}} (|\downarrow\rangle_1 |\downarrow\rangle_2 - |\uparrow\rangle_1 |\uparrow\rangle_2) \quad ,$$

$$|\Psi^+\rangle = \frac{1}{\sqrt{2}} (|\downarrow\rangle_1 |\uparrow\rangle_2 + |\uparrow\rangle_1 |\downarrow\rangle_2) \quad ,$$

$$|\Psi^-\rangle = \frac{1}{\sqrt{2}} (|\downarrow\rangle_1 |\uparrow\rangle_2 - |\uparrow\rangle_1 |\downarrow\rangle_2) \quad ,$$

where the spin-up state $|\uparrow\rangle_i = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and the spin-down state $|\downarrow\rangle_i = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ form a basis of the state space for a single spin-1/2 particle $i \ (i = 1, 2)$.
a) Find the two-particle states corresponding to the total spin \(S = 1 \) (triplet) and the two-particle state corresponding to the total spin \(S = 0 \) (singlet) in terms of the Bell states.

(1 point)

b) Present the Bell states as matrix by evaluating the tensor products, for example

\[
|\downarrow\rangle_1 |\downarrow\rangle_2 = |\downarrow\rangle_1 \otimes |\downarrow\rangle_2.
\]

(1 point)

c) We introduce a family of the Werner states

\[
\hat{\rho}(\alpha) = \alpha |\Phi^+\rangle \langle \Phi^+| + \frac{1}{4} (1 - \alpha) \mathbb{I}_4
\]

characterized by a real parameter \(\alpha \). Represent the Werner states as a 4x4-matrix in the basis \(\{|\uparrow\rangle_1, |\uparrow\rangle_2, |\downarrow\rangle_1, |\downarrow\rangle_2\} \).

(1 point)

d) Find the conditions for \(\alpha \), such that \(\hat{\rho}(\alpha) \) is a density matrix.

(2 points)

e) Calculate the parameter \(\alpha \) for which the Werner state describes a pure state.

(1 point)

f) Obtain the reduced density matrices \(\hat{\rho}_1 \) and \(\hat{\rho}_2 \) for the single particle states. Find the values of \(\alpha \), such that either \(\hat{\rho}_1 \) or \(\hat{\rho}_2 \) are not in a mixed state.

(2 points)

Exercise 9

Density matrix for a continuous basis

A bipartite system, consisting of the two subsystems \(A \) and \(B \), is prepared in a pure state and characterized by the wave function \(\psi(\alpha, \beta) \), where \(\alpha \) and \(\beta \) are continuous variables of the subsystems \(A \) and \(B \), accordingly. We introduce the reduced density matrix

\[
\rho_A(\alpha, \alpha') = \int d\beta \psi^*(\alpha, \beta)\psi(\alpha', \beta)
\]

to describe only the subsystem \(A \).

a) Find the condition for the function \(\psi(\alpha, \beta) \), such that

- \(\text{Tr}(\rho_A) = 1 \) is fulfilled.
- the reduced density matrix \(\rho_A(\alpha, \alpha') \) describes a pure state.

(2 points)
b) We define the mean value $\langle \hat{f}_A \rangle$ of the operator \hat{f}_A, which only acts on the subsystem A, as

$$\langle \hat{f}_A \rangle \equiv \langle \psi | \hat{f}_A | \psi \rangle .$$

Represent $\langle \hat{f}_A \rangle$ in terms of $\rho_A(\alpha, \alpha')$. (1 point)

c) Write down the dynamical equation for $\rho_A(\alpha, \alpha', t)$. (2 points)