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Exercise 10 The harmonic oscillator in the thermal state

The density operator describing a harmonic oscillator with the frequency ω, which is in
thermal equilibrium with a heat bath of temperature T , reads
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a) Find the normalization constant N from the condition
∑∞

n=0wn = 1.

(1 point)

b) Calculate Trρ̂2HO and find the condition under which ρ̂HO describes a pure state.
Sketch Trρ̂2HO as a function of the temperature T .

(2 points)

c) In the coordinate representation the eigenfunctions 1√
xHO

ψn(x/xHO) ≡ 〈x|n〉 of the

harmonic oscillator are determined by the Hermite polynomials Hn(ξ) as
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where xHO =
√

~
mω

is the characteristic length scale of the harmonic oscillator. Find

ρHO(x, x′) = 〈x| ρ̂HO |x′〉 in the coordinate representation.

(3 points)

Hint: Use the Mehler’s formula
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d) Calculate ρHO(p, p′) = 〈p| ρ̂HO |p′〉 in the momentum representation.

(2 points)

e) Obtain the variances ∆x2 and ∆p2 and compare the obtained result with the Heisen-
berg uncertainty.

(4 points)


