## **Theoretical Quantum Optics**

Sheet 8

Date of issue: 19-06-2017

**SS 2017** Discussion: 30-06-2017

## **Exercise 12** Ramsey interferometer: to measure $\omega_{eq}$

Let us consider a two-level system with the resonance frequency  $\omega_{eg}$  interacting with a series of near-resonant laser pulses, shown in Fig. 1.



Figure 1: The Ramsey interferometer consisting of a series of two  $\frac{\pi}{2}$ -pulses, separated by the region of free atomic evolution.

Mathematically, the interaction of an atom with the near-resonant lasers pulses takes the form

$$\Omega_0(t) = \Omega_0 \begin{cases} 0, & t \le 0\\ 1, & 0 < t \le \tau\\ 0, & \tau < t \le T + \tau\\ 1, & T + \tau < t \le T + 2\tau\\ 0, & t > T + 2\tau \end{cases}$$

By neglecting any relaxations, the internal state of the atom  $|\psi(T+2\tau)\rangle$  then reads

$$|\psi(T+2\tau)\rangle = \hat{U}_{\frac{\pi}{2}}(T+2\tau,T+\tau)\hat{U}_{free}(T+\tau,\tau)\hat{U}_{\frac{\pi}{2}}(\tau,0)|\psi(0)\rangle$$
,

where

- $-\hat{U}_{\frac{\pi}{2}}(t_f,t_i)$  is the time evolution operator due to the interaction of an atom with a near-resonant laser pulse (of the frequency  $\omega_L$  and the phase  $\varphi = 0$ ) during the time interval  $(t_i, t_f)$ .
- $-\hat{U}_{free}(t_f, t_i)$  is the time evolution operator for a free atom (without any field) during the time interval  $(t_i, t_f)$ .
- a) Obtain the time evolution operator  $\hat{U}_{\frac{\pi}{2}}(t_f, t_i)$  for a given detuning  $\Delta = \omega_{eg} \omega_L$ and find the condition for the pulse to be a  $\frac{\pi}{2}$ -pulse (pulse area equal to  $\frac{\pi}{2}$ ).

(3 points)

b) Obtain the time evolution operator  $\hat{U}_{free}(t_f, t_i)$ .

(1 point)

c) Find the probability  $w_e(T+2\tau)$  to find the atom in the excited state directly after the second pulse (at  $t = T+2\tau$ ), if initially the atom is in the ground state,  $|\psi(0)\rangle = |g\rangle$ .

(3 points)

d) Consider the case of  $|\Delta| \ll \Omega_0$  and plot the probability  $w_e(T+2\tau)$  as a function of the time interval T.

(1 point)

## **Exercise 13** Ramsey interferometer with relaxations

To take into account relaxation characterized by two relaxation times  $T_1$  and  $T_2$ , we represent the optical Bloch equations in the matrix form

$$i\frac{\partial}{\partial t}\hat{
ho} = \hat{\mathcal{H}}\hat{
ho}$$

for  $\hat{\rho} = (\rho_{ee}, \rho_{gg}, \rho_{eg}, \rho_{eg}^*)^T$ .

a) Find the time evolution operator  $\hat{\mathcal{U}}_{free}(t_f, t_i)$ , corresponding to the case of  $\Omega_0 = 0$ , that is

$$\hat{\rho}(t_f) = \hat{\mathcal{U}}_{free}(t_f, t_i)\hat{\rho}(t_i)$$

(1 point)

b) Find the evolution operator  $\hat{\mathcal{U}}(t_f, t_i)$  corresponding to the atom-field interaction during the time interval  $(t_i, t_f)$  with  $\Omega_0(t) = \Omega_0$  for  $t_i \leq t \leq t_f$  and  $|t_f - t_i| \ll T_{1,2}$ . Obtain the condition, under which the pulse area is equal to  $\frac{\pi}{2}$ .

(3 points)

c) Obtain the population  $\rho_{ee}(T + 2\tau)$  of the excited state, see Fig. 1, and plot its dependence on the time interval T.

(3 points)